100+ datasets found
  1. n

    Census Microdata Samples Project

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Jan 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Census Microdata Samples Project [Dataset]. http://identifiers.org/RRID:SCR_008902
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219

  2. United States Census Data, 1900: Public Use Sample

    • icpsr.umich.edu
    • archive.ciser.cornell.edu
    ascii
    Updated May 11, 1992
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Preston, Samuel H.; Higgs, Robert L. (1992). United States Census Data, 1900: Public Use Sample [Dataset]. http://doi.org/10.3886/ICPSR07825.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    May 11, 1992
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Preston, Samuel H.; Higgs, Robert L.
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/7825/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7825/terms

    Time period covered
    1900
    Area covered
    United States
    Description

    This study was conducted under the auspices of the Center for Studies in Demography and Ecology at the University of Washington. It is a nationally representative sample of the population of the United States in 1900, drawn from the manuscript returns of individuals enumerated in the 1900 United States Census. Household variables include region, state and county of household, size of household, and type and ownership of dwelling. Individual variables for each household member include relationship to head of household, race, sex, age, marital status, number of children, and birthplace. Immigration variables include parents' birthplace, year of immigration and number of years in the United States. Occupation variables include occupation, coded by both the 1900 and 1950 systems, and number of months unemployed. Education variables include number of months in school, whether respondents could read or write a language, and whether they spoke English.

  3. 2023 American Community Survey: S0101 | Age and Sex (ACS 1-Year Estimates...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: S0101 | Age and Sex (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST1Y2023.S0101
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The age dependency ratio is derived by dividing the combined under-18 and 65-and-over populations by the 18-to-64 population and multiplying by 100..The old-age dependency ratio is derived by dividing the population 65 and over by the 18-to-64 population and multiplying by 100..The child dependency ratio is derived by dividing the population under 18 by the 18-to-64 population and multiplying by 100..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  4. f

    Sample comparison to U.S. census statistics.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jul 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gruda, Dritjon; Hanges, Paul (2024). Sample comparison to U.S. census statistics. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001500985
    Explore at:
    Dataset updated
    Jul 3, 2024
    Authors
    Gruda, Dritjon; Hanges, Paul
    Area covered
    United States
    Description

    Lowering average household heating energy consumption plays a pivotal role in addressing climate change and has been central to policy initiatives. Strategies proposed so far have included commitments, incentives/ disincentives, feedback, and social norms. Yet, findings so far have been mixed and fail to explain the mechanism that drives energy conservation behavior. Using a sample of 2,128 participants across the United States, we collected survey data matched with archival temperature data to investigate the influence of past experiences on current energy conservation behaviors. Our findings indicate that childhood home temperatures significantly predict current home temperature settings. Importantly, community fit moderated this relationship. Individuals with high community fit were more likely to align their home temperature settings to those of their community. These insights not only shed light on the underlying mechanisms driving energy consumption behavior but also suggest that fostering a sense of community fit might be a more effective strategy for promoting sustainable energy practices.

  5. 2011-2015 American Community Survey: 5-Year Estimates - Public Use Microdata...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). 2011-2015 American Community Survey: 5-Year Estimates - Public Use Microdata Sample [Dataset]. https://catalog.data.gov/dataset/2011-2015-american-community-survey-5-year-estimates-public-use-microdata-sample
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The American Community Survey (ACS) Public Use Microdata Sample (PUMS) contains a sample of responses to the ACS. The ACS PUMS dataset includes variables for nearly every question on the survey, as well as many new variables that were derived after the fact from multiple survey responses (such as poverty status).Each record in the file represents a single person, or, in the household-level dataset, a single housing unit. In the person-level file, individuals are organized into households, making possible the study of people within the contexts of their families and other household members. Individuals living in Group Quarters, such as nursing facilities or college facilities, are also included on the person file. ACS PUMS data are available at the nation, state, and Public Use Microdata Area (PUMA) levels. PUMAs are special non-overlapping areas that partition each state into contiguous geographic units containing roughly 100,000 people each. ACS PUMS files for an individual year, such as 2019, contain data on approximately one percent of the United States population.

  6. c

    Census of Population and Housing, 1960: Public Use Sample, 1 in 100

    • archive.ciser.cornell.edu
    Updated Feb 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1960: Public Use Sample, 1 in 100 [Dataset]. http://doi.org/10.6077/j5/ohycfx
    Explore at:
    Dataset updated
    Feb 13, 2020
    Dataset authored and provided by
    Bureau of the Census
    Variables measured
    Individual, Household
    Description

    This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07756.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

  7. 2023 American Community Survey: B19013 | Median Household Income in the Past...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: B19013 | Median Household Income in the Past 12 Months (in 2023 Inflation-Adjusted Dollars) (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5Y2023.B19013
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  8. d

    Community Survey: 2021 Random Sample Results

    • catalog.data.gov
    • data.bloomington.in.gov
    Updated May 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.bloomington.in.gov (2023). Community Survey: 2021 Random Sample Results [Dataset]. https://catalog.data.gov/dataset/community-survey-2021-random-sample-results-69942
    Explore at:
    Dataset updated
    May 20, 2023
    Dataset provided by
    data.bloomington.in.gov
    Description

    A random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.

  9. US Census - ACS and Decennial files **

    • redivis.com
    application/jsonl +7
    Updated Jul 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Impact Data Collaborative (2023). US Census - ACS and Decennial files ** [Dataset]. https://redivis.com/datasets/b2fz-a8gwpvnh4
    Explore at:
    avro, csv, spss, stata, sas, parquet, application/jsonl, arrowAvailable download formats
    Dataset updated
    Jul 4, 2023
    Dataset provided by
    Redivis Inc.
    Authors
    Environmental Impact Data Collaborative
    Area covered
    United States
    Description

    Abstract

    Dataset quality **: Medium/high quality dataset, not quality checked or modified by the EIDC team

    Census data plays a pivotal role in academic data research, particularly when exploring relationships between different demographic characteristics. The significance of this particular dataset lies in its ability to facilitate the merging of various datasets with basic census information, thereby streamlining the research process and eliminating the need for separate API calls.

    The American Community Survey is an ongoing survey conducted by the U.S. Census Bureau, which provides detailed social, economic, and demographic data about the United States population. The ACS collects data continuously throughout the decade, gathering information from a sample of households across the country, covering a wide range of topics

    Methodology

    The Census Data Application Programming Interface (API) is an API that gives the public access to raw statistical data from various Census Bureau data programs.

    We used this API to collect various demographic and socioeconomic variables from both the ACS and the Deccenial survey on different geographical levels:

    ZCTAs:

    ZIP Code Tabulation Areas (ZCTAs) are generalized areal representations of United States Postal Service (USPS) ZIP Code service areas. The USPS ZIP Codes identify the individual post office or metropolitan area delivery station associated with mailing addresses. USPS ZIP Codes are not areal features but a collection of mail delivery routes.

    Census Tract:

    Census Tracts are small, relatively permanent statistical subdivisions of a county or statistically equivalent entity that can be updated by local participants prior to each decennial census as part of the Census Bureau’s Participant Statistical Areas Program (PSAP).

    Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. A census tract usually covers a contiguous area; however, the spatial size of census tracts varies widely depending on the density of settlement. Census tract boundaries are delineated with the intention of being maintained over a long time so that statistical comparisons can be made from census to census.

    Block Groups:

    Block groups (BGs) are the next level above census blocks in the geographic hierarchy (see Figure 2-1 in Chapter 2). A BG is a combination of census blocks that is a subdivision of a census tract or block numbering area (BNA). (A county or its statistically equivalent entity contains either census tracts or BNAs; it can not contain both.) A BG consists of all census blocks whose numbers begin with the same digit in a given census tract or BNA; for example, BG 3 includes all census blocks numbered in the 300s. The BG is the smallest geographic entity for which the decennial census tabulates and publishes sample data.

    Census Blocks:

    Census blocks, the smallest geographic area for which the Bureau of the Census collects and tabulates decennial census data, are formed by streets, roads, railroads, streams and other bodies of water, other visible physical and cultural features, and the legal boundaries shown on Census Bureau maps.

  10. 1980 Census of Population and Housing - IPUMS Subset - United States

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2025). 1980 Census of Population and Housing - IPUMS Subset - United States [Dataset]. https://microdata.worldbank.org/index.php/catalog/2116
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    IPUMS
    Time period covered
    1980
    Area covered
    United States
    Description

    Analysis unit

    Persons, households, and dwellings

    UNITS IDENTIFIED: - Dwellings: yes - Vacant Units: Yes - Households: yes - Individuals: yes - Group quarters: yes

    UNIT DESCRIPTIONS: - Dwellings: no - Households: Dwelling places with fewer than ten persons unrelated to a household head, excluding institutions and transient quarters. - Group quarters: Institutions, transient quarters, and dwelling places with ten or more persons unrelated to a household head.

    Universe

    Residents of the 50 states (not the outlying areas).

    Kind of data

    Population and Housing Census [hh/popcen]

    Sampling procedure

    MICRODATA SOURCE: U.S. Census Bureau

    SAMPLE SIZE (person records): 11343120.

    SAMPLE DESIGN: 1-in-20 national random sample drawn by the U.S. Census Bureau

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 1980 census employed a single long form questionnaire completed by one-half of housing units in places with a population under 2,500 and one-sixth of other housing units.

  11. f

    Agriculture Sample Census Survey 2007-2008 - United Republic of Tanzania

    • microdata.fao.org
    Updated Oct 24, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Chief Government Statistician-Zanzibar (2019). Agriculture Sample Census Survey 2007-2008 - United Republic of Tanzania [Dataset]. https://microdata.fao.org/index.php/catalog/955
    Explore at:
    Dataset updated
    Oct 24, 2019
    Dataset provided by
    National Bureau of Statistics
    Office of Chief Government Statistician-Zanzibar
    Time period covered
    2009
    Area covered
    Tanzania
    Description

    Abstract

    The 2007/08 Agriculture Sample Census Survey (ASCS) was designed to meet the data needs of a wide range of users down to district level including policy makers at local, regional and national levels, rural development agencies, funding institutions, researchers, NGOs, farmer organisations, etc. The dataset is both more numerous in its sample and detailed in its scope and coverage, so as to meet the user demand. The census was carried out in order to:

    · Identify structural changes if any, in the size of farm household holdings, crop and livestock production, farm input and implement use. It also seeks to determine if there are any improvements in rural infrastructure and in the level of agriculture household living conditions; · Provide benchmark data on productivity, production and agricultural practices in relation to policies and interventions promoted by the Ministry of Agriculture and Food Security and other stake holders. · Obtain benchmark data that will be used to address specific issues such as: food security, rural poverty, gender, agro-processing, marketing and service delivery.

    Geographic coverage

    National Coverage

    Analysis unit

    Households

    Universe

    Small scale and Large Scale Farmers within the community.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Mainland sample consisted of 3,192 villages. The total Mainland sample was 47,880 agricultural households, while in Zanzibar a total of 317 Enumeration Areas (EAs) were selected and 4,755 agriculture households were covered.
    The villages were drawn from the National Master Sample (NMS) developed by the National Bureau of Statistics (NBS) to serve as a national framework for the conduct of household-based surveys in the country. The NMS was developed from the 2002 Population and Housing Census.
    The number of villages/Enumeration Areas (EAs) were selected for the first stage with a probability proportional to the number of villages/EAs in each district. In the second stage, 15 households were selected from a list of agricultural households in each Village/EA using systematic random sampling.

    Mode of data collection

    Face-to-face paper [f2f]

    Cleaning operations

    Data editing took place at a number of stages. The following procedures were carried out: - Manual cleaning exercise was done prior to scanning. Questionnaires found dirty or damaged and generally unsuitable for scanning were put aside for manual data entry. - CSPro was used for data entry of all Large Scale Farms and Community based questionnaires. - Scanning and ICR data capture technology for the smallholder questionnaire was also done. - There was also an interactive validation during the ICR extraction process. - The use of a batch validation program developed in CSPro. This was used in order to identify inconsistencies within a questionnaire. - Statistical Package for Social Sciences (SPSS) was used to produce the census tabulations. - Microsoft Excel was used to organize the tables, charts and compute additional indicators. - Arc GIS (Geographical Information System) was used in producing the maps. - Microsoft Word was used in compiling and writing up the reports.

  12. Decennial Census: State Legislative District Summary File (Sample)

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Decennial Census: State Legislative District Summary File (Sample) [Dataset]. https://catalog.data.gov/dataset/decennial-census-state-legislative-district-summary-file-sample
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The State Legislative District Summary File (Sample) (SLDSAMPLE) contains the sample data, which is the information compiled from the questions asked of a sample of all people and housing units. Population items include basic population totals; urban and rural; households and families; marital status; grandparents as caregivers; language and ability to speak English; ancestry; place of birth, citizenship status, and year of entry; migration; place of work; journey to work (commuting); school enrollment and educational attainment; veteran status; disability; employment status; industry, occupation, and class of worker; income; and poverty status. Housing items include basic housing totals; urban and rural; number of rooms; number of bedrooms; year moved into unit; household size and occupants per room; units in structure; year structure built; heating fuel; telephone service; plumbing and kitchen facilities; vehicles available; value of home; monthly rent; and shelter costs. The file contains subject content identical to that shown in Summary File 3 (SF 3).

  13. Historic US Census - 1910

    • redivis.com
    • stanford.redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US Census - 1910 [Dataset]. http://doi.org/10.57761/n3ks-0444
    Explore at:
    parquet, application/jsonl, stata, csv, avro, sas, arrow, spssAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 1910 - Dec 31, 1910
    Description

    Abstract

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The historic US 1910 census data was collected in April 1910. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Section 2

    This dataset was created on 2020-01-10 23:47:27.924 by merging multiple datasets together. The source datasets for this version were:

    IPUMS 1910 households: The Integrated Public Use Microdata Series (IPUMS) Complete Count Data are historic individual and household census records and are a unique source for research on social and economic change.

    IPUMS 1910 persons: This dataset includes all individuals from the 1910 US census.

  14. H

    Current Population Survey (CPS)

    • dataverse.harvard.edu
    • search.dataone.org
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  15. 2017 American Community Survey: 1-Year Estimates - Public Use Microdata...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). 2017 American Community Survey: 1-Year Estimates - Public Use Microdata Sample [Dataset]. https://catalog.data.gov/dataset/2017-american-community-survey-1-year-estimates-public-use-microdata-sample
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The American Community Survey (ACS) Public Use Microdata Sample (PUMS) contains a sample of responses to the ACS. The ACS PUMS dataset includes variables for nearly every question on the survey, as well as many new variables that were derived after the fact from multiple survey responses (such as poverty status).Each record in the file represents a single person, or, in the household-level dataset, a single housing unit. In the person-level file, individuals are organized into households, making possible the study of people within the contexts of their families and other household members. Individuals living in Group Quarters, such as nursing facilities or college facilities, are also included on the person file. ACS PUMS data are available at the nation, state, and Public Use Microdata Area (PUMA) levels. PUMAs are special non-overlapping areas that partition each state into contiguous geographic units containing roughly 100,000 people each. ACS PUMS files for an individual year, such as 2020, contain data on approximately one percent of the United States population

  16. undefined undefined: undefined | undefined (undefined)

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau, undefined undefined: undefined | undefined (undefined) [Dataset]. https://data.census.gov/table/ACSDT5Y2022.B15012
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..This table shows the total number of degrees per field, not the total number of respondents. If a respondent had degrees in more than one field, then each degree would be counted in its respective field. For example if Respondent A majored in Psychology and Respondent B majored in Psychology and Engineering, three majors would be counted in the table (two Psychology majors, and one Engineering major). If a respondent received multiple degrees within the same category, these degrees would only count once in the table. For example, if a respondent majored in Chemical Engineering and Mechanical Engineering, this would count as only one major since both fields fall within Engineering..Tables for ACS data year 2010 and later are not completely comparable to the table based on 2009 ACS data due to slight changes in the field of degree coding and classifications..The 2018-2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  17. w

    National Agricultural Sample Census 2022 - Nigeria

    • microdata.worldbank.org
    • microdata.nigerianstat.gov.ng
    • +2more
    Updated Oct 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (NBS) (2024). National Agricultural Sample Census 2022 - Nigeria [Dataset]. https://microdata.worldbank.org/index.php/catalog/6384
    Explore at:
    Dataset updated
    Oct 30, 2024
    Dataset provided by
    National Bureau of Statistics, Nigeria
    Authors
    National Bureau of Statistics (NBS)
    Time period covered
    2022
    Area covered
    Nigeria
    Description

    Abstract

    NASC is an exercise designed to fill the existing data gap in the agricultural landscape in Nigeria. It is a comprehensive enumeration of all agricultural activities in the country, including crop production, fisheries, forestry, and livestock activities. The implementation of NASC was done in two phases, the first being the Listing Phase, and the second is the Sample Survey Phase. Under the first phase, enumerators visited all the selected Enumeration Areas (EAs) across the Local Government Areas (LGAs) and listed all the farming households in the selected enumeration areas and collected the required information. The scope of information collected under this phase includes demographic details of the holders, type of agricultural activity (crop production, fishery, poultry, or livestock), the type of produce or product (for example: rice, maize, sorghum, chicken, or cow), and the details of the contact persons. The listing exercise was conducted concurrently with the administration of a Community Questionnaire, to gather information about the general views of the communities on the agricultural and non-agricultural activities through focus group discussions.

    The main objective of the listing exercise is to collect information on agricultural activities at household level in order to provide a comprehensive frame for agricultural surveys. The main objective of the community questionnaire is to obtain information about the perceptions of the community members on the agricultural and non-agricultural activities in the community.

    Additional objectives of the overall NASC program include the following: · To provide data to help the government at different levels in formulating policies on agriculture aimed at attaining food security and poverty alleviation · To provide data for the proposed Gross Domestic Product (GDP) rebasing

    Geographic coverage

    Estimation domains are administrative areas from which reliable estimates are expected. The sample size planned for the extended listing operation allowed reporting key structural agricultural statistics at Local Government Area (LGA) level.

    Analysis unit

    Agricultural Households.

    Universe

    Population units of this operation are households with members practicing agricultural activities on their own account (farming households). However, all households in selected EAs were observed as much as possible to ensure a complete coverage of farming households.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    An advanced methodology was adopted in the conduct of the listing exercise. For the first time in Nigeria, the entire listing was conducted digitally. NBS secured newly demarcated digitized enumeration area (EA) maps from the National Population Commission (NPC) and utilized them for the listing exercise. This newly carved out maps served as a basis for the segmentation of the areas visited for listing exercise. With these maps, the process for identifying the boundaries of the enumeration areas by the enumerators was seamless.

    The census was carried out in all the 36 States of the Federation and FCT. Forty (40) enumeration Areas (EAs) were selected to be canvassed in each LGA, the number of EAs covered varied by state, which is a function of the number of LGAs in the state. Both urban and rural EAs were canvassed. Out of 774 LGAs in the country, 767 LGAs were covered and the remaining 7 LGAs (4 in Imo and 3 in Borno States) were not covered due to insecurity (99% coverage). In all, thirty thousand, nine hundred and sixty (30,960) EAs were expected to be covered nationwide but 30,546 EAs were canvassed.

    The Sampling method adopted involved three levels of stratification. The objective of this was to provide representative data on every Local Government Area (LGA) in Nigeria. Thus, the LGA became the primary reporting domain for the NASC and the first level of stratification. Within each LGA, eighty (80) EAs were systematically selected and stratified into urban and rural EAs, which then formed the second level of stratification, with the 80 EAs proportionally allocated to urban and rural according to the total share of urban/rural EAs within the LGA. These 80 EAs formed the master sample from which the main NASC sample was selected. From the 80 EAs selected across all the LGAs, 40 EAs were systematically selected per LGA to be canvassed. This additional level selection of EAs was again stratified across urban and rural areas with a target allocation of 30 rural and 10 urban EAs in each LGA. The remaining 40 EAs in each LGA from the master sample were set aside for replacement purposes in case there would be need for any inaccessible EA to be replaced.

    Details of sampling procedure implemented in the NASC (LISTING COMPONENT). A stratified two-phase cluster sampling method was used. The sampling frame was stratified by urban/rural criteria in each LGA (estimation domain/analytical stratum).

    First phase: in each LGA, a total sample of 80 EAs were allocated in each strata (urban/rural) proportionally to their number of EAs with reallocations as need be. In each stratum, the sample was selected with a Pareto probability proportional to size considering the number of households as measure of size.

    Second phase: systematic subsampling of 40 EAs was done (10 in Urban and 30 in Rural with reallocations as needed, if there were fewer than 10 Urban or 30 Rural EAs in an LGA). This phase was implicitly stratified through sorting the first phase sample by geography.

    With a total of 773 LGAs covered in the frame, the total planned sample size was 30920 EAs. However, during fieldwork 2 LGAs were unable to be covered due to insecurity and additional 4 LGAs were suspended early due to insecurity. For the same reason, replacements of some sampled EAs were needed in many LGAs. The teams were advised to select replacement units where possible considering appurtenance to the same stratum and similarity including in terms of population size. However about 609 EAs replacement units were selected from a different stratum and were discarded from data processing and reporting.

    Sampling deviation

    Out of 774 LGAs in the country, 767 LGAs were covered and the remaining 7 LGAs (4 in Imo and 3 in Borno states) were not covered due to insecurity (99% coverage).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The NASC household listing questionnaire served as a meticulously designed instrument administered within every household to gather comprehensive data. It encompassed various aspects such as household demographics, agricultural activities including crops, livestock (including poultry), fisheries, and ownership of agricultural/non-agricultural enterprises.

    The questionnaire was structured into the following sections: Section 0: ADMINISTRATIVE IDENTIFICATION Section 1: BUILDING LISTING Section 2: HOUSEHOLD LISTING (Administered to the Head of Household or any knowledgeable adult member aged 15 years and above).

    Cleaning operations

    Data processing of the NASC household listing survey included checking for inconsistencies, incompleteness, and outliers. Data editing and cleaning was carried out electronically using the Stata software package. In some cases where data inconsistencies were found a call back to the household was carried out. A pre-analysis tabulation plan was developed and the final tables for publication were created using the Stata software package.

    Sampling error estimates

    Given the complexity of the sample design, sampling errors were estimated through re-sampling approaches (Bootstrap/Jackknife)

  18. s

    Census Microdata Samples Project

    • scicrunch.org
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census Microdata Samples Project [Dataset]. http://identifiers.org/RRID:SCR_008902
    Explore at:
    Dataset updated
    Sep 12, 2024
    Description

    A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219

  19. g

    Census of Population and Housing, 1960 Public Use Sample: One-in-One-Hundred...

    • search.gesis.org
    Updated Jan 18, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Commerce. Bureau of the Census (2006). Census of Population and Housing, 1960 Public Use Sample: One-in-One-Hundred Sample - Version 1 [Dataset]. http://doi.org/10.3886/ICPSR07756.v1
    Explore at:
    Dataset updated
    Jan 18, 2006
    Dataset provided by
    GESIS search
    ICPSR - Interuniversity Consortium for Political and Social Research
    Authors
    United States Department of Commerce. Bureau of the Census
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442054https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442054

    Description

    Abstract (en): This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. About 600,000 households and group quarters segments, and about 1,800,000 persons in the United States. One sample household for every 100 households, and persons in group quarters in the United States. Records have been sampled on a household-by-household basis so that the characteristics of family members may be interrelated and related to the characteristics of the housing unit. 2006-01-18 File CB7756.ALL.PDF was removed from any previous datasets and flagged as a study-level file, so that it will accompany all downloads.

  20. undefined undefined: undefined | undefined (undefined)

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau, undefined undefined: undefined | undefined (undefined) [Dataset]. https://data.census.gov/table/ACSST1Y2023.S1001?q=Georgia+Families+and+Living+Arrangements&g=050XX00US72051
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Foreign born excludes people born outside the United States to a parent who is a U.S. citizen..Public assistance includes receipt of Supplemental Security Income (SSI), cash public assistance income, or Food Stamps..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2022). Census Microdata Samples Project [Dataset]. http://identifiers.org/RRID:SCR_008902

Census Microdata Samples Project

RRID:SCR_008902, nlx_151430, Census Microdata Samples Project (RRID:SCR_008902), Census Microdata Samples Project, Status of Older Persons in UNECE Countries, Dynamics of Population Aging in ECE Countries, PAU Census Microdata Samples Project, Population Activities Unit Census Microdata Samples Project, Dynamics of Population Aging in Economic Commission for Europe Countries

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 29, 2022
Description

A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219

Search
Clear search
Close search
Google apps
Main menu