Dataset Card for Dataset Name
This dataset card aims to be a base template for new datasets. It has been generated using this raw template.
Dataset Details
Dataset Description
Curated by: [More Information Needed] Funded by [optional]: [More Information Needed] Shared by [optional]: [More Information Needed] Language(s) (NLP): [More Information Needed] License: [More Information Needed]
Dataset Sources [optional]… See the full description on the dataset page: https://huggingface.co/datasets/templates/dataset-card-example.
Demo to save data from a Space to a Dataset. Goal is to provide reusable snippets of code.
Documentation: https://huggingface.co/docs/huggingface_hub/main/en/guides/upload#scheduled-uploads Space: https://huggingface.co/spaces/Wauplin/space_to_dataset_saver/ JSON dataset: https://huggingface.co/datasets/Wauplin/example-space-to-dataset-json Image dataset: https://huggingface.co/datasets/Wauplin/example-space-to-dataset-image Image (zipped) dataset:… See the full description on the dataset page: https://huggingface.co/datasets/Wauplin/example-space-to-dataset-json.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Each R script replicates all of the example code from one chapter from the book. All required data for each script are also uploaded, as are all data used in the practice problems at the end of each chapter. The data are drawn from a wide array of sources, so please cite the original work if you ever use any of these data sets for research purposes.
This data set contains example data for exploration of the theory of regression based regionalization. The 90th percentile of annual maximum streamflow is provided as an example response variable for 293 streamgages in the conterminous United States. Several explanatory variables are drawn from the GAGES-II data base in order to demonstrate how multiple linear regression is applied. Example scripts demonstrate how to collect the original streamflow data provided and how to recreate the figures from the associated Techniques and Methods chapter.
harpreetsahota/ragas-example-dataset dataset hosted on Hugging Face and contributed by the HF Datasets community
Dataset Card for example-preference-dataset2
This dataset has been created with distilabel.
Dataset Summary
This dataset contains a pipeline.yaml which can be used to reproduce the pipeline that generated it in distilabel using the distilabel CLI: distilabel pipeline run --config "https://huggingface.co/datasets/ashercn97/example-preference-dataset2/raw/main/pipeline.yaml"
or explore the configuration: distilabel pipeline info --config… See the full description on the dataset page: https://huggingface.co/datasets/ashercn97/example-preference-dataset2.
Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
This dataset was created by Nikilesh Thotamsetty
Released under CC BY-SA 3.0
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions
in Meta Kaggle. The file names match the ids in the KernelVersions
csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads
. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!
This is an auto-generated index table corresponding to a folder of files in this dataset with the same name. This table can be used to extract a subset of files based on their metadata, which can then be used for further analysis. You can view the contents of specific files by navigating to the "cells" tab and clicking on an individual file_id.
This is a textbook, created example for illustration purposes. The System takes inputs of Pt, Ps, and Alt, and calculates the Mach number using the Rayleigh Pitot Tube equation if the plane is flying supersonically. (See Anderson.) The unit calculates Cd given the Ma and Alt. For more details, see the NASA TM, also on this website.
WikiSQL consists of a corpus of 87,726 hand-annotated SQL query and natural language question pairs. These SQL queries are further split into training (61,297 examples), development (9,145 examples) and test sets (17,284 examples). It can be used for natural language inference tasks related to relational databases.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: none of the data sets published here contain actual data, they are for testing purposes only.
This data repository contains graph datasets, where each graph is represented by two CSV files: one for node information and another for edge details. To link the files to the same graph, their names include a common identifier based on the number of nodes. For example:
dataset_30_nodes_interactions.csv
:contains 30 rows (nodes).dataset_30_edges_interactions.csv
: contains 47 rows (edges).dataset_30
refers to the same graph.Each dataset contains the following columns:
Name of the Column | Type | Description |
UniProt ID | string | protein identification |
label | string | protein label (type of node) |
properties | string | a dictionary containing properties related to the protein. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
Relationship ID | string | relationship identification |
Source ID | string | identification of the source protein in the relationship |
Target ID | string | identification of the target protein in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_30* |
30 | 47 |
Y |
dataset_60* |
60 |
181 |
Y |
dataset_120* |
120 |
689 |
Y |
dataset_240* |
240 |
2819 |
Y |
dataset_300* |
300 |
4658 |
Y |
dataset_600* |
600 |
18004 |
Y |
dataset_1200* |
1200 |
71785 |
Y |
dataset_2400* |
2400 |
288600 |
Y |
dataset_3000* |
3000 |
449727 |
Y |
dataset_6000* |
6000 |
1799413 |
Y |
dataset_12000* |
12000 |
7199863 |
Y |
dataset_24000* |
24000 |
28792361 |
Y |
This repository include two (2) additional tiny graph datasets to experiment before dealing with larger datasets.
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | node identification |
label | string | node label (type of node) |
properties | string | a dictionary containing properties related to the node. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | relationship identification |
source | string | identification of the source node in the relationship |
target | string | identification of the target node in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_dummy* | 3 | 6 | N |
dataset_dummy2* | 3 | 6 | N |
This dataset is comprised of a collection of example DMPs from a wide array of fields; obtained from a number of different sources outlined below. Data included/extracted from the examples include the discipline and field of study, author, institutional affiliation and funding information, location, date created, title, research and data-type, description of project, link to the DMP, and where possible external links to related publications or grant pages. This CSV document serves as the content for a McMaster Data Management Plan (DMP) Database as part of the Research Data Management (RDM) Services website, located at https://u.mcmaster.ca/dmps. Other universities and organizations are encouraged to link to the DMP Database or use this dataset as the content for their own DMP Database. This dataset will be updated regularly to include new additions and will be versioned as such. We are gathering submissions at https://u.mcmaster.ca/submit-a-dmp to continue to expand the collection.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Freebase is amongst the largest public cross-domain knowledge graphs. It possesses three main data modeling idiosyncrasies. It has a strong type system; its properties are purposefully represented in reverse pairs; and it uses mediator objects to represent multiary relationships. These design choices are important in modeling the real-world. But they also pose nontrivial challenges in research of embedding models for knowledge graph completion, especially when models are developed and evaluated agnostically of these idiosyncrasies. We make available several variants of the Freebase dataset by inclusion and exclusion of these data modeling idiosyncrasies. This is the first-ever publicly available full-scale Freebase dataset that has gone through proper preparation.
Dataset Details
The dataset consists of the four variants of Freebase dataset as well as related mapping/support files. For each variant, we made three kinds of files available:
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is a dataset of blood cells photos, originally open sourced by cosmicad and akshaylambda.
There are 364 images across three classes: WBC
(white blood cells), RBC
(red blood cells), and Platelets
. There are 4888 labels across 3 classes (and 0 null examples).
Here's a class count from Roboflow's Dataset Health Check:
https://i.imgur.com/BVopW9p.png" alt="BCCD health">
And here's an example image:
https://i.imgur.com/QwyX2aD.png" alt="Blood Cell Example">
Fork
this dataset (upper right hand corner) to receive the raw images, or (to save space) grab the 500x500 export.
This is a small scale object detection dataset, commonly used to assess model performance. It's a first example of medical imaging capabilities.
We're releasing the data as public domain. Feel free to use it for any purpose.
It's not required to provide attribution, but it'd be nice! :)
Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.
Developers reduce 50% of their boilerplate code when using Roboflow's workflow, automate annotation quality assurance, save training time, and increase model reproducibility.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
# FiN: A Smart Grid and Powerline Communication Dataset
Within the Fühler-im-Netz (FiN) project 38 BPL modems were distributed in three different areas of a German city with about 150.000 inhabitants. Over a period of 22 months, an SNR spectrum of each connection between adjacent BPL modems was generated every quarter of an hour. The availability of this data from actual practical use opens up new possibilities to face the increasing complex challenges in smart grids.
~~ For detailed information we would like to refer to the full paper. ~~
Attributs | FiN 1
-------- | --------
SNR measurements | 3.3 Mio
Timespan | ~2.5yrs
*Metadata* |
Sleeve count per section | ☑
Cable length, typ, cross section | ☑
Number of conductors | ☑
Year of installation | ☑
Weather by openweather | ☑
## Paper abstract
The increasing complexity of low-voltage networks poses a growing challenge for the reliable and fail-safe operation of power grids. The reasons for this are, for example, a more decentralized energy generation (photovoltaic systems, wind power, ...) and the emergence of new types of consumers (e-mobility, domestic electricity storage, ...). At the same time, the low-voltage grid is largely unmonitored and local power failures are sometimes detected only when consumers report the outage. To end the blind flight within the low voltage network, the use of a broadband over power line (BPL) infrastructure is a possible solution. In addition to the purpose of establishing a communication infrastructure, BPL also offers the possibility of evaluating the cables themselves, as well as the connection quality between individual cable distributors based on their Signal-to-Noise-Ratio (SNR). Within the Fühler-im-Netz pilot project 38 BPL modems were distributed in three different areas of a German city with about 100.000 inhabitants. Over a period of 21 months, an SNR spectrum of each connection between adjacent BPL modems was generated every quarter of an hour. The availability of this data from actual practical use opens up new possibilities to react agilely to the increasingly complex challenges.
# FiN-Dataset release 1.0
### Content
- 68 data .npz files
- 3 weather csv files
- 2 metadata csv files
- this readme
### Summary
The dataset contains ~3.7B SNR measurements divided into 68 1-to-1 connections. Each of the 1-to-1 connections can split into additional segments, e.g. if part of a cable was replaced due to a cable break.
All 68 connections are formed by 38 different nodes distributed over three different locations. Due to data protection regulations, the exact location of the nodes cannot be given. Therefore, each of the 38 nodes is uniquely identified by an ID.
### Data
The filename specifies the location, the ID of the source node and the destination ID.
Example: "loc03_from26_to27.npz"
-> Node is in lcation 3
-> Source node is 26
-> Destination node is 27
The .npz file contains a Python dict that is structured as follows:
data_dict = {"timestamps": np.array(...), --> Nx1 Timestamps
"spectrum_rx": np.array(...), --> Nx1536 SNR assesments on 1536 channels in RX directions. Range is 0.00dB...40.00dB
"tonemap_rx": np.array(...), --> Nx1536 Tonemaps in RX directions. Range is 0...7
"tonemap_tx": np.array(...)} --> Nx1536 Tonemaps in TX directions. Range is 0...7
### Weather
In addition to the measured data, we add weather data provided by https://openweathermap.org for all three locations. The weather data is stored in CSV format and contains many different weather attributes. Detailed information on the weather data can be found in the official documentation: https://openweathermap.org/history-bulk
### Metadata
--> nodes.csv
Contains in overview of all nodes, their id, corresponding location and voltage level.
--> connections.csv
Contains all available metadata for the 68 1-to-1 connections and their individual segements.
+ year_of_installation -> year in which the cable was installed
+ year_approximated -> Indicates whether the year was approximated or not (e.g. due to missing records)
+ cable_section -> identifies the segment or section described by the metadata
+ length -> length in meters
+ number_of_conductors -> identifier for the conductor structure in the cable
+ cross-section -> cross-section of the conductors
+ voltage_level -> identifier for the voltage level (MV=mid voltage; LV=low voltage)
+ t_sleeves -> number of T-sleeves installed within a section
+ type -> cable type
+ src_id -> id of the source node
+ dst_id -> id of the destination node
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
This dataset contains a collection of questions and answers for the SAT Subject Test in World History and US History. Each question is accompanied by a corresponding answers and the correct response.
The dataset includes questions from various topics, time periods, and regions on both World History and US History.
For each question, we extracted: - id: number of the question, - subject: SAT subject (World History or US History), - prompt: text of the question, - A: answer A, - B: answer B, - C: answer C, - D: answer D, - E: answer E, - answer: letter of the correct answer to the question
keywords: answer questions, sat, gpa, university, school, exam, college, web scraping, parsing, online database, text dataset, sentiment analysis, llm dataset, language modeling, large language models, text classification, text mining dataset, natural language texts, nlp, nlp open-source dataset, text data, machine learning
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper explores a unique dataset of all the SET ratings provided by students of one university in Poland at the end of the winter semester of the 2020/2021 academic year. The SET questionnaire used by this university is presented in Appendix 1. The dataset is unique for several reasons. It covers all SET surveys filled by students in all fields and levels of study offered by the university. In the period analysed, the university was entirely in the online regime amid the Covid-19 pandemic. While the expected learning outcomes formally have not been changed, the online mode of study could have affected the grading policy and could have implications for some of the studied SET biases. This Covid-19 effect is captured by econometric models and discussed in the paper. The average SET scores were matched with the characteristics of the teacher for degree, seniority, gender, and SET scores in the past six semesters; the course characteristics for time of day, day of the week, course type, course breadth, class duration, and class size; the attributes of the SET survey responses as the percentage of students providing SET feedback; and the grades of the course for the mean, standard deviation, and percentage failed. Data on course grades are also available for the previous six semesters. This rich dataset allows many of the biases reported in the literature to be tested for and new hypotheses to be formulated, as presented in the introduction section. The unit of observation or the single row in the data set is identified by three parameters: teacher unique id (j), course unique id (k) and the question number in the SET questionnaire (n ϵ {1, 2, 3, 4, 5, 6, 7, 8, 9} ). It means that for each pair (j,k), we have nine rows, one for each SET survey question, or sometimes less when students did not answer one of the SET questions at all. For example, the dependent variable SET_score_avg(j,k,n) for the triplet (j=Calculus, k=John Smith, n=2) is calculated as the average of all Likert-scale answers to question nr 2 in the SET survey distributed to all students that took the Calculus course taught by John Smith. The data set has 8,015 such observations or rows. The full list of variables or columns in the data set included in the analysis is presented in the attached filesection. Their description refers to the triplet (teacher id = j, course id = k, question number = n). When the last value of the triplet (n) is dropped, it means that the variable takes the same values for all n ϵ {1, 2, 3, 4, 5, 6, 7, 8, 9}.Two attachments:- word file with variables description- Rdata file with the data set (for R language).Appendix 1. Appendix 1. The SET questionnaire was used for this paper. Evaluation survey of the teaching staff of [university name] Please, complete the following evaluation form, which aims to assess the lecturer’s performance. Only one answer should be indicated for each question. The answers are coded in the following way: 5- I strongly agree; 4- I agree; 3- Neutral; 2- I don’t agree; 1- I strongly don’t agree. Questions 1 2 3 4 5 I learnt a lot during the course. ○ ○ ○ ○ ○ I think that the knowledge acquired during the course is very useful. ○ ○ ○ ○ ○ The professor used activities to make the class more engaging. ○ ○ ○ ○ ○ If it was possible, I would enroll for the course conducted by this lecturer again. ○ ○ ○ ○ ○ The classes started on time. ○ ○ ○ ○ ○ The lecturer always used time efficiently. ○ ○ ○ ○ ○ The lecturer delivered the class content in an understandable and efficient way. ○ ○ ○ ○ ○ The lecturer was available when we had doubts. ○ ○ ○ ○ ○ The lecturer treated all students equally regardless of their race, background and ethnicity. ○ ○
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains two files, Intro.lif and Intro.lifext, that contain multiple acquisition datasets from a Leica microscope. Some of the datasets contain metadata about FLIM experiments.
Bio-Formats currently reads these datasets incorrectly, it appears as if the offset for the actual pixel data is computed inaccurately, possibly due to the extra metadata present in some series.
This is an example Dataset showing visualizations for data in different formats.
Dataset Card for Dataset Name
This dataset card aims to be a base template for new datasets. It has been generated using this raw template.
Dataset Details
Dataset Description
Curated by: [More Information Needed] Funded by [optional]: [More Information Needed] Shared by [optional]: [More Information Needed] Language(s) (NLP): [More Information Needed] License: [More Information Needed]
Dataset Sources [optional]… See the full description on the dataset page: https://huggingface.co/datasets/templates/dataset-card-example.