Decennial Census Summary File 3 (SF 3) Description Census 2000 Summary File 3 (SF3) Summary File 3 presents in-depth population and housing data collected on a sample basis from the Census 2000 long form questionnaire, as well as the topics from the short form 100-percent data (age, race, sex, Hispanic or Latino origin, tenure [whether a housing unit is owner- or renter-occupied], and vacancy status). Summary File 3 consists of 813 detailed tables of Census 2000 social, economic and housing characteristics compiled from a sample of approximately 19 million housing units (about 1 in 6 households) that received the Census 2000 long-form questionnaire. Fifty-one tables are repeated for nine major race and Hispanic or Latino groups: White alone; Black or African American alone; American Indian and Alaska Native alone; Asian alone; Native Hawaiian and Other Pacific Islander alone; Some other race alone; Two or more races; Hispanic or Latino; and White alone, not Hispanic or Latino. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see http://www.census.gov/prod/cen2000/doc/sf3.pdf. See Chapter 8 for computation of margins of error.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains life-cycle age group census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the age group population counts between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by regional council.
The life-cycle age groups are:
Map shows the percentage change in the census usually resident population count for life-cycle age groups between the 2018 and 2023 Censuses.
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Age concept quality rating
Age is rated as very high quality.
Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442616https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442616
Abstract (en): The Public Use Microdata Samples (PUMS) contain person- and household-level information from the "long-form" questionnaires distributed to a sample of the population enumerated in the 1980 Census. This data collection, containing 5-percent data, identifies every state, county groups, and most individual counties with 100,000 or more inhabitants (350 in all). In many cases, individual cities or groups of places with 100,000 or more inhabitants are also identified. Household-level variables include housing tenure, year structure was built, number and types of rooms in dwelling, plumbing facilities, heating equipment, taxes and mortgage costs, number of children, and household and family income. The person record contains demographic items such as sex, age, marital status, race, Spanish origin, income, occupation, transportation to work, and education. All persons and housing units in the United States and Puerto Rico. For this data collection, the full 1980 Census sample that received the "long-form" questionnaire (19.4 percent of all households) was sampled again through a stratified systematic selection procedure with probability proportional to a measure of size. This 5-percent sample, i.e., 5 households for every 100 households in the nation, includes over one-fourth of the households that received the long-form questionnaire. 2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads.1997-08-25 Part 72, Puerto Rico data, has been added to the collection, as well as supplemental documentation for Puerto Rico in the form of a separate PDF file. The household and person records in each hierarchical data file have logical record lengths of 193 characters, but the number of records varies with each file.The record layout for Part 72, Puerto Rico, is different from the state datasets. Refer to the supplemental documentation for this part.The codebook is available in hardcopy form only, while the Puerto Rico supplemental documentation is provided as a Portable Document Format (PDF) file.
The American Community Survey (ACS) is a uswide survey designed to provide communities a fresh look at how they are changing. The ACS replaced the decennial census long form in 2010 and thereafter by collecting long form type information throughout the decade rather than only once every 10 years. Questionnaires are mailed to a sample of addresses to obtain information about households -- that is, about each person and the housing unit itself. The American Community Survey produces demographic, social, housing and economic estimates in the form of 1 and 5-year estimates based on population thresholds. The strength of the ACS is in estimating population and housing characteristics. The data profiles provide key estimates for each of the topic areas covered by the ACS for the us, all 50 states, the District of Columbia, Puerto Rico, every congressional district, every metropolitan area, and all counties and places with populations of 65,000 or more. Although the ACS produces population, demographic and housing unit estimates,it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the us, states, counties, cities and towns, and estimates of housing units for states and counties. For 2010 and other decennial census years, the Decennial Census provides the official counts of population and housing units.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The life-cycle age groups are:under 15 years15 to 29 years30 to 64 years65 years and over.Map shows the percentage change in the census usually resident population count for life-cycle age groups between the 2018 and 2023 Censuses.Download lookup file from Stats NZ ArcGIS Online or Stats NZ geographic data service.FootnotesGeographical boundariesStatistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.Subnational census usually resident populationThe census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. Caution using time seriesTime series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).About the 2023 Census datasetFor information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings. Data qualityThe quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.Quality rating of a variableThe quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable. Age concept quality ratingAge is rated as very high quality. Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.Using data for goodStats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga".ConfidentialityThe 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
The 1980 American Indian supplementary file provides information on the American Indian, Eskimo, and Aleut populations beyond that obtained from the regular 1980 census questionnaire. The questionnaire was used on all federal and state reservations and in the historic areas of Oklahoma (excluding urbanized areas) to obtain information about the unique living conditions present on many reservations and in those specified areas of Oklahoma. Population items from the supplementary questionnaire include: tribal affiliation, educational attainment, health services received, occupation, work history, benefits received, and income. Housing items include: source of water, source of heat, kitchen facilities, telephone, electrical lighting, and materials and age of structure. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08664.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0
The 2021 long form Census questionnaire was sent out to 25% of all households. The 2021 short form Census questionnaire was sent out to 100% of all households. Because one is a census and one is a sample survey, variables that are available in both the 100% data and 25% sample may have different values. For example, the total population of the city taken from the 25% sample could differ from that taken from the 100% data.Source: Statistics Canada, 2021 Census, Custom Tabulation, census profile data for user-specified ward areas. Data received November 2023.Date Created: November 22 2023Update Frequency: Updated with each five-year national Census (next census undertaken in 2026; updated ward data are expected in 2028)Data Steward: Eva WalrondData Steward Email: Eva.walrond@ottawa.caDepartment or Agency: Planning, Real Estate and Economic DevelopmentBranch/Unit: Research & Forecasting
https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0
The 2021 short form Census questionnaire was sent out to 100% of all households. The 2021 long form Census questionnaire was sent out to 25% of all households. Because one is a census and one is a sample survey, variables that are available in both the 100% data and 25% sample may have different values. For example, the total population of the city taken from the 25% sample could differ from that taken from the 100% data.Source: Statistics Canada, 2021 Census, Custom Tabulation, census profile data for user-specified ward areas. Data received November 2023.Date Created: November 22 2023Update Frequency: Updated with each five-year national Census (next census undertaken in 2026; updated ward data are expected in 2028)Data Steward: Eva WalrondData Steward Email: Eva.walrond@ottawa.caDepartment or Agency: Planning, Real Estate and Economic DevelopmentBranch/Unit: Research & Forecasting
A broad and generalized selection of 2014-2018 US Census Bureau 2018 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The American Community Survey (ACS) is a uswide survey designed to provide communities a fresh look at how they are changing. The ACS replaced the decennial census long form in 2010 and thereafter by collecting long form type information throughout the decade rather than only once every 10 years. Questionnaires are mailed to a sample of addresses to obtain information about households -- that is, about each person and the housing unit itself. The American Community Survey produces demographic, social, housing and economic estimates in the form of 1 and 5-year estimates based on population thresholds. The strength of the ACS is in estimating population and housing characteristics. The data profiles provide key estimates for each of the topic areas covered by the ACS for the us, all 50 states, the District of Columbia, Puerto Rico, every congressional district, every metropolitan area, and all counties and places with populations of 65,000 or more. Although the ACS produces population, demographic and housing unit estimates,it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the us, states, counties, cities and towns, and estimates of housing units for states and counties. For 2010 and other decennial census years, the Decennial Census provides the official counts of population and housing units.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de457357https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de457357
Abstract (en): The Public Use Microdata Sample (PUMS) 1-Percent Sample contains household and person records for a sample of housing units that received the "long form" of the 1990 Census questionnaire. Data items include the full range of population and housing information collected in the 1990 Census, including 500 occupation categories, age by single years up to 90, and wages in dollars up to $140,000. Each person identified in the sample has an associated household record, containing information on household characteristics such as type of household and family income. All persons and housing units in the United States. A stratified sample, consisting of a subsample of the household units that received the 1990 Census "long-form" questionnaire (approximately 15.9 percent of all housing units). 2006-01-12 All files were removed from dataset 85 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 83 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 82 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads.1998-08-28 The following data files were replaced by the Census Bureau: the state files (Parts 1-56), Puerto Rico (Part 72), Geographic Equivalency File (Part 84), and Public Use Microdata Areas (PUMAS) Crossing State Lines (Part 99). These files now incorporate revised group quarters data. Parts 201-256, which were separate revised group quarters files for each state, have been removed from the collection. The data fields affected by the group quarters data revisions were POWSTATE, POWPUMA, MIGSTATE and MIGPUMA. As a result of the revisions, the Maine file (Part 23) gained 763 records and Part 99 lost 763 records. In addition, the following files have been added to the collection: Ancestry Code List, Place of Birth Code List, Industry Code List, Language Code List, Occupation Code List, and Race Code List (Parts 86-91). Also, the codebook is now available as a PDF file. (1) Although all records are 231 characters in length, each file is hierarchical in structure, containing a housing unit record followed by a variable number of person records. Both record types contain approximately 120 variables. Two improvements over the 1980 PUMS files have been incorporated. First, the housing unit serial number is identified on both the housing unit record and on the person record, allowing the file to be processed as a rectangular file. In addition, each person record is assigned an individual weight, allowing users to more closely approximate published reports. Unlike previous years, the 1990 PUMS 1-Percent and 5-Percent Samples have not been released in separate geographic series (known as "A," "B," etc. records). Instead, each sample has its own set of geographies, known as "Public Use Microdata Areas" (PUMAs), established by the Census Bureau with assistance from each State Data Center. The PUMAs in the 1-Percent Sample are based on a distinction between metropolitan and nonmetropolitan areas. Metropolitan areas encompass whole central cities, Primary Metropolitan Statistical Areas (PMSAs), Metropolitan Statistical Areas (MSAs), or groups thereof, except where the city or metropolitan area contains more than 200,000 inhabitants. In that case, the city or metropolitan area is divided into several PUMAs. Nonmetropolitan PUMAs are based on areas or groups of areas outside the central city, PMSA, or MSA. PUMAs in this 1-Percent Sample may cross state lines. (2) The codebook is provided as a Portable Document Format (PDF) file. The PDF file format was developed by Adobe Systems Incorporated and can be accessed using PDF reader software, such as the Adobe Acrobat Reader. Information on how to obtain a copy of the Acrobat Reader is provided through the ICPSR Website on the Internet.
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
The American Community Survey (ACS) is a US-wide survey designed to provide communities a fresh look at how they are changing. The ACS replaced the decennial census long form in 2010 and thereafter by collecting long form type information throughout the decade rather than only once every 10 years. Questionnaires are mailed to a sample of addresses to obtain information about households -- that is, about each person and the housing unit itself. The American Community Survey produces demographic, social, housing and economic estimates in the form of 1 and 5-year estimates based on population thresholds. The strength of the ACS is in estimating population and housing characteristics. The data profiles provide key estimates for each of the topic areas covered by the ACS for the us, all 50 states, the District of Columbia, Puerto Rico, every congressional district, every metropolitan area, and all counties and places with populations of 65,000 or more. Although the ACS produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the us, states, counties, cities and towns, and estimates of housing units for states and counties. For 2010 and other decennial census years, the Decennial Census provides the official counts of population and housing units.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The 2015 APS employee census was administered to all available Australian Public Service (APS) employees. This census approach provides a comprehensive view of the APS and ensures no eligible respondents are omitted from the survey sample, removing sampling bias and reducing sample error. The census' content is designed to establish the views of APS employees on workplace issues such as leadership, learning and development and job satisfaction. The census ran from 11 May to 12 June 2015. Overall, 91,937 APS employees responded to the employee census, a response rate of 66%.
Please be aware that the very large number of respondents to the employee census means these files are up to 200 mb in size. Downloading and opening these files may take some time.
TECHNICAL NOTES
Three files are available for download.
2015 APS employee census - Questionnaire: This contains the 2015 APS employee census questionnaire.
2015 APS employee census - 5 point dataset.csv: This file contains individual responses to the 2015 APS employee census as clean, tabular data as required by data.gov.au. This will need to be used in conjunction with the above document.
2015 APS employee census - 5 point dataset.sav: This file contains individual responses to the 2015 APS employee census for use with the SPSS software package.
To protect the privacy and confidentiality of respondents to the 2015 APS employee census, the datasets provided on data.gov.au include responses to a limited number of demographic or other attribute questions.
Full citation of this dataset should list the Australian Public Service Commission (APSC) as the author.
A recommended short citation is: 2015 APS employee census data, Australian Public Service Commission.
Any queries can be directed to research@apsc.gov.au.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The 2020 Census Redistricting Data (P.L. 94-171) Noisy Measurement File (NMF) is an intermediate output of the 2020 Census Disclosure Avoidance System (DAS) TopDown Algorithm (TDA) (as described in Abowd, J. et al [2022] https://doi.org/10.1162/99608f92.529e3cb9, and implemented in the DAS 2020 Redistricting Production Code). The NMF was generated using the Census Bureau's implementation of the Discrete Gaussian Mechanism, calibrated to satisfy zero-Concentrated Differential Privacy with bounded neighbors.
The NMF values, called noisy measurements are the output of applying the Discrete Gaussian Mechanism to counts from the 2020 Census Edited File (CEF). They are generally inconsistent with one another (for example, in a county composed of two tracts, the noisy measurement for the county's total population may not equal the sum of the noisy measurements of the two tracts' total population), and frequently negative (especially when the population being measured was small), but are integer-valued. The NMF was later post-processed as part of the DAS code to take the form of microdata and to satisfy various constraints. The NMF documented here contains both the noisy measurements themselves as well as the data needed to represent the DAS constraints; thus, the NMF could be used to reproduce the steps taken by the DAS code to produce microdata from the noisy measurements by applying the production code base.
The 2020 Census Redistricting Data (P.L. 94-171) Noisy Measurement File includes zero-Concentrated Differentially Private (zCDP) (Bun, M. and Steinke, T [2016]) noisy measurements, implemented via the discrete Gaussian mechanism. These are estimated counts of individuals and housing units included in the 2020 Census Edited File (CEF), which includes confidential data initially collected in the 2020 Census of Population and Housing. The noisy measurements included in this file were subsequently post-processed by the TopDown Algorithm (TDA) to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File.
The NMF provides estimates of counts of persons in the CEF by various characteristics and combinations of characteristics including their reported race and ethnicity, whether they were of voting age, whether they resided in a housing unit or one of 7 group quarters types, and their census block of residence after the addition of discrete Gaussian noise (with the scale parameter determined by the privacy-loss budget allocation for that particular query under zCDP). Noisy measurements of the counts of occupied and vacant housing units by census block are also included. Lastly, data on constraints--information into which no noise was infused by the Disclosure Avoidance System (DAS) and used by the TDA to post-process the noisy measurements into the 2020 Census Redistricting Data (P.L. 94-171) Summary File --are provided.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains counts for territorial authority local board area (TALB) of usual residence by TALB of usual residence address one year ago and five years ago, and by life cycle age group, for the census usually resident population count, 2023 Census.
This dataset compares usual residence at the 2023 Census with usual residence one and five years earlier to show population mobility and internal migration patterns of people within New Zealand.
‘Usual residence address’ is the address of the dwelling where a person considers that they usually live.
‘Usual residence one year ago address’ identifies an individual’s usual residence on 7 March 2022, which may be different to their current usual residence on census night 2023 (7 March 2023).
‘Usual residence five years ago address’ identifies an individual’s usual residence on 6 March 2018, which may be different to their current usual residence on census night 2023 (7 March 2023).
Note: This dataset only includes usual residence address information for individuals whose usual residence address one year ago and five years ago is available at TALB.
Life cycle age groups are categorised as:
This dataset can be used in conjunction with the following spatial files by joining on the TALB code values:
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Rows excluded from the dataset
Rows show TALB of usual residence by TALB of usual residence one year ago and five years ago, by life cycle age group. Cells with a number less than six have been confidentialised. Responses to categories unable to be mapped, such as response unidentifiable, not stated, and Auckland (not further defined), have also been excluded from this dataset.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Age quality rating
Age is rated as very high quality.
Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Census usually resident population quality rating
The census usually resident population count is rated as very high quality.
Census usually resident population count – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Usual residence address quality rating
Usual residence address is rated as high quality.
Usual residence address – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Usual residence one year ago quality rating
Usual residence one year ago area is rated as high quality.
Usual residence one year ago – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Usual residence five years ago quality rating
Usual residence five years ago area is rated as high quality.
Usual residence five years ago – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Symbol
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Map shows the percentage change in number of occupied and unoccupied private dwellings between the 2018 and 2023 Censuses.Download lookup file from Stats NZ ArcGIS Online or Stats NZ geographic data service.FootnotesGeographical boundariesStatistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018. Caution using time series Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data). About the 2023 Census dataset For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings. Data quality The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.Quality rating of a variable The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable. Dwelling occupancy status quality rating Dwelling occupancy status is rated as high quality. Dwelling occupancy status – 2023 Census: Information by concept has more information, for example, definitions and data quality.Dwelling type quality rating Dwelling type is rated as moderate quality. Dwelling type – 2023 Census: Information by concept has more information, for example, definitions and data quality.Using data for good Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.Confidentiality The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.Symbol-998 Not applicable-999 Confidential
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains counts and measures for dwellings from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 2.
The variables included in this dataset are for occupied private dwellings (unless otherwise stated). All data is for level 1 of the classification (unless otherwise stated):
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Concept descriptions and quality ratings
Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Measures
Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures calculations. Averages and medians based on less than six units (e.g. individuals, dwellings, households, families, or extended families) are suppressed. This suppression threshold changes for other quantiles. Where the cells have been suppressed, a placeholder value has been used.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for 'Total stated' where this applies.
Symbol
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The 2013 APS employee census was administered to all available Australian Public Service (APS) employees. This census approach provides a comprehensive view of the APS and ensures no eligible respondents are omitted from the survey sample, removing sampling bias and reducing sample error. The census ran from 15 May to 14 June 2013. Overall, 102,219 employees responded to the employee census, a response rate of 66%.
Please be aware that the very large number of respondents to the employee census means these files are up to 200 mb in size. Downloading and opening these files may take some time.
TECHNICAL NOTES
Three files are available for download.
2013 APS employee census - Questionnaire: This contains the 2013 APS employee census questionnaire.
2013 APS employee census - 5 point dataset.csv: This file contains individual responses to the 2013 employee census as clean, tabular data as required by data.gov.au. This will need to be used in conjunction with the above document.
2013 APS employee census - 5 point dataset.sav: This file contains individual responses to the 2013 employee census for use with the SPSS software package.
To protect the privacy and confidentiality of respondents to the 2013 APS employee census, the datasets provided on data.gov.au include responses to a limited number of demographic or other attribute questions.
Full citation of this dataset should list the Australian Public Service Commission (APSC) as the author.
A recommended short citation is: 2013 APS employee census data, Australian Public Service Commission.
Any queries can be directed to research@apsc.gov.au.
Decennial Census Summary File 3 (SF 3) Description Census 2000 Summary File 3 (SF3) Summary File 3 presents in-depth population and housing data collected on a sample basis from the Census 2000 long form questionnaire, as well as the topics from the short form 100-percent data (age, race, sex, Hispanic or Latino origin, tenure [whether a housing unit is owner- or renter-occupied], and vacancy status). Summary File 3 consists of 813 detailed tables of Census 2000 social, economic and housing characteristics compiled from a sample of approximately 19 million housing units (about 1 in 6 households) that received the Census 2000 long-form questionnaire. Fifty-one tables are repeated for nine major race and Hispanic or Latino groups: White alone; Black or African American alone; American Indian and Alaska Native alone; Asian alone; Native Hawaiian and Other Pacific Islander alone; Some other race alone; Two or more races; Hispanic or Latino; and White alone, not Hispanic or Latino. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see http://www.census.gov/prod/cen2000/doc/sf3.pdf. See Chapter 8 for computation of margins of error.