100+ datasets found
  1. f

    Data Dictionary

    • mcri.figshare.com
    txt
    Updated Sep 6, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer Piscionere (2018). Data Dictionary [Dataset]. http://doi.org/10.25374/MCRI.7039280.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Sep 6, 2018
    Dataset provided by
    Murdoch Childrens Research Institute
    Authors
    Jennifer Piscionere
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This is a data dictionary example we will use in the MVP presentation. It can be deleted after 13/9/18.

  2. d

    Data from: Data Dictionary Template

    • catalog.data.gov
    • data-academy.tempe.gov
    • +10more
    Updated Mar 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2023). Data Dictionary Template [Dataset]. https://catalog.data.gov/dataset/data-dictionary-template-2e170
    Explore at:
    Dataset updated
    Mar 18, 2023
    Dataset provided by
    City of Tempe
    Description

    Data Dictionary template for Tempe Open Data.

  3. d

    Open Data Dictionary Template Individual

    • opendata.dc.gov
    • catalog.data.gov
    • +2more
    Updated Jan 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2023). Open Data Dictionary Template Individual [Dataset]. https://opendata.dc.gov/documents/cb6a686b1e344eeb8136d0103c942346
    Explore at:
    Dataset updated
    Jan 5, 2023
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This template covers section 2.5 Resource Fields: Entity and Attribute Information of the Data Discovery Form cited in the Open Data DC Handbook (2022). It completes documentation elements that are required for publication. Each field column (attribute) in the dataset needs a description clarifying the contents of the column. Data originators are encouraged to enter the code values (domains) of the column to help end-users translate the contents of the column where needed, especially when lookup tables do not exist.

  4. a

    Commercial Fishing Regulations Data Dictionary

    • hub.arcgis.com
    Updated Jan 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry for Primary Industries (2020). Commercial Fishing Regulations Data Dictionary [Dataset]. https://hub.arcgis.com/documents/95037c15c1f44366be4cc0d9843344b7
    Explore at:
    Dataset updated
    Jan 10, 2020
    Dataset authored and provided by
    Ministry for Primary Industries
    Description

    This data dictionary describes the field names, expected data, examples of data and field types (schema) of the commercial fishing regulations data set.

  5. Database Creation Description and Data Dictionaries

    • figshare.com
    txt
    Updated Aug 11, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jordan Kempker; John David Ike (2016). Database Creation Description and Data Dictionaries [Dataset]. http://doi.org/10.6084/m9.figshare.3569067.v3
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 11, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Jordan Kempker; John David Ike
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    There are several Microsoft Word documents here detailing data creation methods and with various dictionaries describing the included and derived variables.The Database Creation Description is meant to walk a user through some of the steps detailed in the SAS code with this project.The alphabetical list of variables is intended for users as sometimes this makes some coding steps easier to copy and paste from this list instead of retyping.The NIS Data Dictionary contains some general dataset description as well as each variable's responses.

  6. A

    Data Dictionary - Statewide Probability Sample (2009-2012)

    • data.amerigeoss.org
    pdf
    Updated Jan 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). Data Dictionary - Statewide Probability Sample (2009-2012) [Dataset]. https://data.amerigeoss.org/dataset/data-dictionary-statewide-probability-sample-2009-20121
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 11, 2022
    Dataset provided by
    United States
    Description

    Column descriptions for the data set

  7. E

    Viking II Data Dictionary

    • dtechtive.com
    • find.data.gov.scot
    csv, docx, pdf, txt +1
    Updated Oct 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Edinburgh. Institute of Genetics and Cancer. MRC Human Genetics Unit (2021). Viking II Data Dictionary [Dataset]. http://doi.org/10.7488/ds/3145
    Explore at:
    csv(0.0038 MB), csv(0.0065 MB), csv(0.0012 MB), docx(0.015 MB), csv(0.0098 MB), csv(0.0063 MB), csv(0.007 MB), csv(0.004 MB), csv(0.0042 MB), csv(0.0029 MB), csv(0.0068 MB), csv(0.01 MB), xlsx(0.0923 MB), csv(0.0008 MB), csv(0.0015 MB), pdf(1.215 MB), csv(0.0043 MB), csv(0.0021 MB), csv(0.0071 MB), csv(0.0051 MB), txt(0.0166 MB)Available download formats
    Dataset updated
    Oct 8, 2021
    Dataset provided by
    University of Edinburgh. Institute of Genetics and Cancer. MRC Human Genetics Unit
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    UNITED KINGDOM
    Description

    VIKING II was made possible thanks to Medical Research Council (MRC) funding. We aim to better understand what might cause diseases such as heart disease, eye disease, stroke, diabetes and others by inviting 4,000 people with 2 or more grandparents from Orkney and Shetland to complete a questionnaire and provide a saliva sample. This data dictionary outlines what volunteers were asked and indicates the data you can access. To access the data, please e-mail viking@ed.ac.uk.

  8. Example data elements (for trial NCT00099359: ‘Trial of Three Neonatal...

    • plos.figshare.com
    xls
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Craig S. Mayer; Nick Williams; Vojtech Huser (2023). Example data elements (for trial NCT00099359: ‘Trial of Three Neonatal Antiretroviral Regimens for Prevention of Intrapartum HIV Transmission’). [Dataset]. http://doi.org/10.1371/journal.pone.0240047.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Craig S. Mayer; Nick Williams; Vojtech Huser
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Example data elements (for trial NCT00099359: ‘Trial of Three Neonatal Antiretroviral Regimens for Prevention of Intrapartum HIV Transmission’).

  9. d

    Data Dictionary for Electron Microprobe Data Collected with Probe for EPMA...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Data Dictionary for Electron Microprobe Data Collected with Probe for EPMA Software Package Developed by Probe Software [Dataset]. https://catalog.data.gov/dataset/data-dictionary-for-electron-microprobe-data-collected-with-probe-for-epma-software-packag
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This data dictionary describes most of the possible output options given in the Probe for EPMA software package developed by Probe Software. Examples of the data output options include sample identification, analytical conditions, elemental weight percents, atomic percents, detection limits, and stage coordinates. Many more options are available and the data that is output will depend upon the end use.

  10. v

    Ecological Concerns Data Dictionary - Ecological Concerns data dictionary

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • fisheries.noaa.gov
    • +1more
    Updated May 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2025). Ecological Concerns Data Dictionary - Ecological Concerns data dictionary [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/ecological-concerns-data-dictionary-ecological-concerns-data-dictionary2
    Explore at:
    Dataset updated
    May 24, 2025
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    Evaluating the status of threatened and endangered salmonid populations requires information on the current status of the threats (e.g., habitat, hatcheries, hydropower, and invasives) and the risk of extinction (e.g., status and trend in the Viable Salmonid Population criteria). For salmonids in the Pacific Northwest, threats generally result in changes to physical and biological characteristics of freshwater habitat. These changes are often described by terms like "limiting factors" or "habitat impairment." For example, the condition of freshwater habitat directly impacts salmonid abundance and population spatial structure by affecting carrying capacity and the variability and accessibility of rearing and spawning areas. Thus, one way to assess or quantify threats to ESUs and populations is to evaluate whether the ecological conditions on which fish depend is improving, becoming more degraded, or remains unchanged. In the attached spreadsheets, we have attempted to consistently record limiting factors and threats across all populations and ESUs to enable comparison to other datasets (e.g., restoration projects) in a consistent way. Limiting factors and threats (LF/T) identified in salmon recovery plans were translated in a common language using an ecological concerns data dictionary (see "Ecological Concerns" tab in the attached spreadsheets) (a data dictionaries defines the wording, meaning and scope of categories). The ecological concerns data dictionary defines how different elements are related, such as the relationships between threats, ecological concerns and life history stages. The data dictionary includes categories for ecological dynamics and population level effects such as "reduced genetic fitness" and "behavioral changes." The data dictionary categories are meant to encompass the ecological conditions that directly impact salmonids and can be addressed directly or indirectly by management (habitat restoration, hatchery reform, etc.) actions. Using the ecological concerns data dictionary enables us to more fully capture the range of effects of hydro, hatchery, and invasive threats as well as habitat threat categories. The organization and format of the data dictionary was also chosen so the information we record can be easily related to datasets we already posses (e.g., restoration data). Data Dictionary.

  11. l

    LScD (Leicester Scientific Dictionary)

    • figshare.le.ac.uk
    docx
    Updated Apr 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neslihan Suzen (2020). LScD (Leicester Scientific Dictionary) [Dataset]. http://doi.org/10.25392/leicester.data.9746900.v3
    Explore at:
    docxAvailable download formats
    Dataset updated
    Apr 15, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Leicester
    Description

    LScD (Leicester Scientific Dictionary)April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk/suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny Mirkes[Version 3] The third version of LScD (Leicester Scientific Dictionary) is created from the updated LSC (Leicester Scientific Corpus) - Version 2*. All pre-processing steps applied to build the new version of the dictionary are the same as in Version 2** and can be found in description of Version 2 below. We did not repeat the explanation. After pre-processing steps, the total number of unique words in the new version of the dictionary is 972,060. The files provided with this description are also same as described as for LScD Version 2 below.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v2** Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). figshare. Dataset. https://doi.org/10.25392/leicester.data.9746900.v2[Version 2] Getting StartedThis document provides the pre-processing steps for creating an ordered list of words from the LSC (Leicester Scientific Corpus) [1] and the description of LScD (Leicester Scientific Dictionary). This dictionary is created to be used in future work on the quantification of the meaning of research texts. R code for producing the dictionary from LSC and instructions for usage of the code are available in [2]. The code can be also used for list of texts from other sources, amendments to the code may be required.LSC is a collection of abstracts of articles and proceeding papers published in 2014 and indexed by the Web of Science (WoS) database [3]. Each document contains title, list of authors, list of categories, list of research areas, and times cited. The corpus contains only documents in English. The corpus was collected in July 2018 and contains the number of citations from publication date to July 2018. The total number of documents in LSC is 1,673,824.LScD is an ordered list of words from texts of abstracts in LSC.The dictionary stores 974,238 unique words, is sorted by the number of documents containing the word in descending order. All words in the LScD are in stemmed form of words. The LScD contains the following information:1.Unique words in abstracts2.Number of documents containing each word3.Number of appearance of a word in the entire corpusProcessing the LSCStep 1.Downloading the LSC Online: Use of the LSC is subject to acceptance of request of the link by email. To access the LSC for research purposes, please email to ns433@le.ac.uk. The data are extracted from Web of Science [3]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.Step 2.Importing the Corpus to R: The full R code for processing the corpus can be found in the GitHub [2].All following steps can be applied for arbitrary list of texts from any source with changes of parameter. The structure of the corpus such as file format and names (also the position) of fields should be taken into account to apply our code. The organisation of CSV files of LSC is described in README file for LSC [1].Step 3.Extracting Abstracts and Saving Metadata: Metadata that include all fields in a document excluding abstracts and the field of abstracts are separated. Metadata are then saved as MetaData.R. Fields of metadata are: List_of_Authors, Title, Categories, Research_Areas, Total_Times_Cited and Times_cited_in_Core_Collection.Step 4.Text Pre-processing Steps on the Collection of Abstracts: In this section, we presented our approaches to pre-process abstracts of the LSC.1.Removing punctuations and special characters: This is the process of substitution of all non-alphanumeric characters by space. We did not substitute the character “-” in this step, because we need to keep words like “z-score”, “non-payment” and “pre-processing” in order not to lose the actual meaning of such words. A processing of uniting prefixes with words are performed in later steps of pre-processing.2.Lowercasing the text data: Lowercasing is performed to avoid considering same words like “Corpus”, “corpus” and “CORPUS” differently. Entire collection of texts are converted to lowercase.3.Uniting prefixes of words: Words containing prefixes joined with character “-” are united as a word. The list of prefixes united for this research are listed in the file “list_of_prefixes.csv”. The most of prefixes are extracted from [4]. We also added commonly used prefixes: ‘e’, ‘extra’, ‘per’, ‘self’ and ‘ultra’.4.Substitution of words: Some of words joined with “-” in the abstracts of the LSC require an additional process of substitution to avoid losing the meaning of the word before removing the character “-”. Some examples of such words are “z-test”, “well-known” and “chi-square”. These words have been substituted to “ztest”, “wellknown” and “chisquare”. Identification of such words is done by sampling of abstracts form LSC. The full list of such words and decision taken for substitution are presented in the file “list_of_substitution.csv”.5.Removing the character “-”: All remaining character “-” are replaced by space.6.Removing numbers: All digits which are not included in a word are replaced by space. All words that contain digits and letters are kept because alphanumeric characters such as chemical formula might be important for our analysis. Some examples are “co2”, “h2o” and “21st”.7.Stemming: Stemming is the process of converting inflected words into their word stem. This step results in uniting several forms of words with similar meaning into one form and also saving memory space and time [5]. All words in the LScD are stemmed to their word stem.8.Stop words removal: Stop words are words that are extreme common but provide little value in a language. Some common stop words in English are ‘I’, ‘the’, ‘a’ etc. We used ‘tm’ package in R to remove stop words [6]. There are 174 English stop words listed in the package.Step 5.Writing the LScD into CSV Format: There are 1,673,824 plain processed texts for further analysis. All unique words in the corpus are extracted and written in the file “LScD.csv”.The Organisation of the LScDThe total number of words in the file “LScD.csv” is 974,238. Each field is described below:Word: It contains unique words from the corpus. All words are in lowercase and their stem forms. The field is sorted by the number of documents that contain words in descending order.Number of Documents Containing the Word: In this content, binary calculation is used: if a word exists in an abstract then there is a count of 1. If the word exits more than once in a document, the count is still 1. Total number of document containing the word is counted as the sum of 1s in the entire corpus.Number of Appearance in Corpus: It contains how many times a word occurs in the corpus when the corpus is considered as one large document.Instructions for R CodeLScD_Creation.R is an R script for processing the LSC to create an ordered list of words from the corpus [2]. Outputs of the code are saved as RData file and in CSV format. Outputs of the code are:Metadata File: It includes all fields in a document excluding abstracts. Fields are List_of_Authors, Title, Categories, Research_Areas, Total_Times_Cited and Times_cited_in_Core_Collection.File of Abstracts: It contains all abstracts after pre-processing steps defined in the step 4.DTM: It is the Document Term Matrix constructed from the LSC[6]. Each entry of the matrix is the number of times the word occurs in the corresponding document.LScD: An ordered list of words from LSC as defined in the previous section.The code can be used by:1.Download the folder ‘LSC’, ‘list_of_prefixes.csv’ and ‘list_of_substitution.csv’2.Open LScD_Creation.R script3.Change parameters in the script: replace with the full path of the directory with source files and the full path of the directory to write output files4.Run the full code.References[1]N. Suzen. (2019). LSC (Leicester Scientific Corpus) [Dataset]. Available: https://doi.org/10.25392/leicester.data.9449639.v1[2]N. Suzen. (2019). LScD-LEICESTER SCIENTIFIC DICTIONARY CREATION. Available: https://github.com/neslihansuzen/LScD-LEICESTER-SCIENTIFIC-DICTIONARY-CREATION[3]Web of Science. (15 July). Available: https://apps.webofknowledge.com/[4]A. Thomas, "Common Prefixes, Suffixes and Roots," Center for Development and Learning, 2013.[5]C. Ramasubramanian and R. Ramya, "Effective pre-processing activities in text mining using improved porter’s stemming algorithm," International Journal of Advanced Research in Computer and Communication Engineering, vol. 2, no. 12, pp. 4536-4538, 2013.[6]I. Feinerer, "Introduction to the tm Package Text Mining in R," Accessible en ligne: https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf, 2013.

  12. Data Dictionary/README files

    • figshare.com
    xlsx
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Camille Jaime; Taejoon Won (2025). Data Dictionary/README files [Dataset]. http://doi.org/10.6084/m9.figshare.28527137.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Camille Jaime; Taejoon Won
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Dictionary contains all info for each sample/mouse of each experiment.All README files are also included with brief experimental description.

  13. n

    Data from: Generalizable EHR-R-REDCap pipeline for a national...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +2more
    zip
    Updated Jan 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sophia Shalhout; Farees Saqlain; Kayla Wright; Oladayo Akinyemi; David Miller (2022). Generalizable EHR-R-REDCap pipeline for a national multi-institutional rare tumor patient registry [Dataset]. http://doi.org/10.5061/dryad.rjdfn2zcm
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 9, 2022
    Dataset provided by
    Massachusetts General Hospital
    Harvard Medical School
    Authors
    Sophia Shalhout; Farees Saqlain; Kayla Wright; Oladayo Akinyemi; David Miller
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Objective: To develop a clinical informatics pipeline designed to capture large-scale structured EHR data for a national patient registry.

    Materials and Methods: The EHR-R-REDCap pipeline is implemented using R-statistical software to remap and import structured EHR data into the REDCap-based multi-institutional Merkel Cell Carcinoma (MCC) Patient Registry using an adaptable data dictionary.

    Results: Clinical laboratory data were extracted from EPIC Clarity across several participating institutions. Labs were transformed, remapped and imported into the MCC registry using the EHR labs abstraction (eLAB) pipeline. Forty-nine clinical tests encompassing 482,450 results were imported into the registry for 1,109 enrolled MCC patients. Data-quality assessment revealed highly accurate, valid labs. Univariate modeling was performed for labs at baseline on overall survival (N=176) using this clinical informatics pipeline.

    Conclusion: We demonstrate feasibility of the facile eLAB workflow. EHR data is successfully transformed, and bulk-loaded/imported into a REDCap-based national registry to execute real-world data analysis and interoperability.

    Methods eLAB Development and Source Code (R statistical software):

    eLAB is written in R (version 4.0.3), and utilizes the following packages for processing: DescTools, REDCapR, reshape2, splitstackshape, readxl, survival, survminer, and tidyverse. Source code for eLAB can be downloaded directly (https://github.com/TheMillerLab/eLAB).

    eLAB reformats EHR data abstracted for an identified population of patients (e.g. medical record numbers (MRN)/name list) under an Institutional Review Board (IRB)-approved protocol. The MCCPR does not host MRNs/names and eLAB converts these to MCCPR assigned record identification numbers (record_id) before import for de-identification.

    Functions were written to remap EHR bulk lab data pulls/queries from several sources including Clarity/Crystal reports or institutional EDW including Research Patient Data Registry (RPDR) at MGB. The input, a csv/delimited file of labs for user-defined patients, may vary. Thus, users may need to adapt the initial data wrangling script based on the data input format. However, the downstream transformation, code-lab lookup tables, outcomes analysis, and LOINC remapping are standard for use with the provided REDCap Data Dictionary, DataDictionary_eLAB.csv. The available R-markdown ((https://github.com/TheMillerLab/eLAB) provides suggestions and instructions on where or when upfront script modifications may be necessary to accommodate input variability.

    The eLAB pipeline takes several inputs. For example, the input for use with the ‘ehr_format(dt)’ single-line command is non-tabular data assigned as R object ‘dt’ with 4 columns: 1) Patient Name (MRN), 2) Collection Date, 3) Collection Time, and 4) Lab Results wherein several lab panels are in one data frame cell. A mock dataset in this ‘untidy-format’ is provided for demonstration purposes (https://github.com/TheMillerLab/eLAB).

    Bulk lab data pulls often result in subtypes of the same lab. For example, potassium labs are reported as “Potassium,” “Potassium-External,” “Potassium(POC),” “Potassium,whole-bld,” “Potassium-Level-External,” “Potassium,venous,” and “Potassium-whole-bld/plasma.” eLAB utilizes a key-value lookup table with ~300 lab subtypes for remapping labs to the Data Dictionary (DD) code. eLAB reformats/accepts only those lab units pre-defined by the registry DD. The lab lookup table is provided for direct use or may be re-configured/updated to meet end-user specifications. eLAB is designed to remap, transform, and filter/adjust value units of semi-structured/structured bulk laboratory values data pulls from the EHR to align with the pre-defined code of the DD.

    Data Dictionary (DD)

    EHR clinical laboratory data is captured in REDCap using the ‘Labs’ repeating instrument (Supplemental Figures 1-2). The DD is provided for use by researchers at REDCap-participating institutions and is optimized to accommodate the same lab-type captured more than once on the same day for the same patient. The instrument captures 35 clinical lab types. The DD serves several major purposes in the eLAB pipeline. First, it defines every lab type of interest and associated lab unit of interest with a set field/variable name. It also restricts/defines the type of data allowed for entry for each data field, such as a string or numerics. The DD is uploaded into REDCap by every participating site/collaborator and ensures each site collects and codes the data the same way. Automation pipelines, such as eLAB, are designed to remap/clean and reformat data/units utilizing key-value look-up tables that filter and select only the labs/units of interest. eLAB ensures the data pulled from the EHR contains the correct unit and format pre-configured by the DD. The use of the same DD at every participating site ensures that the data field code, format, and relationships in the database are uniform across each site to allow for the simple aggregation of the multi-site data. For example, since every site in the MCCPR uses the same DD, aggregation is efficient and different site csv files are simply combined.

    Study Cohort

    This study was approved by the MGB IRB. Search of the EHR was performed to identify patients diagnosed with MCC between 1975-2021 (N=1,109) for inclusion in the MCCPR. Subjects diagnosed with primary cutaneous MCC between 2016-2019 (N= 176) were included in the test cohort for exploratory studies of lab result associations with overall survival (OS) using eLAB.

    Statistical Analysis

    OS is defined as the time from date of MCC diagnosis to date of death. Data was censored at the date of the last follow-up visit if no death event occurred. Univariable Cox proportional hazard modeling was performed among all lab predictors. Due to the hypothesis-generating nature of the work, p-values were exploratory and Bonferroni corrections were not applied.

  14. S

    data dictionary

    • health.data.ny.gov
    application/rdfxml +5
    Updated Aug 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for Environmental Health (2022). data dictionary [Dataset]. https://health.data.ny.gov/Health/data-dictionary/3tsn-2bah
    Explore at:
    application/rdfxml, xml, csv, application/rssxml, json, tsvAvailable download formats
    Dataset updated
    Aug 23, 2022
    Authors
    Center for Environmental Health
    Description

    This data includes the location of cooling towers registered with New York State. The data is self-reported by owners/property managers of cooling towers in service in New York State. In August 2015 the New York State Department of Health released emergency regulations requiring the owners of cooling towers to register them with New York State. In addition the regulation includes requirements: regular inspection; annual certification; obtaining and implementing a maintenance plan; record keeping; reporting of certain information; and sample collection and culture testing. All cooling towers in New York State, including New York City, need to be registered in the NYS system. Registration is done through an electronic database found at: www.ny.gov/services/register-cooling-tower-and-submit-reports. For more information, check http://www.health.ny.gov/diseases/communicable/legionellosis/, or go to the “About” tab.

  15. E

    Traveller Genes Data Dictionary

    • find.data.gov.scot
    • dtechtive.com
    csv, docx, pdf, txt +1
    Updated Oct 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Edinburgh. Usher Institute (2021). Traveller Genes Data Dictionary [Dataset]. http://doi.org/10.7488/ds/3155
    Explore at:
    csv(0.0025 MB), csv(0.0022 MB), csv(0.0026 MB), csv(0.0009 MB), xlsx(0.0469 MB), csv(0.0061 MB), pdf(0.4028 MB), txt(0.0166 MB), csv(0.0039 MB), csv(0.0101 MB), csv(0.0008 MB), csv(0.0011 MB), docx(0.0127 MB), csv(0.001 MB)Available download formats
    Dataset updated
    Oct 25, 2021
    Dataset provided by
    University of Edinburgh. Usher Institute
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Traveller Genes is a research study supported by the Traveller community. We're looking at the genetics, origins and health of over 200 volunteers who have at least two grandparents who are or were Travellers. This includes Scottish Travellers, Irish Travellers, Romanichal or Romany, or Welsh Kale. We aim to identify the genetic origins and relationships of the Scottish Traveller community e.g. Highland Travellers, Lowland Travellers, Borders Romanichal Travellers. We also want to understand how Scottish Travellers are related to other communities and their overall patterns of health. Participants are asked to complete a questionnaire and provide a saliva sample. This data dictionary outlines what volunteers were asked and indicates the data you can access. To access the data, please e-mail travellergenes@ed.ac.uk.

  16. f

    Data from "Obstacles to the Reuse of Study Metadata in ClinicalTrials.gov"

    • figshare.com
    zip
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura Miron; Rafael Gonçalves; Mark A. Musen (2023). Data from "Obstacles to the Reuse of Study Metadata in ClinicalTrials.gov" [Dataset]. http://doi.org/10.6084/m9.figshare.12743939.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Authors
    Laura Miron; Rafael Gonçalves; Mark A. Musen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This fileset provides supporting data and corpora for the empirical study described in: Laura Miron, Rafael S. Goncalves and Mark A. Musen. Obstacles to the Reuse of Metadata in ClinicalTrials.govDescription of filesOriginal data files:- AllPublicXml.zip contains the set of all public XML records in ClinicalTrials.gov (protocols and summary results information), on which all remaining analyses are based. Set contains 302,091 records downloaded on April 3, 2019.- public.xsd is the XML schema downloaded from ClinicalTrials.gov on April 3, 2019, used to validate records in AllPublicXML.BioPortal API Query Results- condition_matches.csv contains the results of querying the BioPortal API for all ontology terms that are an 'exact match' to each condition string scraped from the ClinicalTrials.gov XML. Columns={filename, condition, url, bioportal term, cuis, tuis}. - intervention_matches.csv contains BioPortal API query results for all interventions scraped from the ClinicalTrials.gov XML. Columns={filename, intervention, url, bioportal term, cuis, tuis}.Data Element Definitions- supplementary_table_1.xlsx Mapping of element names, element types, and whether elements are required in ClinicalTrials.gov data dictionaries, the ClinicalTrials.gov XML schema declaration for records (public.XSD), the Protocol Registration System (PRS), FDAAA801, and the WHO required data elements for clinical trial registrations.Column and value definitions: - CT.gov Data Dictionary Section: Section heading for a group of data elements in the ClinicalTrials.gov data dictionary (https://prsinfo.clinicaltrials.gov/definitions.html) - CT.gov Data Dictionary Element Name: Name of an element/field according to the ClinicalTrials.gov data dictionaries (https://prsinfo.clinicaltrials.gov/definitions.html) and (https://prsinfo.clinicaltrials.gov/expanded_access_definitions.html) - CT.gov Data Dictionary Element Type: "Data" if the element is a field for which the user provides a value, "Group Heading" if the element is a group heading for several sub-fields, but is not in itself associated with a user-provided value. - Required for CT.gov for Interventional Records: "Required" if the element is required for interventional records according to the data dictionary, "CR" if the element is conditionally required, "Jan 2017" if the element is required for studies starting on or after January 18, 2017, the effective date of the FDAAA801 Final Rule, "-" indicates if this element is not applicable to interventional records (only observational or expanded access) - Required for CT.gov for Observational Records: "Required" if the element is required for interventional records according to the data dictionary, "CR" if the element is conditionally required, "Jan 2017" if the element is required for studies starting on or after January 18, 2017, the effective date of the FDAAA801 Final Rule, "-" indicates if this element is not applicable to observational records (only interventional or expanded access) - Required in CT.gov for Expanded Access Records?: "Required" if the element is required for interventional records according to the data dictionary, "CR" if the element is conditionally required, "Jan 2017" if the element is required for studies starting on or after January 18, 2017, the effective date of the FDAAA801 Final Rule, "-" indicates if this element is not applicable to expanded access records (only interventional or observational) - CT.gov XSD Element Definition: abbreviated xpath to the corresponding element in the ClinicalTrials.gov XSD (public.XSD). The full xpath includes 'clinical_study/' as a prefix to every element. (There is a single top-level element called "clinical_study" for all other elements.) - Required in XSD? : "Yes" if the element is required according to public.XSD, "No" if the element is optional, "-" if the element is not made public or included in the XSD - Type in XSD: "text" if the XSD type was "xs:string" or "textblock", name of enum given if type was enum, "integer" if type was "xs:integer" or "xs:integer" extended with the "type" attribute, "struct" if the type was a struct defined in the XSD - PRS Element Name: Name of the corresponding entry field in the PRS system - PRS Entry Type: Entry type in the PRS system. This column contains some free text explanations/observations - FDAAA801 Final Rule FIeld Name: Name of the corresponding required field in the FDAAA801 Final Rule (https://www.federalregister.gov/documents/2016/09/21/2016-22129/clinical-trials-registration-and-results-information-submission). This column contains many empty values where elements in ClinicalTrials.gov do not correspond to a field required by the FDA - WHO Field Name: Name of the corresponding field required by the WHO Trial Registration Data Set (v 1.3.1) (https://prsinfo.clinicaltrials.gov/trainTrainer/WHO-ICMJE-ClinTrialsgov-Cross-Ref.pdf)Analytical Results:- EC_human_review.csv contains the results of a manual review of random sample eligibility criteria from 400 CT.gov records. Table gives filename, criteria, and whether manual review determined the criteria to contain criteria for "multiple subgroups" of participants.- completeness.xlsx contains counts and percentages of interventional records missing fields required by FDAAA801 and its Final Rule.- industry_completeness.xlsx contains percentages of interventional records missing required fields, broken up by agency class of trial's lead sponsor ("NIH", "US Fed", "Industry", or "Other"), and before and after the effective date of the Final Rule- location_completeness.xlsx contains percentages of interventional records missing required fields, broken up by whether record listed at least one location in the United States and records with only international location (excluding trials with no listed location), and before and after the effective date of the Final RuleIntermediate Results:- cache.zip contains pickle and csv files of pandas dataframes with values scraped from the XML records in AllPublicXML. Downloading these files greatly speeds up running analysis steps from jupyter notebooks in our github repository.

  17. Data Dictionary/README for PMACS

    • figshare.com
    pdf
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Camille Jaime; David Hughes (2025). Data Dictionary/README for PMACS [Dataset]. http://doi.org/10.6084/m9.figshare.28525751.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Camille Jaime; David Hughes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Dictionary contains all info for each sample/mouse of each experiment. Each experiment has a tab.All README files are also included with brief experimental description.List of experiments by aim:GATA6 Venus Tracking:· PMACS-76· PMACS-80· PMACS-86· PMACS-88· PMACS-100Chlodronate depletion:· PMACS-11/11-2· PMACS-15· PMACS-18· PMACS-23· PMACS-26GATA6 Macrophage (LysCreGATA6fl/fl) Depletions:· PMACS-55· PMACS-56· PMACS-64· PMACS-70· PMACS-71· PMACS-75· PMACS-84· PMACS-85· PMACS-87· PMACS-89· PMACS-98· PMACS-102 (in paper)o Comprises PMACS-102 and PMACS-102-4o PMACS-102 had 3 samples total removed from analysis (1 in the LysCre group and 2 in the GATA6fl/fl group) due to significant perfusion issues and blood clots during sacrifice· PMACS-103· PMACS-105 (In paper)o The paper one is labeled PMACS-105_All (since it has WT-like controls and the GATA6 fl/fl mice)· PMACS-107· PMACS-108 (In paper)· PMACS-111 (In paper)Additional Experiments from paper:· PMACS-95o In vitro study· PMACS-65o CVB3 Myocarditis· Pericarditis:o PMACS-81o PMACS-106o PMACS-109

  18. H

    Replication Code for: Proxy Advisory Firms and Corporate Shareholder...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joshua White (2024). Replication Code for: Proxy Advisory Firms and Corporate Shareholder Engagement [Dataset]. http://doi.org/10.7910/DVN/ABLKE4
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 5, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Joshua White
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Contains compressed file, "Proxy Advisory Firms and Corporate Shareholder Engagement.zip", which contains Stata code, Stata pseudo-datasets (to demonstrate format of data), and a data dictionary. Review of Financial Studies, forthcoming. (2024)

  19. E

    New Oxford Dictionary of English, 2nd Edition

    • live.european-language-grid.eu
    • catalog.elra.info
    Updated Dec 6, 2005
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2005). New Oxford Dictionary of English, 2nd Edition [Dataset]. https://live.european-language-grid.eu/catalogue/lcr/2276
    Explore at:
    Dataset updated
    Dec 6, 2005
    License

    http://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttp://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf

    Description

    This is Oxford University Press's most comprehensive single-volume dictionary, with 170,000 entries covering all varieties of English worldwide. The NODE data set constitutes a fully integrated range of formal data types suitable for language engineering and NLP applications: It is available in XML or SGML. - Source dictionary data. The NODE data set includes all the information present in the New Oxford Dictionary of English itself, such as definition text, example sentences, grammatical indicators, and encyclopaedic material. - Morphological data. Each NODE lemma (both headwords and subentries) has a full listing of all possible syntactic forms (e.g. plurals for nouns, inflections for verbs, comparatives and superlatives for adjectives), tagged to show their syntactic relationships. Each form has an IPA pronunciation. Full morphological data is also given for spelling variants (e.g. typical American variants), and a system of links enables straightforward correlation of variant forms to standard forms. The data set thus provides robust support for all look-up routines, and is equally viable for applications dealing with American and British English. - Phrases and idioms. The NODE data set provides a rich and flexible codification of over 10,000 phrasal verbs and other multi-word phrases. It features comprehensive lexical resources enabling applications to identify a phrase not only in the form listed in the dictionary but also in a range of real-world variations, including alternative wording, variable syntactic patterns, inflected verbs, optional determiners, etc. - Subject classification. Using a categorization scheme of 200 key domains, over 80,000 words and senses have been associated with particular subject areas, from aeronautics to zoology. As well as facilitating the extraction of subject-specific sub-lexicons, this also provides an extensive resource for document categorization and information retrieval. - Semantic relationships. The relationships between every noun and noun sense in the dictionary are being codified using an extensive semantic taxonomy on the model of the Princeton WordNet project. (Mapping to WordNet 1.7 is supported.) This structure allows elements of the basic lexical database to function as a formal knowledge database, enabling functionality such as sense disambiguation and logical inference. - Derived from the detailed and authoritative corpus-based research of Oxford University Press's lexicographic team, the NODE data set is a powerful asset for any task dealing with real-world contemporary English usage. By integrating a number of different data types into a single structure, it creates a coherent resource which can be queried along numerous axes, allowing open-ended exploitation by many kinds of language-related applications.

  20. C

    Data Dictionary Migration Chain

    • ckan.mobidatalab.eu
    Updated Jul 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OverheidNl (2023). Data Dictionary Migration Chain [Dataset]. https://ckan.mobidatalab.eu/dataset/gegevenswoordenboek-migratieketen
    Explore at:
    http://publications.europa.eu/resource/authority/file-type/zipAvailable download formats
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    OverheidNl
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Since 2013, the Dutch Migration Chain has had a chain-wide data dictionary, the Data Dictionary Migration Chain (GMK). The Migration Chain consists of the following organisations: - Central Agency for the Reception of Asylum Seekers - Correctional Institutions Agency, Ministry of Justice and Security - Repatriation and Departure Service, Ministry of Justice and Security - Directorate-General for Migration, Ministry of Justice and Security - Immigration and Naturalization Service , Ministry of Justice and Security - International Organization for Migration - Royal Netherlands Marechaussee - Ministry of Foreign Affairs - National Police - Council of State - Council for the Judiciary - Netherlands Council for Refugees - Seaport Police. One of the principles in the basic starting architecture of the migration chain is that there is no difference of opinion about the meaning of the information that can be extracted from an integrated customer view. A uniform conceptual framework goes further than a glossary of the most important concepts: each shared data can be related to a concept in the conceptual framework; in the description of the concepts, the relations to each other are named. Chain parties have aligned their own conceptual frameworks with the uniform conceptual framework in the migration chain. The GMK is an overview of the common terminology used within the migration chain. This promotes a correct interpretation of the information exchanged within or reported on the processes of the migration chain. A correct interpretation of information prevents miscommunication, mistakes and errors. For users in the migration chain, the GMK is available on the non-public Rijksweb (gmk.vk.rijksweb.nl). In the context of openness and transparency, it has been decided to make the description of concepts and management information from the GMK accessible as open data. This means that the data via Data.overheid.nl is available and reusable for everyone. By making the data transparent, the ministry also hopes that publications by and about the work in the migration chain, for example the State of Migration, are easier to explain and provide context.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jennifer Piscionere (2018). Data Dictionary [Dataset]. http://doi.org/10.25374/MCRI.7039280.v1

Data Dictionary

Explore at:
txtAvailable download formats
Dataset updated
Sep 6, 2018
Dataset provided by
Murdoch Childrens Research Institute
Authors
Jennifer Piscionere
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

This is a data dictionary example we will use in the MVP presentation. It can be deleted after 13/9/18.

Search
Clear search
Close search
Google apps
Main menu