100+ datasets found
  1. Links to all datasets and downloads for 80 A0/A3 digital image of map...

    • researchdata.edu.au
    • data.csiro.au
    datadownload
    Updated Jan 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suzanne Prober; Tom Harwood; Nat Raisbeck-Brown; Kristen Williams (2016). Links to all datasets and downloads for 80 A0/A3 digital image of map posters accompanying AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach [Dataset]. https://researchdata.edu.au/653610/653610
    Explore at:
    datadownloadAvailable download formats
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Suzanne Prober; Tom Harwood; Nat Raisbeck-Brown; Kristen Williams
    License

    https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/

    Time period covered
    Jan 1, 2015 - Jan 10, 2015
    Area covered
    Description

    This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.

    These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.

    The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.

    Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.

    Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.

    Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.

    An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.

    Example citations:

    Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.

    Maps were generated using layout and drawing tools in ArcGIS 10.2.2

    A check list of map posters and datasets is provided with the collection.

    Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x

    8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)

    9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)

    9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)

    10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)

    10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)

    11.1 Refugial potential for vascular plants and mammals (1990-2050)

    11.1 Refugial potential for reptiles and amphibians (1990-2050)

    12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)

    12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)

  2. National Hydrography Dataset Plus High Resolution

    • hub.arcgis.com
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://hub.arcgis.com/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  3. d

    Global Point of Interest (POI) Data | 230M+ Locations, 5000 Categories,...

    • datarade.ai
    .json
    Updated Sep 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum (2024). Global Point of Interest (POI) Data | 230M+ Locations, 5000 Categories, Geographic & Location Intelligence, Regular Updates [Dataset]. https://datarade.ai/data-products/global-point-of-interest-poi-data-230m-locations-5000-c-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Sep 7, 2024
    Dataset authored and provided by
    Xverum
    Area covered
    French Polynesia, Northern Mariana Islands, Mauritania, Antarctica, Costa Rica, Andorra, Guatemala, Kyrgyzstan, Vietnam, Bahamas
    Description

    Xverum’s Point of Interest (POI) Data is a comprehensive dataset containing 230M+ verified locations across 5000 business categories. Our dataset delivers structured geographic data, business attributes, location intelligence, and mapping insights, making it an essential tool for GIS applications, market research, urban planning, and competitive analysis.

    With regular updates and continuous POI discovery, Xverum ensures accurate, up-to-date information on businesses, landmarks, retail stores, and more. Delivered in bulk to S3 Bucket and cloud storage, our dataset integrates seamlessly into mapping, geographic information systems, and analytics platforms.

    🔥 Key Features:

    Extensive POI Coverage: ✅ 230M+ Points of Interest worldwide, covering 5000 business categories. ✅ Includes retail stores, restaurants, corporate offices, landmarks, and service providers.

    Geographic & Location Intelligence Data: ✅ Latitude & longitude coordinates for mapping and navigation applications. ✅ Geographic classification, including country, state, city, and postal code. ✅ Business status tracking – Open, temporarily closed, or permanently closed.

    Continuous Discovery & Regular Updates: ✅ New POIs continuously added through discovery processes. ✅ Regular updates ensure data accuracy, reflecting new openings and closures.

    Rich Business Insights: ✅ Detailed business attributes, including company name, category, and subcategories. ✅ Contact details, including phone number and website (if available). ✅ Consumer review insights, including rating distribution and total number of reviews (additional feature). ✅ Operating hours where available.

    Ideal for Mapping & Location Analytics: ✅ Supports geospatial analysis & GIS applications. ✅ Enhances mapping & navigation solutions with structured POI data. ✅ Provides location intelligence for site selection & business expansion strategies.

    Bulk Data Delivery (NO API): ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured format (.json) for seamless integration.

    🏆Primary Use Cases:

    Mapping & Geographic Analysis: 🔹 Power GIS platforms & navigation systems with precise POI data. 🔹 Enhance digital maps with accurate business locations & categories.

    Retail Expansion & Market Research: 🔹 Identify key business locations & competitors for market analysis. 🔹 Assess brand presence across different industries & geographies.

    Business Intelligence & Competitive Analysis: 🔹 Benchmark competitor locations & regional business density. 🔹 Analyze market trends through POI growth & closure tracking.

    Smart City & Urban Planning: 🔹 Support public infrastructure projects with accurate POI data. 🔹 Improve accessibility & zoning decisions for government & businesses.

    💡 Why Choose Xverum’s POI Data?

    • 230M+ Verified POI Records – One of the largest & most detailed location datasets available.
    • Global Coverage – POI data from 249+ countries, covering all major business sectors.
    • Regular Updates – Ensuring accurate tracking of business openings & closures.
    • Comprehensive Geographic & Business Data – Coordinates, addresses, categories, and more.
    • Bulk Dataset Delivery – S3 Bucket & cloud storage delivery for full dataset access.
    • 100% Compliant – Ethically sourced, privacy-compliant data.

    Access Xverum’s 230M+ POI dataset for mapping, geographic analysis, and location intelligence. Request a free sample or contact us to customize your dataset today!

  4. Large Scale International Boundaries

    • catalog.data.gov
    • geodata.state.gov
    • +1more
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (Point of Contact) (2025). Large Scale International Boundaries [Dataset]. https://catalog.data.gov/dataset/large-scale-international-boundaries
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Description

    Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the

  5. NHD HUC8 Shapefile: James- 02080207

    • noaa.hub.arcgis.com
    Updated Mar 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2024). NHD HUC8 Shapefile: James- 02080207 [Dataset]. https://noaa.hub.arcgis.com/maps/77aad52768f84830bedf7f9d7043f0b6
    Explore at:
    Dataset updated
    Mar 29, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Access National Hydrography ProductsThe National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.Statements of attribute accuracy are based on accuracy statements made for U.S. Geological Survey Digital Line Graph (DLG) data, which is estimated to be 98.5 percent. One or more of the following methods were used to test attribute accuracy: manual comparison of the source with hardcopy plots; symbolized display of the DLG on an interactive computer graphic system; selected attributes that could not be visually verified on plots or on screen were interactively queried and verified on screen. In addition, software validated feature types and characteristics against a master set of types and characteristics, checked that combinations of types and characteristics were valid, and that types and characteristics were valid for the delineation of the feature. Feature types, characteristics, and other attributes conform to the Standards for National Hydrography Dataset (USGS, 1999) as of the date they were loaded into the database. All names were validated against a current extract from the Geographic Names Information System (GNIS). The entry and identifier for the names match those in the GNIS. The association of each name to reaches has been interactively checked, however, operator error could in some cases apply a name to a wrong reach.Points, nodes, lines, and areas conform to topological rules. Lines intersect only at nodes, and all nodes anchor the ends of lines. Lines do not overshoot or undershoot other lines where they are supposed to meet. There are no duplicate lines. Lines bound areas and lines identify the areas to the left and right of the lines. Gaps and overlaps among areas do not exist. All areas close.The completeness of the data reflects the content of the sources, which most often are the published USGS topographic quadrangle and/or the USDA Forest Service Primary Base Series (PBS) map. The USGS topographic quadrangle is usually supplemented by Digital Orthophoto Quadrangles (DOQs). Features found on the ground may have been eliminated or generalized on the source map because of scale and legibility constraints. In general, streams longer than one mile (approximately 1.6 kilometers) were collected. Most streams that flow from a lake were collected regardless of their length. Only definite channels were collected so not all swamp/marsh features have stream/rivers delineated through them. Lake/ponds having an area greater than 6 acres were collected. Note, however, that these general rules were applied unevenly among maps during compilation. Reach codes are defined on all features of type stream/river, canal/ditch, artificial path, coastline, and connector. Waterbody reach codes are defined on all lake/pond and most reservoir features. Names were applied from the GNIS database. Detailed capture conditions are provided for every feature type in the Standards for National Hydrography Dataset available online through https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/NHD%201999%20Draft%20Standards%20-%20Capture%20conditions.PDF.Statements of horizontal positional accuracy are based on accuracy statements made for U.S. Geological Survey topographic quadrangle maps. These maps were compiled to meet National Map Accuracy Standards. For horizontal accuracy, this standard is met if at least 90 percent of points tested are within 0.02 inch (at map scale) of the true position. Additional offsets to positions may have been introduced where feature density is high to improve the legibility of map symbols. In addition, the digitizing of maps is estimated to contain a horizontal positional error of less than or equal to 0.003 inch standard error (at map scale) in the two component directions relative to the source maps. Visual comparison between the map graphic (including digital scans of the graphic) and plots or digital displays of points, lines, and areas, is used as control to assess the positional accuracy of digital data. Digital map elements along the adjoining edges of data sets are aligned if they are within a 0.02 inch tolerance (at map scale). Features with like dimensionality (for example, features that all are delineated with lines), with or without like characteristics, that are within the tolerance are aligned by moving the features equally to a common point. Features outside the tolerance are not moved; instead, a feature of type connector is added to join the features.Statements of vertical positional accuracy for elevation of water surfaces are based on accuracy statements made for U.S. Geological Survey topographic quadrangle maps. These maps were compiled to meet National Map Accuracy Standards. For vertical accuracy, this standard is met if at least 90 percent of well-defined points tested are within one-half contour interval of the correct value. Elevations of water surface printed on the published map meet this standard; the contour intervals of the maps vary. These elevations were transcribed into the digital data; the accuracy of this transcription was checked by visual comparison between the data and the map.

  6. e

    nwp_ overview map_rivers

    • data.europa.eu
    • ckan.mobidatalab.eu
    arcgis map preview +3
    Updated Mar 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). nwp_ overview map_rivers [Dataset]. https://data.europa.eu/data/datasets/40894-nwp-overzichtskaart-rivieren
    Explore at:
    wfs, arcgis map service, arcgis map preview, wmsAvailable download formats
    Dataset updated
    Mar 25, 2024
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This file contains the map layers used for map 22 ‘overview map_rivers’ in the National Water Programme 2022-2027. The maps in the National Water Programme are formatted as a printed map at A4 level and are only checked and established at this level. This means that this data, which was used to create the printed cards, has no legal status. The risk of using this data lies with the user. In addition, it should be borne in mind that some map elements are indicative; the locations are not exact. This applies, for example, to the display of project locations. Finally, it is important that the datasets in this publication were used to create printed maps for the National Water Programme in 2022. It is static data, which will not be kept up-to-date at this place after its publication in 2022. This file contains the map layers used for map 22 ‘overview map_rivers’ in the National Water Programme 2022-2027. The maps in the National Water Programme are formatted as a printed map at A4 level and are only checked and established at this level. This means that this data, which was used to create the printed cards, has no legal status. The risk of using this data lies with the user. In addition, it should be borne in mind that some map elements are indicative; the locations are not exact. This applies, for example, to the display of project locations. Finally, it is important that the datasets in this publication were used to create printed maps for the National Water Programme in 2022. It is static data, which will not be kept up-to-date at this place after its publication in 2022.

  7. d

    Existing Vegetation

    • catalog.data.gov
    • data.oregon.gov
    • +2more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oregon Biodiversity Information Center (ORBIC) (2025). Existing Vegetation [Dataset]. https://catalog.data.gov/dataset/existing-vegetation
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    Oregon Biodiversity Information Center (ORBIC)
    Description

    This is a dataset download, not a document. The Open Document button will start the download.This data layer is an element of the Oregon GIS Framework. This data layer represents the Existing Vegetation data element. This statewide grid was created by combining four independently-generated datasets: one for western Oregon (USGS zones 2 and 7), and two for eastern Oregon (USGS zones 8 and 9; forested and non-forested lands), and selected wetland types from the Oregon Wetlands geodatabase. The landcover grid for zones 2 and 7 was produced using a modification of Breiman's Random Forest classifier to model landcover. Multi-season satellite imagery (Landsat ETM+, 1999-2003) and digital elevation model (DEM) derived datasets (e.g. elevation, landform, aspect, etc.) were utilized to build two predictive models for the forested landcover classes, and the nonforested landcover classes. The grids resulting from the models were then modified to improve the distribution of the following classes: volcanic systems and wetland vegetation. Along the eastern edge, the sagebrush systems were modified to help match with the map for the adjacent region. Additional classes were then layered on top of the modified models from other sources. These include disturbed classes (harvested and burned), cliffs, riparian, and NLCD's developed, agriculture, and water classes. A validation for forest classes was performed on a withheld of the sample data to assess model performance. Due to data limitations, the nonforest classes were evaluated using the same data that were used to build the original nonforest model. Two independent grids were combined to map landcover in adjacent zones 8 and 9. Tree canopy greater than 10% (from NLCD 2001), complemented with a disturbance grid, served as a mask to delineate forested areas. A grid of non-forested areas was extracted from a larger, regional grid (Sagemap) created using decision tree classifier and other techniques. Multi-season satellite imagery (Landsat ETM+, 1999-2003) and digital elevation model (DEM) derived datasets (e.g. elevation, landform, aspect, etc.) were utilized to derive rule sets for the various landcover classes. Eleven mapping areas, each characterized by similar ecological and spectral characteristics, were modeled independently of one another and mosaicked. An internal validation for modeled classes was performed on a withheld 20% of the sample data to assess model performance. The portion of this original grid corresponding to USGS map zones 8 and 9 was extracted and split into three mapping areas (one for USGS zone 8, two for USGS zone 9: Northern Basin and Range in the south, Blue Mountains in the north) and modified to improve the distribution of the following classes: cliffs, subalpine zone, dunes, lava flows, silver sagebrush, ash beds, playas, scabland, and riparian vegetation. Agriculture and urban areas were extracted from NLCD 2001. A forest grid was generated using Gradient Nearest Neighbor (GNN) imputation process. GNN uses multivariate gradient modeling to integrate data from regional grids of field plots with satellite imagery and mapped environmental data. A suite of fine-scale plot variables is imputed to each pixel in a digital map, and regional maps can be created for most of the same vegetation attributes available from the field plots. However, due to lack of sampling plots in the southern half of zone 9, the GNN model proved unreliable there; forest data from Landfire were used instead. To compensate for known under-representation of wetlands, selected wetland types from the Oregon Wetlands Geodatabase (version 2009-1030) were converted to raster and overlaid (replaced) pixel value assignments from the previous steps just detailed. See Process Steps for more information. The ecological systems were crosswalked to landcover (based on Oregon landcover standard, modified from NLCD 2001) and to wildlife habitats (based on integrated habitats used in the Oreg

  8. Z

    Data from: Material stock map of Austria

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liu, Gang (2023). Material stock map of Austria [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4522891
    Explore at:
    Dataset updated
    Jul 12, 2023
    Dataset provided by
    Haberl, Helmut
    Kemper, Thomas
    van der Linden, Sebastian
    Lanau, Maud
    Frantz, David
    Fishman, Tomer
    Tanikawa, Hiroki
    Virag, Doris
    Gruhler, Karin
    Gattringer, Andreas
    Schiller, Georg
    Wiedenhofer, Dominik
    Liu, Gang
    Plutzar, Christoph
    Hostert, Patrick
    Schug, Franz
    Lederer, Jakob
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Austria
    Description

    Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures.

    This dataset features a detailed map of material stocks for the whole of Austria on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors.

    Temporal extent The map is representative for ca. 2018.

    Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (.tif). There is a mosaic in GDAL Virtual format (.vrt), which can readily be opened in most Geographic Information Systems.

    The dataset features

    area and mass for different street types

    area and mass for different rail types

    area and mass for other infrastructure

    area, volume and mass for different building types

    Masses are reported as total values, and per material category.

    Units

    area in m²

    height in m

    volume in m³

    mass in t for infrastructure and buildings

    Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society.

    Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology

    Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.

  9. n

    Satellite images and road-reference data for AI-based road mapping in...

    • data.niaid.nih.gov
    • dataone.org
    • +1more
    zip
    Updated Apr 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sean Sloan; Raiyan Talkhani; Tao Huang; Jayden Engert; William Laurance (2024). Satellite images and road-reference data for AI-based road mapping in Equatorial Asia [Dataset]. http://doi.org/10.5061/dryad.bvq83bkg7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 4, 2024
    Dataset provided by
    Vancouver Island University
    James Cook University
    Authors
    Sean Sloan; Raiyan Talkhani; Tao Huang; Jayden Engert; William Laurance
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Asia
    Description

    For the purposes of training AI-based models to identify (map) road features in rural/remote tropical regions on the basis of true-colour satellite imagery, and subsequently testing the accuracy of these AI-derived road maps, we produced a dataset of 8904 satellite image ‘tiles’ and their corresponding known road features across Equatorial Asia (Indonesia, Malaysia, Papua New Guinea). Methods

    1. INPUT 200 SATELLITE IMAGES

    The main dataset shared here was derived from a set of 200 input satellite images, also provided here. These 200 images are effectively ‘screenshots’ (i.e., reduced-resolution copies) of high-resolution true-colour satellite imagery (~0.5-1m pixel resolution) observed using the Elvis Elevation and Depth spatial data portal (https://elevation.fsdf.org.au/), which here is functionally equivalent to the more familiar Google Earth. Each of these original images was initially acquired at a resolution of 1920x886 pixels. Actual image resolution was coarser than the native high-resolution imagery. Visual inspection of these 200 images suggests a pixel resolution of ~5 meters, given the number of pixels required to span features of familiar scale, such as roads and roofs, as well as the ready discrimination of specific land uses, vegetation types, etc. These 200 images generally spanned either forest-agricultural mosaics or intact forest landscapes with limited human intervention. Sloan et al. (2023) present a map indicating the various areas of Equatorial Asia from which these images were sourced.
    IMAGE NAMING CONVENTION A common naming convention applies to satellite images’ file names: XX##.png where:

    XX – denotes the geographical region / major island of Equatorial Asia of the image, as follows: ‘bo’ (Borneo), ‘su’ (Sumatra), ‘sl’ (Sulawesi), ‘pn’ (Papua New Guinea), ‘jv’ (java), ‘ng’ (New Guinea [i.e., Papua and West Papua provinces of Indonesia])

    – denotes the ith image for a given geographical region / major island amongst the original 200 images, e.g., bo1, bo2, bo3…

    1. INTERPRETING ROAD FEATURES IN THE IMAGES For each of the 200 input satellite images, its road was visually interpreted and manually digitized to create a reference image dataset by which to train, validate, and test AI road-mapping models, as detailed in Sloan et al. (2023). The reference dataset of road features was digitized using the ‘pen tool’ in Adobe Photoshop. The pen’s ‘width’ was held constant over varying scales of observation (i.e., image ‘zoom’) during digitization. Consequently, at relatively small scales at least, digitized road features likely incorporate vegetation immediately bordering roads. The resultant binary (Road / Not Road) reference images were saved as PNG images with the same image dimensions as the original 200 images.

    2. IMAGE TILES AND REFERENCE DATA FOR MODEL DEVELOPMENT

    The 200 satellite images and the corresponding 200 road-reference images were both subdivided (aka ‘sliced’) into thousands of smaller image ‘tiles’ of 256x256 pixels each. Subsequent to image subdivision, subdivided images were also rotated by 90, 180, or 270 degrees to create additional, complementary image tiles for model development. In total, 8904 image tiles resulted from image subdivision and rotation. These 8904 image tiles are the main data of interest disseminated here. Each image tile entails the true-colour satellite image (256x256 pixels) and a corresponding binary road reference image (Road / Not Road).
    Of these 8904 image tiles, Sloan et al. (2023) randomly selected 80% for model training (during which a model ‘learns’ to recognize road features in the input imagery), 10% for model validation (during which model parameters are iteratively refined), and 10% for final model testing (during which the final accuracy of the output road map is assessed). Here we present these data in two folders accordingly:

    'Training’ – contains 7124 image tiles used for model training in Sloan et al. (2023), i.e., 80% of the original pool of 8904 image tiles. ‘Testing’– contains 1780 image tiles used for model validation and model testing in Sloan et al. (2023), i.e., 20% of the original pool of 8904 image tiles, being the combined set of image tiles for model validation and testing in Sloan et al. (2023).

    IMAGE TILE NAMING CONVENTION A common naming convention applies to image tiles’ directories and file names, in both the ‘training’ and ‘testing’ folders: XX##_A_B_C_DrotDDD where

    XX – denotes the geographical region / major island of Equatorial Asia of the original input 1920x886 pixel image, as follows: ‘bo’ (Borneo), ‘su’ (Sumatra), ‘sl’ (Sulawesi), ‘pn’ (Papua New Guinea), ‘jv’ (java), ‘ng’ (New Guinea [i.e., Papua and West Papua provinces of Indonesia])

    – denotes the ith image for a given geographical region / major island amongst the original 200 images, e.g., bo1, bo2, bo3…

    A, B, C and D – can all be ignored. These values, which are one of 0, 256, 512, 768, 1024, 1280, 1536, and 1792, are effectively ‘pixel coordinates’ in the corresponding original 1920x886-pixel input image. They were recorded within the names of image tiles’ sub-directories and file names merely to ensure that names/directory were uniquely named)

    rot – implies an image rotation. Not all image tiles are rotated, so ‘rot’ will appear only occasionally.

    DDD – denotes the degree of image-tile rotation, e.g., 90, 180, 270. Not all image tiles are rotated, so ‘DD’ will appear only occasionally.

    Note that the designator ‘XX##’ is directly equivalent to the filenames of the corresponding 1920x886-pixel input satellite images, detailed above. Therefore, each image tiles can be ‘matched’ with its parent full-scale satellite image. For example, in the ‘training’ folder, the subdirectory ‘Bo12_0_0_256_256’ indicates that its image tile therein (also named ‘Bo12_0_0_256_256’) would have been sourced from the full-scale image ‘Bo12.png’.

  10. d

    Global Location Data | 230M+ Business & POI Locations | Geographic & Mapping...

    • datarade.ai
    .json
    Updated Sep 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum (2024). Global Location Data | 230M+ Business & POI Locations | Geographic & Mapping Insights | Bulk Delivery [Dataset]. https://datarade.ai/data-products/global-location-data-230m-business-poi-locations-geogr-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Sep 7, 2024
    Dataset authored and provided by
    Xverum
    Area covered
    United States
    Description

    Xverum’s Location Data is a highly structured dataset of 230M+ verified locations, covering businesses, landmarks, and points of interest (POI) across 5000 industry categories. With accurate geographic coordinates, business metadata, and mapping attributes, our dataset is optimized for GIS applications, real estate analysis, market research, and urban planning.

    With continuous discovery of new locations and regular updates, Xverum ensures that your location intelligence solutions have the most current data on business openings, closures, and POI movements. Delivered in bulk via S3 Bucket or cloud storage, our dataset integrates seamlessly into mapping, navigation, and geographic analysis platforms.

    🔥 Key Features:

    Comprehensive Location Coverage: ✅ 230M+ locations worldwide, spanning 5000 business categories. ✅ Includes retail stores, corporate offices, landmarks, service providers & more.

    Geographic & Mapping Data: ✅ Latitude & longitude coordinates for precise location tracking. ✅ Country, state, city, and postal code classifications. ✅ Business status tracking – Open, temporarily closed, permanently closed.

    Continuous Discovery & Regular Updates: ✅ New locations added frequently to ensure fresh data. ✅ Updated business metadata, reflecting new openings, closures & status changes.

    Detailed Business & Address Metadata: ✅ Company name, category, & subcategories for industry segmentation. ✅ Business contact details, including phone number & website (if available). ✅ Operating hours for businesses with scheduling data.

    Optimized for Mapping & Location Intelligence: ✅ Supports GIS, real estate analysis & smart city planning. ✅ Enhances navigation & mapping solutions with structured geographic data. ✅ Helps businesses optimize site selection & expansion strategies.

    Bulk Data Delivery (NO API): ✅ Delivered via S3 Bucket or cloud storage for full dataset access. ✅ Available in a structured format (.json) for easy integration.

    🏆 Primary Use Cases:

    Location Intelligence & Mapping: 🔹 Power GIS platforms & digital maps with structured geographic data. 🔹 Integrate accurate location insights into real estate, logistics & market analysis.

    Retail Expansion & Business Planning: 🔹 Identify high-traffic locations & competitors for strategic site selection. 🔹 Analyze brand distribution & presence across different industries & regions.

    Market Research & Competitive Analysis: 🔹 Track openings, closures & business density to assess industry trends. 🔹 Benchmark competitors based on location data & geographic presence.

    Smart City & Infrastructure Planning: 🔹 Optimize city development projects with accurate POI & business location data. 🔹 Support public & commercial zoning strategies with real-world business insights.

    💡 Why Choose Xverum’s Location Data? - 230M+ Verified Locations – One of the largest & most structured location datasets available. - Global Coverage – Spanning 249+ countries, with diverse business & industry data. - Regular Updates – Continuous discovery & refresh cycles ensure data accuracy. - Comprehensive Geographic & Business Metadata – Coordinates, addresses, industry categories & more. - Bulk Dataset Delivery (NO API) – Seamless access via S3 Bucket or cloud storage. - 100% Compliant – Ethically sourced & legally compliant.

    Access Xverum’s 230M+ Location Data for mapping, geographic analysis & business intelligence. Request a free sample or contact us to customize your dataset today!

  11. Soil Survey Geographic (SSURGO) database for Roosevelt County, New Mexico

    • catalog.data.gov
    • gstore.unm.edu
    • +1more
    Updated Dec 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Agriculture, Natural Resources Conservation Service (Point of Contact) (2020). Soil Survey Geographic (SSURGO) database for Roosevelt County, New Mexico [Dataset]. https://catalog.data.gov/dataset/soil-survey-geographic-ssurgo-database-for-roosevelt-county-new-mexico
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    Natural Resources Conservation Servicehttp://www.nrcs.usda.gov/
    Area covered
    Roosevelt County, New Mexico
    Description

    This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.

  12. National Hydrography Dataset Plus Version 2.1

    • geodata.colorado.gov
    • resilience.climate.gov
    • +6more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://geodata.colorado.gov/datasets/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  13. d

    Google Address Data, Google Address API, Google location API, Google Map...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY, Google Address Data, Google Address API, Google location API, Google Map API, Business Location Data- 100 M Google Address Data Available [Dataset]. https://datarade.ai/data-products/google-address-data-google-address-api-google-location-api-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    APISCRAPY
    Area covered
    China, Åland Islands, Monaco, Luxembourg, United Kingdom, Moldova (Republic of), Spain, Estonia, Liechtenstein, Andorra
    Description

    Welcome to Apiscrapy, your ultimate destination for comprehensive location-based intelligence. As an AI-driven web scraping and automation platform, Apiscrapy excels in converting raw web data into polished, ready-to-use data APIs. With a unique capability to collect Google Address Data, Google Address API, Google Location API, Google Map, and Google Location Data with 100% accuracy, we redefine possibilities in location intelligence.

    Key Features:

    Unparalleled Data Variety: Apiscrapy offers a diverse range of address-related datasets, including Google Address Data and Google Location Data. Whether you seek B2B address data or detailed insights for various industries, we cover it all.

    Integration with Google Address API: Seamlessly integrate our datasets with the powerful Google Address API. This collaboration ensures not just accessibility but a robust combination that amplifies the precision of your location-based insights.

    Business Location Precision: Experience a new level of precision in business decision-making with our address data. Apiscrapy delivers accurate and up-to-date business locations, enhancing your strategic planning and expansion efforts.

    Tailored B2B Marketing: Customize your B2B marketing strategies with precision using our detailed B2B address data. Target specific geographic areas, refine your approach, and maximize the impact of your marketing efforts.

    Use Cases:

    Location-Based Services: Companies use Google Address Data to provide location-based services such as navigation, local search, and location-aware advertisements.

    Logistics and Transportation: Logistics companies utilize Google Address Data for route optimization, fleet management, and delivery tracking.

    E-commerce: Online retailers integrate address autocomplete features powered by Google Address Data to simplify the checkout process and ensure accurate delivery addresses.

    Real Estate: Real estate agents and property websites leverage Google Address Data to provide accurate property listings, neighborhood information, and proximity to amenities.

    Urban Planning and Development: City planners and developers utilize Google Address Data to analyze population density, traffic patterns, and infrastructure needs for urban planning and development projects.

    Market Analysis: Businesses use Google Address Data for market analysis, including identifying target demographics, analyzing competitor locations, and selecting optimal locations for new stores or offices.

    Geographic Information Systems (GIS): GIS professionals use Google Address Data as a foundational layer for mapping and spatial analysis in fields such as environmental science, public health, and natural resource management.

    Government Services: Government agencies utilize Google Address Data for census enumeration, voter registration, tax assessment, and planning public infrastructure projects.

    Tourism and Hospitality: Travel agencies, hotels, and tourism websites incorporate Google Address Data to provide location-based recommendations, itinerary planning, and booking services for travelers.

    Discover the difference with Apiscrapy – where accuracy meets diversity in address-related datasets, including Google Address Data, Google Address API, Google Location API, and more. Redefine your approach to location intelligence and make data-driven decisions with confidence. Revolutionize your business strategies today!

  14. e

    nwp_ overview map_rijn_maash estuary

    • data.europa.eu
    arcgis map preview +3
    Updated Jun 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). nwp_ overview map_rijn_maash estuary [Dataset]. https://data.europa.eu/data/datasets/40903-nwp-overzichtskaart-rijn-maasmonding?locale=en
    Explore at:
    arcgis map service, wfs, arcgis map preview, wmsAvailable download formats
    Dataset updated
    Jun 22, 2025
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This file contains the map layers used for card 21' overview map_rijn_maasmonding’ in the National Water Programme 2022-2027. The maps in the National Water Programme are formatted as a printed map at A4 level and are only checked and established at this level. This means that this data, which was used to create the printed cards, has no legal status. The risk of using this data lies with the user. In addition, it should be borne in mind that some map elements are indicative; the locations are not exact. This applies, for example, to the display of project locations. Finally, it is important that the datasets in this publication were used to create printed maps for the National Water Programme in 2022. It is static data, which will not be kept up-to-date at this place after its publication in 2022. This file contains the map layers used for card 21' overview map_rijn_maasmonding’ in the National Water Programme 2022-2027. The maps in the National Water Programme are formatted as a printed map at A4 level and are only checked and established at this level. This means that this data, which was used to create the printed cards, has no legal status. The risk of using this data lies with the user. In addition, it should be borne in mind that some map elements are indicative; the locations are not exact. This applies, for example, to the display of project locations. Finally, it is important that the datasets in this publication were used to create printed maps for the National Water Programme in 2022. It is static data, which will not be kept up-to-date at this place after its publication in 2022. This file contains the map layers used for card 21' overview map_rijn_maasmonding’ in the National Water Programme 2022-2027. The maps in the National Water Programme are formatted as a printed map at A4 level and are only checked and established at this level. This means that this data, which was used to create the printed cards, has no legal status. The risk of using this data lies with the user. In addition, it should be borne in mind that some map elements are indicative; the locations are not exact. This applies, for example, to the display of project locations. Finally, it is important that the datasets in this publication were used to create printed maps for the National Water Programme in 2022. It is static data, which will not be kept up-to-date at this place after its publication in 2022. This file contains the map layers used for card 21' overview map_rijn_maasmonding’ in the National Water Programme 2022-2027. The maps in the National Water Programme are formatted as a printed map at A4 level and are only checked and established at this level. This means that this data, which was used to create the printed cards, has no legal status. The risk of using this data lies with the user. In addition, it should be borne in mind that some map elements are indicative; the locations are not exact. This applies, for example, to the display of project locations. Finally, it is important that the datasets in this publication were used to create printed maps for the National Water Programme in 2022. It is static data, which will not be kept up-to-date at this place after its publication in 2022. This file contains the map layers used for card 21' overview map_rijn_maasmonding’ in the National Water Programme 2022-2027. The maps in the National Water Programme are formatted as a printed map at A4 level and are only checked and established at this level. This means that this data, which was used to create the printed cards, has no legal status. The risk of using this data lies with the user. In addition, it should be borne in mind that some map elements are indicative; the locations are not exact. This applies, for example, to the display of project locations. Finally, it is important that the datasets in this publication were used to create printed maps for the National Water Programme in 2022. It is static data, which will not be kept up-to-date at this place after its publication in 2022.

  15. d

    Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m...

    • data.gov.au
    • researchdata.edu.au
    • +1more
    zip
    Updated Apr 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m analysis product) [Dataset]. https://data.gov.au/data/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 13, 2022
    Dataset authored and provided by
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Australia
    Description

    Abstract

    This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

    Resource contains an ArcGIS file geodatabase raster for the National Vegetation Information System (NVIS) Major Vegetation Groups - Australia-wide, present extent (FGDB_NVIS4_1_AUST_MVG_EXT).

    Related datasets are also included: FGDB_NVIS4_1_KEY_LAYERS_EXT - ArcGIS File Geodatabase Feature Class of the Key Datasets that make up NVIS Version 4.1 - Australia wide; and FGDB_NVIS4_1_LUT_KEY_LAYERS - Lookup table for Dataset Key Layers.

    This raster dataset provides the latest summary information (November 2012) on Australia's present (extant) native vegetation. It is in Albers Equal Area projection with a 100 m x 100 m (1 Ha) cell size. A comparable Estimated Pre-1750 (pre-european, pre-clearing) raster dataset is available: - NVIS4_1_AUST_MVG_PRE_ALB. State and Territory vegetation mapping agencies supplied a new version of the National Vegetation Information System (NVIS) in 2009-2011. Some agencies did not supply new data for this version but approved re-use of Version 3.1 data. Summaries were derived from the best available data in the NVIS extant theme as at June 2012. This product is derived from a compilation of data collected at different scales on different dates by different organisations. Please refer to the separate key map showing scales of the input datasets. Gaps in the NVIS database were filled by non-NVIS data, notably parts of South Australia and small areas of New South Wales such as the Curlewis area. The data represent on-ground dates of up to 2006 in Queensland, 2001 to 2005 in South Australia (depending on the region) and 2004/5 in other jurisdictions, except NSW. NVIS data was partially updated in NSW with 2001-09 data, with extensive areas of 1997 data remaining from the earlier version of NVIS. Major Vegetation Groups were identified to summarise the type and distribution of Australia's native vegetation. The classification contains different mixes of plant species within the canopy, shrub or ground layers, but are structurally similar and are often dominated by a single genus. In a mapping sense, the groups reflect the dominant vegetation occurring in a map unit where there are a mix of several vegetation types. Subdominant vegetation groups which may also be present in the map unit are not shown. For example, the dominant vegetation in an area may be mapped as dominated by eucalypt open forest, although it contains pockets of rainforest, shrubland and grassland vegetation as subdominants. The (related) Major Vegetation Subgroups represent more detail about the understorey and floristics of the Major Vegetation Groups and are available as separate raster datasets: - NVIS4_1_AUST_MVS_EXT_ALB - NVIS4_1_AUST_MVS_PRE_ALB A number of other non-vegetation and non-native vegetation land cover types are also represented as Major Vegetation Groups. These are provided for cartographic purposes, but should not be used for analyses. For further background and other NVIS products, please see the links on http://www.environment.gov.au/erin/nvis/index.html.

    The current NVIS data products are available from http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system.

    Purpose

    For use in Bioregional Assessment land classification analyses

    Dataset History

    NVIS Version 4.1

    The input vegetation data were provided from over 100 individual projects representing the majority of Australia's regional vegetation mapping over the last 50 years. State and Territory custodians translated the vegetation descriptions from these datasets into a common attribute framework, the National Vegetation Information System (ESCAVI, 2003). Scales of input mapping ranged from 1:25,000 to 1:5,000,000. These were combined into an Australia-wide set of vector data. Non-terrestrial areas were mostly removed by the State and Territory custodians before supplying the data to the Environmental Resources Information Network (ERIN), Department of Sustainability Environment Water Population and Communities (DSEWPaC).

    Each NVIS vegetation description was written to the NVIS XML format file by the custodian, transferred to ERIN and loaded into the NVIS database at ERIN. A considerable number of quality checks were performed automatically by this system to ensure conformity to the NVIS attribute standards (ESCAVI, 2003) and consistency between levels of the NVIS Information Hierarchy within each description. Descriptions for non-vegetation and non-native vegetation mapping codes were transferred via CSV files.

    The NVIS vector (polygon) data for Australia comprised a series of jig-saw pieces, eachup to approx 500,000 polygons - the maximum tractable size for routine geoprocesssing. The spatial data was processed to conform to the NVIS spatial format (ESCAVI, 2003; other papers). Spatial processing and attribute additions were done mostly in ESRI File Geodatabases. Topology and minor geometric corrections were also performed at this stage. These datasets were then loaded into ESRI Spatial Database Engine as per the ERIN standard. NVIS attributes were then populated using Oracle database tables provided by custodians, mostly using PL/SQL Developer or in ArcGIS using the field calculator (where simple).

    Each spatial dataset was joined to and checked against a lookup table for the relevant State/Territory to ensure that all mapping codes in the dominant vegetation type of each polygon (NVISDSC1) had a valid lookup description, including an allocated MVG. Minor vegetation components of each map unit (NVISDSC2-6) were not checked, but could be considered mostly complete.

    Each NVIS vegetation description was allocated to a Major Vegetation Group (MVG) by manual interpretation at ERIN. The Australian Natural Resources Atlas (http://www.anra.gov.au/topics/vegetation/pubs/native_vegetation/vegfsheet.html) provides detailed descriptions of most Major Vegetation Groups. Three new MVGs were created for version 4.1 to better represent open woodland formations and forests (in the NT) with no further data available. NVIS vegetation descriptions were reallocated into these classes, if appropriate:

    • Unclassified Forest

    • Other Open Woodlands

    • Mallee Open Woodlands and Sparse Mallee Shublands

    (Thus there are a total of 33 MVGs existing as at June 2012). Data values defined as cleared or non-native by data custodians were attributed specific MVG values such as 25 - Cleared or non native, 27 - naturally bare, 28 - seas & estuaries, and 99 - Unknown.

    As part of the process to fill gaps in NVIS, the descriptive data from non-NVIS sources was also referenced in the NVIS database, but with blank vegetation descriptions. In general. the gap-fill data comprised (a) fine scale (1:250K or better) State/Territory vegetation maps for which NVIS descriptions were unavailable and (b) coarse-scale (1:1M) maps from Commonwealth and other sources. MVGs were then allocated to each description from the available desciptions in accompanying publications and other sources.

    Parts of New South Wales, South Australia, QLD and the ACT have extensive areas of vector "NoData", thus appearing as an inland sea. The No Data areas were dealt with differently by state. In the ACT and SA, the vector data was 'gap-filled' and attributed using satellite imagery as a guide prior to rasterising. Most of these areas comprised a mixture of MVG 24 (inland water) and 25 (cleared), and in some case 99 (Unknown). The NSW & QLD 'No Data' areas were filled using a raster mask to fill the 'holes'. These areas were attributed with MVG 24, 26 (water & unclassified veg), MVG 25 (cleared); or MVG 99 Unknown/no data, where these areas were a mixture of unknown proportions.

    Each spatial dataset with joined lookup table (including MVG_NUMBER linked to NVISDSC1) was exported to a File Geodatabase as a feature class. These were reprojected into Albers Equal Area projection (Central_Meridian: 132.000000, Standard_Parallel_1: -18.000000, Standard_Parallel_2: -36.000000, Linear Unit: Meter (1.000000), Datum GDA94, other parameters 0).

    Each feature class was then rasterised to a 100m raster with extents to a multiple of 1000 m, to ensure alignment. In some instances, areas of 'NoData' had to be modelled in raster. For example, in NSW where non-native areas (cleared, water bodies etc) have not been mapped. The rasters were then merged into a 'state wide' raster. State rasters were then merged into this 'Australia wide' raster dataset.

    November 2012 Corrections

    Closer inspection of the original 4.1 MVG Extant raster dataset highlighted some issues with the raster creation process which meant that raster pixels in some areas did not align as intended. These were corrected, and the new properly aligned rasters released in November 2012.

    Dataset Citation

    Department of the Environment (2012) Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m analysis product). Bioregional Assessment Source Dataset. Viewed 10 July 2017, http://data.bioregionalassessments.gov.au/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374.

  16. a

    SR 15 Monson

    • maine.hub.arcgis.com
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2023). SR 15 Monson [Dataset]. https://maine.hub.arcgis.com/maps/maine::sr-15-monson
    Explore at:
    Dataset updated
    Jun 14, 2023
    Dataset authored and provided by
    State of Maine
    Description

    This dashboard defaults to a presentation of the crash points that will cluster the crash types and determine a predominant crash type. In the case two crash types have the same number of crashes for that type the predominant type will not be colored to either of the crash types. Clicking on the clusters will include a basic analysis of the cluster. These clusters are dynamic and will change as the user zooms in an out of the map. The clustering of crashes is functionality availalble in ArcGIS Online and the popups for the clusters is based on items that include elements configured with the Arcade language. Users interested in learning more about point clustering and the configuration of popups should read through some of the examples of the following ESRI Article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/) . The dashboard itself does include a map widget that does allow the user to toggle the visibility of layers and/or click on the crashes within the map. The popups for single crashes can be difficult to see unless the map is expanded (click in upper right of map widget). There is a Review Crashes tab that allows for another display of details of a crash that may be easier for users.This dashboard includes selectors in both the header and sidebar. By default the sidebar is collapsed and would need to be expanded. The crash dataset used in the presentation includes columns with a prefix of the unit. The persons information associated to each unit would be based on the Person that was considered the driver. Crash data can be filtered by clicking on items in chart widgets. All chart widgets have been configured to allow multiple selections and these selections will then filter the crash data accordingly. Allowing for data to be filtered by clicking on widgets is an alternative approach to setting up individual selectors. Selectors can take up a lot of space in the header and sidebar and clicking on the widget items can allow you to explore different scenarios which may ultimately be setup as selectors in the future. The Dashboard has many widgets that are stacked atop each other and underneath these stacked widgets are controls or tabs that allow the user to toggle between different visualizations. The downside to allowing a user to filter based on the output of a widget is the need for the end user to keep track of what has been clicked and the need to go back through and unclick.Many of the Crash Data Elements are based on lookups that have a fairly large range of values to select. This can be difficult sometimes with charts and the fact that a user may be overwhelmed by the number of items be plotted. Some of these values could potentially benefit by grouping similar values. The crash data being used in this dashboard hasn't been post processed to simplify some of the groupings of data and represent the value as it would appear in the Crash System. This dashboard was put together to continue the discussion on what data elements should be included in the GIS Crash Dataset. At the moment there is currently one primary dataset that is used to present crash data in Map Services. There is lots of potential to extend this dataset to include additional elements or it might be beneficial to create different versions of the crash data. Having an examples like this one will hopefully help with the discussion. Workable examples of what works and doesn't work. There are lots of data elements in the Crash System that could allow for an even more detailed safety analysis. Some of the unit items included in the example for Minot Ave in Auburn are the following. This information is included for the first three units associated to any crash.Most Damaged AreaExtent of DamageUnit TypeDirection of Travel (Northbound, Southbound, Eastbound, Westbound)Pre-Crash ActionsSequence of Events 1-4Most Harmful Event Some of the persons items included in the example for Minot Ave in Auburn are the following. This information is included for the first three units associated to any crash and the person would be based on the driver.Condition at Time of CrashDriver Action 1Driver Action 2Driver DistractedAgeSexPerson Type (Driver/Owner(6), Driver(1))In addition to the Units and Persons information included above each crash includes the standard crash data elements which includesDate, Time, Day of Week, Year, Month, HourInjury Level (K,A,B,C,PD)Type of CrashTownname, County, MDOT RegionWeather ConditionsLight ConditionsRoad Surface ConditionsRoad GradeSchool Bus RelatedTraffic Control DeviceType of LocationWork Zone ItemsLocation Type (NODE, ELEMENT) used for LRS# of K, # of A, # of B, # of C, # of PD InjuriesTotal # of UnitsTotal # of PersonsFactored AADT (Only currently applicable for crashes along the roadway (ELEMENT)).Location of First Harmful EventTotal Injury Count for the CrashBoolean Y/N if Pedestrian or Bicycles are InvolvedContributing EnvironmentsContributing RoadRoute Number, Milepoint, Element ID, Node ID

  17. d

    Market Research Data | Global Map data | Geographic data | Address and Zip...

    • datarade.ai
    .csv
    Updated Oct 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Market Research Data | Global Map data | Geographic data | Address and Zip Code Database | Geocoded [Dataset]. https://datarade.ai/data-products/geopostcodes-market-research-data-map-data-geographic-dat-geopostcodes
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Oct 19, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Saint Barthélemy, Papua New Guinea, South Sudan, Poland, Christmas Island, Monaco, Tokelau, Korea (Democratic People's Republic of), Slovenia, Sierra Leone
    Description

    A global self-hosted Market Research dataset containing all administrative divisions, cities, addresses, and zip codes for 247 countries. All geospatial data is updated weekly to maintain the highest data quality, including challenging countries such as China, Brazil, Russia, and the United Kingdom.

    Use cases for the Global Zip Code Database (Market Research data)

    • Address capture and validation

    • Map and visualization

    • Reporting and Business Intelligence (BI)

    • Master Data Mangement

    • Logistics and Supply Chain Management

    • Sales and Marketing

    Data export methodology

    Our map data packages are offered in variable formats, including .csv. All geographic data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Product Features

    • Fully and accurately geocoded

    • Administrative areas with a level range of 0-4

    • Multi-language support including address names in local and foreign languages

    • Comprehensive city definitions across countries

    For additional insights, you can combine the map data with:

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Times

    Why do companies choose our Market Research databases

    • Enterprise-grade service

    • Reduce integration time and cost by 30%

    • Weekly updates for the highest quality

    Note: Custom geographic data packages are available. Please submit a request via the above contact button for more details.

  18. Australia's Land Borders

    • ecat.ga.gov.au
    • researchdata.edu.au
    esri:map-service +3
    Updated Nov 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Commonwealth of Australia (Geoscience Australia) (2020). Australia's Land Borders [Dataset]. https://ecat.ga.gov.au/geonetwork/js/api/records/859276f9-b266-4b44-bb3f-29afc591a9b0
    Explore at:
    www:link-1.0-http--link, esri:map-service, ogc:wms, ogc:wfsAvailable download formats
    Dataset updated
    Nov 6, 2020
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    Time period covered
    Mar 2, 2020 - Aug 11, 2020
    Area covered
    Description

    Australia's Land Borders is a product within the Foundation Spatial Data Framework (FSDF) suite of datasets. It is endorsed by the ANZLIC - the Spatial Information Council and the Intergovernmental Committee on Surveying and Mapping (ICSM) as a nationally consistent and topologically correct representation of the land borders published by the Australian states and territories.

    The purpose of this product is to provide: (i) a building block which enables development of other national datasets; (ii) integration with other geospatial frameworks in support of data analysis; and (iii) visualisation of these borders as cartographic depiction on a map. Although this dataset depicts land borders, it is not nor does it suggests to be a legal definition of these borders. Therefore it cannot and must not be used for those use-cases pertaining to legal context.

    This product is constructed by Geoscience Australia (GA), on behalf of the ICSM, from authoritative open data published by the land mapping agencies in their respective Australian state and territory jurisdictions. Construction of a nationally consistent dataset required harmonisation and mediation of data issues at abutting land borders. In order to make informed and consistent determinations, other datasets were used as visual aid in determining which elements of published jurisdictional data to promote into the national product. These datasets include, but are not restricted to: (i) PSMA Australia's commercial products such as the cadastral (property) boundaries (CadLite) and Geocoded National Address File (GNAF); (ii) Esri's World Imagery and Imagery with Labels base maps; and (iii) Geoscience Australia's GEODATA TOPO 250K Series 3. Where practical, Land Borders do not cross cadastral boundaries and are logically consistent with addressing data in GNAF.

    It is important to reaffirm that although third-party commercial datasets are used for validation, which is within remit of the licence agreement between PSMA and GA, no commercially licenced data has been promoted into the product. Australian Land Borders are constructed exclusively from published open data originating from state, territory and federal agencies.

    This foundation dataset consists of edges (polylines) representing mediated segments of state and/or territory borders, connected at the nodes and terminated at the coastline defined as the Mean High Water Mark (MHWM) tidal boundary. These polylines are attributed to convey information about provenance of the source. It is envisaged that land borders will be topologically interoperable with the future national coastline dataset/s, currently being built through the ICSM coastline capture collaboration program. Topological interoperability will enable closure of land mass polygon, permitting spatial analysis operations such as vector overly, intersect, or raster map algebra. In addition to polylines, the product incorporates a number of well-known survey-monumented corners which have historical and cultural significance associated with the place name.

    This foundation dataset is constructed from the best-available data, as published by relevant custodian in state and territory jurisdiction. It should be noted that some custodians - in particular the Northern Territory and New South Wales - have opted out or to rely on data from abutting jurisdiction as an agreed portrayal of their border. Accuracy and precision of land borders as depicted by spatial objects (features) may vary according to custodian specifications, although there is topological coherence across all the objects within this integrated product. The guaranteed minimum nominal scale for all use-cases, applying to complete spatial coverage of this product, is 1:25 000. In some areas the accuracy is much better and maybe approaching cadastre survey specification, however, this is an artefact of data assembly from disparate sources, rather than the product design. As the principle, no data was generalised or spatially degraded in the process of constructing this product.

    Some use-cases for this product are: general digital and web map-making applications; a reference dataset to use for cartographic generalisation for a smaller-scale map applications; constraining geometric objects for revision and updates to the Mesh Blocks, the building blocks for the larger regions of the Australian Statistical Geography Standard (ASGS) framework; rapid resolution of cross-border data issues to enable construction and visual display of a common operating picture, etc.

    This foundation dataset will be maintained at irregular intervals, for example if a state or territory jurisdiction decides to publish or republish their land borders. If there is a new version of this dataset, past version will be archived and information about the changes will be made available in the change log.

  19. USA Soils Map Units

    • historic-cemeteries.lthp.org
    • mapdirect-fdep.opendata.arcgis.com
    • +9more
    Updated Apr 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA Soils Map Units [Dataset]. https://historic-cemeteries.lthp.org/maps/06e5fd61bdb6453fb16534c676e1c9b9
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from thegSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset Summary Phenomenon Mapped:Soils of the United States and associated territoriesGeographic Extent:The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System:Web Mercator Auxiliary SphereVisible Scale:1:144,000 to 1:1,000Source:USDA Natural Resources Conservation Service Update Frequency:AnnualPublication Date:December 2024 What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS Online Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-upArcGIS Pro Add this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -

  20. C

    nwp_overview_map_water_policy_implementation

    • ckan.mobidatalab.eu
    esri rest, wfs, wms
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NationaalGeoregisterNL (2023). nwp_overview_map_water_policy_implementation [Dataset]. https://ckan.mobidatalab.eu/dataset/nwp_overview_map_water_policy_implementation
    Explore at:
    wms, esri rest, wfsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    NationaalGeoregisterNL
    Description

    This file contains the map layers used for map 2 'overview map of water policy and implementation' in the National Water Program 2022-2027. The maps in the National Water Program are drawn up as a printed map at A4 level and have only been checked and established at this level. This means that this data, which is used to make the printed maps, has no legal status. The risk of using this data lies with the user. In addition, it should be taken into account that some map elements are shown indicatively; the locations are not exact. This applies, for example, to the display of project locations. Finally, it is important that the datasets in this publication were used to create printed maps for the National Water Program in 2022. This makes them static data, which will not be kept up to date at this location after publication in 2022.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Suzanne Prober; Tom Harwood; Nat Raisbeck-Brown; Kristen Williams (2016). Links to all datasets and downloads for 80 A0/A3 digital image of map posters accompanying AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach [Dataset]. https://researchdata.edu.au/653610/653610
Organization logo

Links to all datasets and downloads for 80 A0/A3 digital image of map posters accompanying AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach

Explore at:
datadownloadAvailable download formats
Dataset updated
Jan 18, 2016
Dataset provided by
CSIROhttp://www.csiro.au/
Authors
Suzanne Prober; Tom Harwood; Nat Raisbeck-Brown; Kristen Williams
License

https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/

Time period covered
Jan 1, 2015 - Jan 10, 2015
Area covered
Description

This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.

These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.

The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.

Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.

Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.

Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.

An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.

Example citations:

Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.

Maps were generated using layout and drawing tools in ArcGIS 10.2.2

A check list of map posters and datasets is provided with the collection.

Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x

8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)

9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)

9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)

10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)

10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)

11.1 Refugial potential for vascular plants and mammals (1990-2050)

11.1 Refugial potential for reptiles and amphibians (1990-2050)

12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)

12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)

Search
Clear search
Close search
Google apps
Main menu