Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
In the way of my journey to earn the google data analytics certificate I will practice real world example by following the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Picking the Bellabeat example.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Each R script replicates all of the example code from one chapter from the book. All required data for each script are also uploaded, as are all data used in the practice problems at the end of each chapter. The data are drawn from a wide array of sources, so please cite the original work if you ever use any of these data sets for research purposes.
Facebook
TwitterThe OECD Programme for International Student Assessment (PISA) surveys collected data on students’ performances in reading, mathematics and science, as well as contextual information on students’ background, home characteristics and school factors which could influence performance. This publication includes detailed information on how to analyse the PISA data, enabling researchers to both reproduce the initial results and to undertake further analyses. In addition to the inclusion of the necessary techniques, the manual also includes a detailed account of the PISA 2006 database and worked examples providing full syntax in SPSS.
Facebook
TwitterThis dataset was created by Abdul Hamith
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A guide to choosing the most suitable database types for data analytics across different industries, including examples of common databases.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Data Science Platform Market Size 2025-2029
The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.
Major Market Trends & Insights
North America dominated the market and accounted for a 48% growth during the forecast period.
By Deployment - On-premises segment was valued at USD 38.70 million in 2023
By Component - Platform segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 1.00 million
Market Future Opportunities: USD 763.90 million
CAGR : 40.2%
North America: Largest market in 2023
Market Summary
The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
What will be the Size of the Data Science Platform Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?
The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
On-premises
Cloud
Component
Platform
Services
End-user
BFSI
Retail and e-commerce
Manufacturing
Media and entertainment
Others
Sector
Large enterprises
SMEs
Application
Data Preparation
Data Visualization
Machine Learning
Predictive Analytics
Data Governance
Others
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
India
Japan
South America
Brazil
Rest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.
In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.
Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.
API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.
Request Free Sample
The On-premises segment was valued at USD 38.70 million in 2019 and showed
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data analysis can be accurate and reliable only if the underlying assumptions of the used statistical method are validated. Any violations of these assumptions can change the outcomes and conclusions of the analysis. In this study, we developed Smart Data Analysis V2 (SDA-V2), an interactive and user-friendly web application, to assist users with limited statistical knowledge in data analysis, and it can be freely accessed at https://jularatchumnaul.shinyapps.io/SDA-V2/. SDA-V2 automatically explores and visualizes data, examines the underlying assumptions associated with the parametric test, and selects an appropriate statistical method for the given data. Furthermore, SDA-V2 can assess the quality of research instruments and determine the minimum sample size required for a meaningful study. However, while SDA-V2 is a valuable tool for simplifying statistical analysis, it does not replace the need for a fundamental understanding of statistical principles. Researchers are encouraged to combine their expertise with the software’s capabilities to achieve the most accurate and credible results.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Data Analytics Market Size 2025-2029
The data analytics market size is forecast to increase by USD 288.7 billion, at a CAGR of 14.7% between 2024 and 2029.
The market is driven by the extensive use of modern technology in company operations, enabling businesses to extract valuable insights from their data. The prevalence of the Internet and the increased use of linked and integrated technologies have facilitated the collection and analysis of vast amounts of data from various sources. This trend is expected to continue as companies seek to gain a competitive edge by making data-driven decisions. However, the integration of data from different sources poses significant challenges. Ensuring data accuracy, consistency, and security is crucial as companies deal with large volumes of data from various internal and external sources. Additionally, the complexity of data analytics tools and the need for specialized skills can hinder adoption, particularly for smaller organizations with limited resources. Companies must address these challenges by investing in robust data management systems, implementing rigorous data validation processes, and providing training and development opportunities for their employees. By doing so, they can effectively harness the power of data analytics to drive growth and improve operational efficiency.
What will be the Size of the Data Analytics Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleIn the dynamic and ever-evolving the market, entities such as explainable AI, time series analysis, data integration, data lakes, algorithm selection, feature engineering, marketing analytics, computer vision, data visualization, financial modeling, real-time analytics, data mining tools, and KPI dashboards continue to unfold and intertwine, shaping the industry's landscape. The application of these technologies spans various sectors, from risk management and fraud detection to conversion rate optimization and social media analytics. ETL processes, data warehousing, statistical software, data wrangling, and data storytelling are integral components of the data analytics ecosystem, enabling organizations to extract insights from their data.
Cloud computing, deep learning, and data visualization tools further enhance the capabilities of data analytics platforms, allowing for advanced data-driven decision making and real-time analysis. Marketing analytics, clustering algorithms, and customer segmentation are essential for businesses seeking to optimize their marketing strategies and gain a competitive edge. Regression analysis, data visualization tools, and machine learning algorithms are instrumental in uncovering hidden patterns and trends, while predictive modeling and causal inference help organizations anticipate future outcomes and make informed decisions. Data governance, data quality, and bias detection are crucial aspects of the data analytics process, ensuring the accuracy, security, and ethical use of data.
Supply chain analytics, healthcare analytics, and financial modeling are just a few examples of the diverse applications of data analytics, demonstrating the industry's far-reaching impact. Data pipelines, data mining, and model monitoring are essential for maintaining the continuous flow of data and ensuring the accuracy and reliability of analytics models. The integration of various data analytics tools and techniques continues to evolve, as the industry adapts to the ever-changing needs of businesses and consumers alike.
How is this Data Analytics Industry segmented?
The data analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentServicesSoftwareHardwareDeploymentCloudOn-premisesTypePrescriptive AnalyticsPredictive AnalyticsCustomer AnalyticsDescriptive AnalyticsOthersApplicationSupply Chain ManagementEnterprise Resource PlanningDatabase ManagementHuman Resource ManagementOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)
By Component Insights
The services segment is estimated to witness significant growth during the forecast period.The market is experiencing significant growth as businesses increasingly rely on advanced technologies to gain insights from their data. Natural language processing is a key component of this trend, enabling more sophisticated analysis of unstructured data. Fraud detection and data security solutions are also in high demand, as companies seek to protect against threats and maintain customer trust. Data analytics platforms, including cloud-based offerings, are driving innovatio
Facebook
TwitterThe global big data and business analytics (BDA) market was valued at ***** billion U.S. dollars in 2018 and is forecast to grow to ***** billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around ** billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate **** ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around **** billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.
Facebook
Twitterhttps://www.expertmarketresearch.com/privacy-policyhttps://www.expertmarketresearch.com/privacy-policy
The global data analytics market size USD 54.37 Billion in 2024. The industry is expected to grow at a CAGR of 20.60% during the forecast period of 2025-2034 to reach a value of USD 353.86 Billion by 2034. The rising adoption of artificial intelligence (AI) and machine learning (ML) is transforming the market, enabling organizations to extract actionable insights from vast, complex datasets and drive real-time, informed decision-making.
Enterprises across sectors are increasingly leveraging these technologies to optimize operations, reduce costs, and maintain a competitive edge. For instance, the U.S. Department of Defense (DoD) released its 2023 Data, Analytics, and AI Adoption Strategy, emphasizing AI and ML integration to enhance operational capabilities and advance defense technologies.
Concurrently, the growing volume and complexity of data generated from IoT devices, social media platforms, and enterprise systems is fueling demand for sophisticated analytics tools within the global data analytics market. A clear example is Telenor IoT’s launch of its Analytics and Insights service on November 2024, which provides businesses with actionable intelligence on their IoT deployments to optimize operations, mitigate risks, and make informed strategic decisions. The platform enables deployment insights, usage analytics, and performance optimization, reflecting how advanced analytics solutions are becoming central to operational efficiency.
Facebook
TwitterThese data are to be used in conjunction with Data Analysis : An Introduction by B. Nolan, available at booksellers.
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Sample Sales Data is a retail sales dataset of 2,823 orders and 25 columns that includes a variety of sales-related data, including order numbers, product information, quantity, unit price, sales, order date, order status, customer and delivery information.
2) Data Utilization (1) Sample Sales Data has characteristics that: • This dataset consists of numerical (sales, quantity, unit price, etc.), categorical (product, country, city, customer name, transaction size, etc.), and date (order date) variables, with missing values in some columns (STATE, ADDRESSLINE2, POSTALCODE, etc.). (2) Sample Sales Data can be used to: • Analysis of sales trends and performance by product: Key variables such as order date, product line, and country can be used to visualize and analyze monthly and yearly sales trends, the proportion of sales by product line, and top sales by country and region. • Segmentation and marketing strategies: Segmentation of customer groups based on customer information, transaction size, and regional data, and use them to design targeted marketing and customized promotion strategies.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Sports Analytics Market Size 2025-2029
The sports analytics market size is valued to increase USD 8.4 billion, at a CAGR of 28.5% from 2024 to 2029. Increase in adoption of cloud-based deployment solutions will drive the sports analytics market.
Major Market Trends & Insights
North America dominated the market and accounted for a 38% growth during the forecast period.
By Type - Football segment was valued at USD 749.30 billion in 2023
By Solution - Player analysis segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 584.13 million
Market Future Opportunities: USD 8403.30 million
CAGR : 28.5%
North America: Largest market in 2023
Market Summary
The market represents a dynamic and ever-evolving industry, driven by advancements in core technologies and applications. Notably, the increasing adoption of cloud-based deployment solutions and the growth in use of wearable devices are key market trends. These developments enable real-time data collection and analysis, enhancing team performance and fan engagement. However, the market faces challenges, such as limited potential for returns on investment.
Despite this, the market continues to expand, with a recent study indicating that over 30% of sports organizations have adopted sports analytics. This underscores the market's potential to revolutionize the way sports are managed and enjoyed.
What will be the Size of the Sports Analytics Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Sports Analytics Market Segmented and what are the key trends of market segmentation?
The sports analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Type
Football
Cricket
Hockey
Tennis
Others
Solution
Player analysis
Team performance analysis
Health assessment
Fan engagement analysis
Others
Geography
North America
US
Canada
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
South Korea
Rest of World (ROW)
By Type Insights
The football segment is estimated to witness significant growth during the forecast period.
The market is experiencing significant growth, driven by the increasing demand for data-driven insights in football and other popular sports. According to recent reports, the market for sports analytics is currently expanding by approximately 18% annually, with a projected growth rate of around 21% in the coming years. This growth can be attributed to the integration of statistical modeling techniques, game outcome prediction, and physiological data into tactical decision support systems. Skill assessment metrics, win probability estimation, and wearable sensor data are increasingly being used to enhance performance and optimize training programs. Data visualization tools, data-driven coaching decisions, deep learning applications, and machine learning models are revolutionizing player workload management and predictive modeling algorithms.
Request Free Sample
The Football segment was valued at USD 749.30 billion in 2019 and showed a gradual increase during the forecast period.
Three-dimensional motion analysis, recruiting optimization tools, sports data integration, and computer vision systems are transforming performance metrics dashboards and motion capture technology. Biomechanical analysis software, fatigue detection systems, talent identification systems, game strategy optimization, opponent scouting reports, athlete performance monitoring, video analytics platforms, real-time game analytics, and injury risk assessment are all integral components of the market. These technologies enable teams and organizations to make informed decisions, improve player performance, and reduce the risk of injuries. The ongoing evolution of sports analytics is set to continue, with new applications and innovations emerging in the field.
Request Free Sample
Regional Analysis
North America is estimated to contribute 38% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
See How Sports Analytics Market Demand is Rising in North America Request Free Sample
The market in the North American region is experiencing significant growth due to technological advancements and increasing investments. In 2024, the US and Canada were major contributors to this expansion. The adoption of sports software is a driving factor, with a high emphasis on its use in American football, basketball, and baseball. Major sports leagues in the US are
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article discusses how to make statistical graphics a more prominent element of the undergraduate statistics curricula. The focus is on several different types of assignments that exemplify how to incorporate graphics into a course in a pedagogically meaningful way. These assignments include having students deconstruct and reconstruct plots, copy masterful graphs, create one-minute visual revelations, convert tables into “pictures,” and develop interactive visualizations, for example, with the virtual earth as a plotting canvas. In addition to describing the goals and details of each assignment, we also discuss the broader topic of graphics and key concepts that we think warrant inclusion in the statistics curricula. We advocate that more attention needs to be paid to this fundamental field of statistics at all levels, from introductory undergraduate through graduate level courses. With the rapid rise of tools to visualize data, for example, Google trends, GapMinder, ManyEyes, and Tableau, and the increased use of graphics in the media, understanding the principles of good statistical graphics, and having the ability to create informative visualizations is an ever more important aspect of statistics education. Supplementary materials containing code and data for the assignments are available online.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Big Data Market Size 2025-2029
The big data market size is valued to increase USD 193.2 billion, at a CAGR of 13.3% from 2024 to 2029. Surge in data generation will drive the big data market.
Major Market Trends & Insights
APAC dominated the market and accounted for a 36% growth during the forecast period.
By Deployment - On-premises segment was valued at USD 55.30 billion in 2023
By Type - Services segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 193.04 billion
Market Future Opportunities: USD 193.20 billion
CAGR from 2024 to 2029 : 13.3%
Market Summary
In the dynamic realm of business intelligence, the market continues to expand at an unprecedented pace. According to recent estimates, this market is projected to reach a value of USD 274.3 billion by 2022, underscoring its significant impact on modern industries. This growth is driven by several factors, including the increasing volume, variety, and velocity of data generation. Moreover, the adoption of advanced technologies, such as machine learning and artificial intelligence, is enabling businesses to derive valuable insights from their data. Another key trend is the integration of blockchain solutions into big data implementation, enhancing data security and trust.
However, this rapid expansion also presents challenges, such as ensuring data privacy and security, managing data complexity, and addressing the skills gap. Despite these challenges, the future of the market looks promising, with continued innovation and investment in data analytics and management solutions. As businesses increasingly rely on data to drive decision-making and gain a competitive edge, the importance of effective big data strategies will only grow.
What will be the Size of the Big Data Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Big Data Market Segmented?
The big data industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
On-premises
Cloud-based
Hybrid
Type
Services
Software
End-user
BFSI
Healthcare
Retail and e-commerce
IT and telecom
Others
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
Australia
China
India
Japan
South Korea
Rest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.
In the ever-evolving landscape of data management, the market continues to expand with innovative technologies and solutions. On-premises big data software deployment, a popular choice for many organizations, offers control over hardware and software functions. Despite the high upfront costs for hardware purchases, it eliminates recurring monthly payments, making it a cost-effective alternative for some. However, cloud-based deployment, with its ease of access and flexibility, is increasingly popular, particularly for businesses dealing with high-velocity data ingestion. Cloud deployment, while convenient, comes with its own challenges, such as potential security breaches and the need for companies to manage their servers.
On-premises solutions, on the other hand, provide enhanced security and control, but require significant capital expenditure. Advanced analytics platforms, such as those employing deep learning models, parallel processing, and machine learning algorithms, are transforming data processing and analysis. Metadata management, data lineage tracking, and data versioning control are crucial components of these solutions, ensuring data accuracy and reliability. Data integration platforms, including IoT data integration and ETL process optimization, are essential for seamless data flow between systems. Real-time analytics, data visualization tools, and business intelligence dashboards enable organizations to make data-driven decisions. Data encryption methods, distributed computing, and data lake architectures further enhance data security and scalability.
Request Free Sample
The On-premises segment was valued at USD 55.30 billion in 2019 and showed a gradual increase during the forecast period.
With the integration of AI-powered insights, natural language processing, and predictive modeling, businesses can unlock valuable insights from their data, improving operational efficiency and driving growth. A recent study reveals that the market is projected to reach USD 274.3 billion by 2022, underscoring its growing importance in today's data-driven economy. This continuous evolution of big data technologies and solutions underscores the need for robust data governa
Facebook
TwitterExplore economic trends and the circumstances impacting the economy and diverse communities of the Federal Reserve’s Fourth District, which includes all of Ohio, western Pennsylvania, eastern Kentucky, and the northern panhandle of West Virginia.
Facebook
TwitterThe harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.
----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:
Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
The survey has six main objectives. These objectives are:
The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.
National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.
1- Household/family. 2- Individual/person.
The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
Sample survey data [ssd]
----> Design:
Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.
----> Sample frame:
Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.
----> Sampling Stages:
In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.
Face-to-face [f2f]
----> Preparation:
The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.
----> Questionnaire Parts:
The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job
Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.
Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days
Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.
----> Raw Data:
Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.
----> Harmonized Data:
Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.
Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
In the way of my journey to earn the google data analytics certificate I will practice real world example by following the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Picking the Bellabeat example.