Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Eurostat provides statistical data on various aspects of the labor market across Europe, including:
Sectoral Employment – Employment distribution across various sectors like agriculture, industry, and services.
**Details of the Dataset **
This dataset would typically cover European Union countries and potentially other European countries (depending on the specific version). The data likely spans multiple years (1980-2024) and provides insights into the demographic and economic changes in these countries over time.
-**Some example insights you might explore:**
Trends in Employment: Analyzing the employment and unemployment rates over time to see how they correlate with major economic events, such as the global financial crisis. Sectoral Shifts: Investigating how the structure of employment has shifted from agriculture and industry to services over the decades. Impact of Population Growth: Exploring how changes in population size relate to changes in employment, labor force participation, and unemployment.
You can access the Eurostat dataset directly using the following link:
This link takes you to Eurostat's Labor Force Survey (LFS) data, which includes datasets related to employment, unemployment, and other labor force indicators across EU countries. You can navigate and search for NAMQ_10_PE by using Eurostat’s filtering and search tools. Here, you can download data in various formats such as CSV, Excel, or TSV.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in Philippines decreased to 3.80 percent in September from 3.90 percent in August of 2025. This dataset provides - Philippines Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThe unemployment rate of the United Kingdom was five percent in September 2025, up from 4.8 percent in the previous month, and the highest rate of unemployment since 2021. Before the arrival of the COVID-19 pandemic, the UK had relatively low levels of unemployment. Between January 2000 and the most recent month, unemployment was highest in November 2011, when the unemployment rate hit 8.5 percent.
Will unemployment continue to rise in 2025?
Although low by historic standards, there has been a noticeable uptick in the UK's unemployment rate, with other labor market indicators also pointing to further loosening. In December 2024, the number of job vacancies in the UK fell to its lowest level since May 2021, while payrolled employment declined by 47,000 compared with November. Whether this is a continuation of a broader cooling of the labor market since 2022 or a reaction to more recent economic developments, such as upcoming tax rises for employers, remains to be seen. Forecasts made in late 2024 suggest that the unemployment rate will remain relatively stable in 2025, averaging out at 4.1 percent and falling again to four percent in 2026.
Demographics of the unemployed
As of the third quarter of 2024, the unemployment rate for men was slightly higher than that of women, at 4.4 percent, compared to 4.1 percent. During the financial crisis at the end of the 2000s, the unemployment rate for women peaked at a quarterly rate of 7.7 percent, whereas for men, the rate was 9.1 percent. Unemployment is also heavily associated with age, and young people in general are far more vulnerable to unemployment than older age groups. In late 2011, for example, the unemployment rate for those aged between 16 and 24 reached 22.3 percent, compared with 8.2 percent for people aged 25 to 34, while older age groups had even lower peaks during this time.
Facebook
TwitterBackground The purpose of this study was to investigate the impact of a 20-year process of de-industrialization in the British Columbia (BC) sawmill industry on labour force trajectories, unemployment history, and physical and psychosocial work conditions as these are important determinants of health in workforces. Methods The study is based on a sample of 1,885 respondents all of whom were sawmill workers in 1979, a year prior to commencement of de-industrialization and who were followed up and interviewed approximately 20 years later. Results Forty percent of workers, 64 years and under, were employed outside the sawmill sector at time of interview. Approximately one third of workers, aged 64 and under, experienced 25 months of more of unemployment during the study period. Only, 1.5% of workers were identified as a "hard core" group of long-term unemployed. Workers re-employed outside the sawmill sector experienced improved physical and psychosocial work conditions relative to those employed in sawmills during the study period. This benefit was greatest for workers originally in unskilled and semi-skilled jobs in sawmills. Conclusions This study shows that future health studies should pay particular attention to long-term employees in manufacturing who may have gone through de-industrialization resulting in exposures to a combination of sustained job insecurity, cyclical unemployment, and adverse physical and psychosocial work conditions.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
This data set includes the unemployment rate and the labor force participation rate for individuals with and without disabilities as well as the total for all individuals. This data is Pennsylvania specific and is source from the U.S. Census' Current Population Survey (CPS).
The data given for each month is a "rolling" average, which represents the average for the 12 month period ending with the reference month. For example: The July 2019 “People with Disabilities Participation Rate” is the average participation rate of August 2018 – July 2019. The August 2019 rate is the average of September 2018 – August 2019, and so on.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify usual residents aged 16 years and over in employment the week before the census in England and Wales by industry and by economic activity status. The estimates are as at Census Day, 21 March 2021.
As Census 2021 was during a unique period of rapid change, take care when using this data for planning purposes. Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Lower tier local authorities
Lower tier local authorities provide a range of local services. There are 309 lower tier local authorities in England made up of 181 non-metropolitan districts, 59 unitary authorities, 36 metropolitan districts and 33 London boroughs (including City of London). In Wales there are 22 local authorities made up of 22 unitary authorities.
Coverage
Census 2021 statistics are published for the whole of England and Wales. However, you can choose to filter areas by:
Industry (current)
Classifies people aged 16 years and over who were in employment between 15 March and 21 March 2021 by the Standard Industrial Classification (SIC) code that represents their current industry or business.
The SIC code is assigned based on the information provided about a firm or organisation’s main activity.
Economic activity status
People aged 16 years and over are economically active if, between 15 March and 21 March 2021, they were:
It is a measure of whether or not a person was an active participant in the labour market during this period. Economically inactive are those aged 16 years and over who did not have a job between 15 March to 21 March 2021 and had not looked for work between 22 February to 21 March 2021 or could not start work within two weeks.
The census definition differs from International Labour Organization definition used on the Labour Force Survey, so estimates are not directly comparable.
This classification splits out full-time students from those who are not full-time students when they are employed or unemployed. It is recommended to sum these together to look at all of those in employment or unemployed, or to use the four category labour market classification, if you want to look at all those with a particular labour market status.
Facebook
TwitterNumber of persons in the labour force (employment and unemployment) and unemployment rate, by North American Industry Classification System (NAICS), gender and age group.
Facebook
TwitterThe Occupational Employment and Wage Statistics (OEWS) Survey is a federal-state cooperative program between the Bureau of Labor Statistics (BLS) and State Workforce Agencies (SWAs). The BLS provides the procedures and technical support, draws the sample, and produces the survey materials, while the SWAs collect the data. SWAs from all fifty states, plus the District of Columbia, Puerto Rico, Guam, and the Virgin Islands participate in the survey. Occupational employment and wage rate estimates at the national level are produced by BLS using data from the fifty states and the District of Columbia. Employers who respond to states' requests to participate in the OEWS survey make these estimates possible. The OEWS survey collects data from a sample of establishments and calculates employment and wage estimates by occupation, industry, and geographic area. The semiannual survey covers all non-farm industries. Data are collected by the Employment Development Department in cooperation with the Bureau of Labor Statistics, US Department of Labor. The OEWS Program estimates employment and wages for approximately 830 occupations. It also produces employment and wage estimates for statewide, Metropolitan Statistical Areas (MSAs), and Balance of State areas. Estimates are a snapshot in time and should not be used as a time series. The OEWS estimates are published annually. SOURCE: https://www.bls.gov/oes/oes_emp.htm
Facebook
Twitter
Occupation data for 2021 and 2022 data files
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
Facebook
TwitterKenya’s unemployment rate was 5.43 percent in 2024. This represents a steady decline from the increase after the financial crisis. What is unemployment? The unemployment rate of a country refers to the share of people who want to work but cannot find jobs. This includes workers who have lost jobs and are searching for new ones, workers whose jobs ended due to an economic downturn, and workers for whom there are no jobs because the labor supply in their industry is larger than the number of jobs available. Different statistics suggest which factors contribute to the overall unemployment rate. The Kenyan context The first type, so-called “search unemployment”, is hardest to see in the data. The closest proxy is Kenya’s inflation rate. As workers take new jobs faster, employers are forced to increase wages, leading to higher employment. Jobs lost due to economic downturns, called “cyclical unemployment”, can be seen by decreases in the GDP growth rate, which are not significant in Kenya. Finally, “structural unemployment” refers to workers changing the industry, or even economic sector, in which they are working. In Kenya, more and more workers switch to the services sector. This is often a result of urbanization, but any structural shift in the economy’s composition can lead to this unemployment.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in South Africa decreased to 31.90 percent in the third quarter of 2025 from 33.20 percent in the second quarter of 2025. This dataset provides - South Africa Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterWhat is the COVID-19 Economic Vulnerability Index?The COVID-19 Vulnerability Index (CVI) is a measurement of the negative impact that the coronavirus (COVID-19) crisis can have on employment based upon a region's mix of industries. For example, accommodation and food services are projected to lose more jobs as a result of the coronavirus (in the neighborhood of 50%) compared with utilities and healthcare (with none or little expected job contraction).This updated dataset contains 116 jobs attributes including the 10 most likely jobs to be impacted for each county, the total employment and employment by sector. An attribute list is included below.An average Vulnerability Index score is 100, representing the average job loss expected in the United States. Higher scores indicate the degree to which job losses may be greater — an index score of 200, for example, means the rate of job loss can be twice as large as the national average. Conversely, an index score of 50 would mean a possible job loss of half the national average. Regions heavily dependent on tourism with relatively high concentrations of leisure and hospitality jobs, for example, are likely to have high index scores. The Vulnerability Index only measures the impact potential related to the mix of industry employment. The index does not take into account variation due to a region’s rate of virus infection, nor does it factor in local government's policies in reaction to the virus. For more detail, please see this description.MethodologyThe index is based on a model of potential job losses due to the COVID-19 outbreak in the United States. Expected employment losses at the subsector level are based upon inputs which include primary research on expert testimony; news reports for key industries such as hotels, restaurants, retail, and transportation; preliminary release of unemployment claims; and the latest job postings data from Chmura's RTI database. The forecast model, based on conditions as of March 23, 2020, assumes employment in industries in each county/region would change at a similar rate as employment in national industries. The projection estimates that the United States could lose 15.0 million jobs due to COVID-19, with over half of the jobs lost in hotels, food services, and entertainment industries. Contact Chmura for further details.Attribute ListFIPSCounty NameStateTotal JobsWhite Collar JobsBlue Collar JobsService JobsWhite Collar %Blue Collar %Service %Government JobsGovernment %Primarily Self-Employed JobsPrimarily Self-Employed %Job Change, Last Ten YearsIndustry 1 NameIndustry 1 EmplIndustry 1 %Industry 2 NameIndustry 2 EmplIndustry 2 %Industry 3 NameIndustry 3 EmplIndustry 3 %Industry 4 NameIndustry 4 EmplIndustry 4 %Industry 5 NameIndustry 5 EmplIndustry 5 %Industry 6 NameIndustry 6 EmplIndustry 6 %Industry 7 NameIndustry 7 EmplIndustry 7 %Industry 8 NameIndustry 8 EmplIndustry 8 %Industry 9 NameIndustry 9 EmplIndustry 9 %Industry 10 NameIndustry 10 EmplIndustry 10 %All Other IndustriesAll Other Industries EmplAll Other Industies %Agriculture, Food & Natural Resources EmplArchitecture and Construction EmplArts, A/V Technology & Communications EmplBusiness, Management & Administration EmplEducation & Training EmplFinance EmplGovernment & Public Administration EmplHealth Science EmplHospitality & Tourism EmplHuman Services EmplInformation Technology EmplLaw, Public Safety, Corrections & Security EmplManufacturing EmplMarketing, Sales & Service EmplScience, Technology, Engineering & Mathematics EmplTransportation, Distribution & Logistics EmplAgriculture, Food & Natural Resources %Architecture and Construction %Arts, A/V Technology & Communications %Business, Management & Administration %Education & Training %Finance %Government & Public Administration %Health Science %Hospitality & Tourism %Human Services %Information Technology %Law, Public Safety, Corrections & Security %Manufacturing %Marketing, Sales & Service %Science, Technology, Engineering & Mathematics %Transportation, Distribution & Logistics %COVID-19 Vulnerability IndexAverage Wages per WorkerAvg Wages Growth, Last Ten YearsUnemployment RateUnderemployment RatePrime-Age Labor Force Participation RateSkilled Career 1Skilled Career 1 EmplSkilled Career 1 Avg Ann WagesSkilled Career 2Skilled Career 2 EmplSkilled Career 2 Avg Ann WagesSkilled Career 3Skilled Career 3 EmplSkilled Career 3 Avg Ann WagesSkilled Career 4Skilled Career 4 EmplSkilled Career 4 Avg Ann WagesSkilled Career 5Skilled Career 5 EmplSkilled Career 5 Avg Ann WagesSkilled Career 6Skilled Career 6 EmplSkilled Career 6 Avg Ann WagesSkilled Career 7Skilled Career 7 EmplSkilled Career 7 Avg Ann WagesSkilled Career 8Skilled Career 8 EmplSkilled Career 8 Avg Ann WagesSkilled Career 9Skilled Career 9 EmplSkilled Career 9 Avg Ann WagesSkilled Career 10Skilled Career 10 EmplSkilled Career 10 Avg Ann Wages
Facebook
TwitterWhat is the COVID-19 Economic Vulnerability Index?The COVID-19 Vulnerability Index (CVI) is a measurement of the negative impact that the coronavirus (COVID-19) crisis can have on employment based upon a region's mix of industries. For example, accommodation and food services are projected to lose more jobs as a result of the coronavirus (in the neighborhood of 50%) compared with utilities and healthcare (with none or little expected job contraction).This updated dataset contains 116 jobs attributes including the 10 most likely jobs to be impacted for each county, the total employment and employment by sector. An attribute list is included below.An average Vulnerability Index score is 100, representing the average job loss expected in the United States. Higher scores indicate the degree to which job losses may be greater — an index score of 200, for example, means the rate of job loss can be twice as large as the national average. Conversely, an index score of 50 would mean a possible job loss of half the national average. Regions heavily dependent on tourism with relatively high concentrations of leisure and hospitality jobs, for example, are likely to have high index scores. The Vulnerability Index only measures the impact potential related to the mix of industry employment. The index does not take into account variation due to a region’s rate of virus infection, nor does it factor in local government's policies in reaction to the virus. For more detail, please see this description.MethodologyThe index is based on a model of potential job losses due to the COVID-19 outbreak in the United States. Expected employment losses at the subsector level are based upon inputs which include primary research on expert testimony; news reports for key industries such as hotels, restaurants, retail, and transportation; preliminary release of unemployment claims; and the latest job postings data from Chmura's RTI database. The forecast model, based on conditions as of March 23, 2020, assumes employment in industries in each county/region would change at a similar rate as employment in national industries. The projection estimates that the United States could lose 15.0 million jobs due to COVID-19, with over half of the jobs lost in hotels, food services, and entertainment industries. Contact Chmura for further details.Attribute ListFIPSCounty NameStateTotal JobsWhite Collar JobsBlue Collar JobsService JobsWhite Collar %Blue Collar %Service %Government JobsGovernment %Primarily Self-Employed JobsPrimarily Self-Employed %Job Change, Last Ten YearsIndustry 1 NameIndustry 1 EmplIndustry 1 %Industry 2 NameIndustry 2 EmplIndustry 2 %Industry 3 NameIndustry 3 EmplIndustry 3 %Industry 4 NameIndustry 4 EmplIndustry 4 %Industry 5 NameIndustry 5 EmplIndustry 5 %Industry 6 NameIndustry 6 EmplIndustry 6 %Industry 7 NameIndustry 7 EmplIndustry 7 %Industry 8 NameIndustry 8 EmplIndustry 8 %Industry 9 NameIndustry 9 EmplIndustry 9 %Industry 10 NameIndustry 10 EmplIndustry 10 %All Other IndustriesAll Other Industries EmplAll Other Industies %Agriculture, Food & Natural Resources EmplArchitecture and Construction EmplArts, A/V Technology & Communications EmplBusiness, Management & Administration EmplEducation & Training EmplFinance EmplGovernment & Public Administration EmplHealth Science EmplHospitality & Tourism EmplHuman Services EmplInformation Technology EmplLaw, Public Safety, Corrections & Security EmplManufacturing EmplMarketing, Sales & Service EmplScience, Technology, Engineering & Mathematics EmplTransportation, Distribution & Logistics EmplAgriculture, Food & Natural Resources %Architecture and Construction %Arts, A/V Technology & Communications %Business, Management & Administration %Education & Training %Finance %Government & Public Administration %Health Science %Hospitality & Tourism %Human Services %Information Technology %Law, Public Safety, Corrections & Security %Manufacturing %Marketing, Sales & Service %Science, Technology, Engineering & Mathematics %Transportation, Distribution & Logistics %COVID-19 Vulnerability IndexAverage Wages per WorkerAvg Wages Growth, Last Ten YearsUnemployment RateUnderemployment RatePrime-Age Labor Force Participation RateSkilled Career 1Skilled Career 1 EmplSkilled Career 1 Avg Ann WagesSkilled Career 2Skilled Career 2 EmplSkilled Career 2 Avg Ann WagesSkilled Career 3Skilled Career 3 EmplSkilled Career 3 Avg Ann WagesSkilled Career 4Skilled Career 4 EmplSkilled Career 4 Avg Ann WagesSkilled Career 5Skilled Career 5 EmplSkilled Career 5 Avg Ann WagesSkilled Career 6Skilled Career 6 EmplSkilled Career 6 Avg Ann WagesSkilled Career 7Skilled Career 7 EmplSkilled Career 7 Avg Ann WagesSkilled Career 8Skilled Career 8 EmplSkilled Career 8 Avg Ann WagesSkilled Career 9Skilled Career 9 EmplSkilled Career 9 Avg Ann WagesSkilled Career 10Skilled Career 10 EmplSkilled Career 10 Avg Ann Wages
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in Malaysia remained unchanged at 3 percent in September. This dataset provides - Malaysia Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 'LFS main indicators' section presents a selection of the main statistics on the labour market. They encompass indicators of activity, employment and unemployment. Those indicators are based on the results of the European Labour Force Survey (EU-LFS), in few cases integrated with data sources like national accounts employment or registered unemployment. As a result of the application of adjustments, corrections and reconciliation of EU Labour Force Survey (EU-LFS) data, the 'LFS main indicators' is the most complete and reliable collection of employment and unemployment data available in the sub-domain 'Employment and unemployment'.
The EU-LFS data used for 'LFS main indicators' are, where necessary, adjusted and enriched in various ways, in accordance with the specificities of an indicator. The most common adjustments cover:
Those adjustments may produce some differences between data published under 'LFS main indicators' and 'LFS series – detailed quarterly/annual survey results', particularly for back data. For the most recent years, the different series converge, due to the implementation of a continuous quarterly survey and the improved quality of the data.
This page focuses on the 'LFS main indicators' in general. There are special pages for indicators that are listed below:
Quarterly and annual unemployment figures are derived in line with all other LFS Main Indciators, and no longer aggregated from monthly unemployment series.
The entry of the new Framework regulation on Social Statistics (IESS) in 2021 created changes in the LFS Main Indicators. Most countries expected breaks for a number of series derived from LFS microdata, therefore Eurostat and participating countries launched a joint break correction exercise to produce comparable data before and under IESS. The 'LFS main indicators' section therefore contains two type of datasets depending on the underlying regulation. The first type of datasets are historical series under the pre-IESS regulation, and include the suffix ‘_h’ for historical series at the end of the table titles. Historical series will remain accessible and are continued until 2020Q4 LFS microdata revisions of previously released EU-LFS series. Reasons for revisions are for example weight revisions due to revised weighting routines, or census revisions. The second type of datasets are new tables that are filled with data under IESS from 2021Q1 on. These tables also include the break-corrected 2009Q1-2020Q4 data that are produced in the break correction exercise. If countries send longer complete time series than starting in 2009, that data will also be used and published. Until fully back-estimated series in line with IESS are available for all countries, EU and EA aggregates were based on the data that is available at the time and was flagged with a break flag. Fully break-free EU and EA aggregates were published for the first time in February 2022. More information can be found on the EU-LFS Breaks in Time Series (Statistics Explained) webpage.
General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
Facebook
TwitterWorkforce summary - employment, unemployment, participation rates, earnings, establishments. Data is updated and various times and is used to power the Dept. of Commerce Data Explorer Dashboard.
Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:
See the Splitgraph documentation for more information.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is based on a sample survey of approximately 2,000 South Australian households. The two main ‘series types’ are Trend and Seasonally Adjusted.
Facebook
Twitterhttps://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16192307%2Fcffdbe90e777479a7cfca50b15a20f4e%2FWalmart5-scaled-1.jpg?generation=1707928578479827&alt=media" alt="">
We will study the sales data of one of the largest retailers in the world. Let's figure out what factors influence its revenue. Can factors such as air temperature and fuel cost influence the success of a huge company along with the purchasing power index and seasonal discounts? And how does machine learning minimize costs and increase economic impact?
The data contains the following columns:
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The data represents the percent change in wages for an individual who has wages recorded in the Unemployment Compensation (UC) wage record file in the quarter in which they completed Industry Partnership training and wages found in the UC wage record file for that individual four quarters later. The change could be an increase or a decrease in wages. For example, if an individual completed training in the third quarter of 2013 and earned $5,000 in that quarter and earned $7,500 in the third quarter of 2014 the percent change for that individual would be 50%. The file incudes a count of all individuals who benefited from industry partnership training, the workforce development area of the industry partnership, the training program completed and the percentage change in wages per individual training. The top line of the file includes the overall percentage change for all trainings.
*The goal for Labor & Industry is based on receiving $10 million to fund Industry Partnerships.
This dataset is for Program Year 2013-2017 and will be updated annually due to federal release schedule. There are many reasons why an individual’s wage may have changed dramatically. Some of the reasons for negative wage changes or large increases in wages are listed below (not an exhaustive list). • An individual may have left the job, was laid off, or retired within the year after they were trained. • An individual may have become ill and left work. • An individual may have accepted a job in or moved to another state. • An individual may have been working two jobs and switched to one, or vice versa. • An individual’s hours may have been reduced/increased during a quarter. • Overtime hours may have been reduced/increased during a quarter. • An individual may have taken family leave. • A bonus could have been paid right after training was completed. • Wage records may not have been reported. • An employer may have closed and laid off all of their employees.
Facebook
TwitterThe Manpower Survey is a survey of enterprises in South Africa that provides industry and occupation data by gender and race. It covered both the private and public sector, but excluded workers in the informal sector and agricultural sector, and domestic workers in private households. Enterprise details for the survey sample were obtained from government sources, and the survey instrument was a form mailed to enterprise managers.
The dataset available from DataFirst includes data from the surveys conducted in 1965-1994, unearthed in a project to find and share historical South African microdata. The data was obtained with the assistance of Lucia Lotter, Anneke Jordaan and Marie-Lousie van Wyk from the Human Sciences Research Council's Research Use and Impact Assessment Department. The project was made possible by an exploratory grant obtained by Andrew Kerr and Martin Wittenberg of DataFirst from the Private Enterprise Development in Low-Income Countries (PEDL) research initiative. PEDL is a joint research initiative of the Centre for Economic Policy Research (CEPR) and the Uk Department For International Development (DFID). It aims to develop a research programme focusing on private-sector development in low-income countries.
The survey had national coverage, but excluded the "independent" " homelands" of Bophuthatswana and Transkei (excluded from 1979) Venda (1981) and the Ciskei (1983).
Units of analysis in the survey include firms and individuals
The universe of the survey were enterprises in the formal non-agricultureal sector in South Africa.
Sample survey data [ssd]
The survey sample is based on lists of companies obtained from the databases of the Compensation Fund and Unemployment Insurance Fund of the South African Department of Labour) and the South African Tourism Board. During the time the surveys were conducted by the Department of labour (1965-1985), the sample of companies was 250,000. The survey was taken over by the Central Statistical Service (now Statistics South Africa) in 1987 who rationalised the sample to 12,800 companies in 1989, and later to 8500.
The sample excludes domestic workers in private household, and workers in the agricultural and informal sectors. The firms were classified into industries, based on the Standard Industrial Classification of all Economic Activities. Where these firms consisted of more than one establishment in more than one sector the firm was classified according to the sector in which it is predominantly engaged. Thus, although workers in the agricultural sector are not covered these may be included in firm data for those firms which include more than one establishment, and where one of the establishments is involved in agricultural production.
Entities in the "independent" " homelands" were excluded from the survey. These included Bophuthatswana and Transkei (excluded from 1979) Venda (1981) and the Ciskei (1983).
Mail Questionnaire [mail]
The 1965-1985 questionnaire from the Department of Labour has 5 Sections: Section A: To be completed for all employees except artisans, apprentices and “Bantu” building workers Section B: To be completed for male artisans and apprentices only Section C: To be completed for women artisans and apprentices only Section D: To be completed for “Bantu” building workers only (“skilled Bantu building workers and learners registered in terms of the Bantu Building Workers' Act”) Section E: To be completed for all employees (total number of employees)
The 1987-1994 questionnaire from the Central Statistical Service has 4 Sections: Section 1: To be completed for all employees except artisans, apprentices Section 2: To be completed for artisans only (men and women) Section 3: To be completed for apprentices only (men and women) Section 4: To be completed for all employees (total number of employees)
The variable
Since the questionnaire was completed by company managers, the response rate of the sample is very high (around 90 percent)
The Manpower survey enables investigations of long-term changes in the occupational and racial division of labour during the period 1965-1994. It is the only data source for this period that distinguishes artisans and apprentices from other manual workers, which allows analysis of these occupations over time. However, the data is not reliable at disaggregated levels because of the following:
(1) Both agriculture and the informal sector are excluded from the survey universe. These sectors are major employers in the South African economy. (2) Domestic workers in private households are also excluded from the sample. (3) The survey does not cover the unemployed and is therefore not representative of the economically active population. (4) Although this is an occupational survey, the information on occupations is derived from samples based on total employment within industries. (5) A new sample was drawn by the Central Statistical Service when they took over the Manpower Survey from the Department of Manpower in 1987, causing a break in the series.
Finally, the variable
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Eurostat provides statistical data on various aspects of the labor market across Europe, including:
Sectoral Employment – Employment distribution across various sectors like agriculture, industry, and services.
**Details of the Dataset **
This dataset would typically cover European Union countries and potentially other European countries (depending on the specific version). The data likely spans multiple years (1980-2024) and provides insights into the demographic and economic changes in these countries over time.
-**Some example insights you might explore:**
Trends in Employment: Analyzing the employment and unemployment rates over time to see how they correlate with major economic events, such as the global financial crisis. Sectoral Shifts: Investigating how the structure of employment has shifted from agriculture and industry to services over the decades. Impact of Population Growth: Exploring how changes in population size relate to changes in employment, labor force participation, and unemployment.
You can access the Eurostat dataset directly using the following link:
This link takes you to Eurostat's Labor Force Survey (LFS) data, which includes datasets related to employment, unemployment, and other labor force indicators across EU countries. You can navigate and search for NAMQ_10_PE by using Eurostat’s filtering and search tools. Here, you can download data in various formats such as CSV, Excel, or TSV.