100+ datasets found
  1. d

    Mayor’s Office of Operations: Demographic Survey

    • catalog.data.gov
    • data.cityofnewyork.us
    • +2more
    Updated Jul 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2025). Mayor’s Office of Operations: Demographic Survey [Dataset]. https://catalog.data.gov/dataset/mayors-office-of-operations-demographic-survey
    Explore at:
    Dataset updated
    Jul 19, 2025
    Dataset provided by
    data.cityofnewyork.us
    Description

    Pursuant to Local Laws 126, 127, and 128 of 2016, certain demographic data is collected voluntarily and anonymously by persons voluntarily seeking social services. This data can be used by agencies and the public to better understand the demographic makeup of client populations and to better understand and serve residents of all backgrounds and identities. The data presented here has been collected through either electronic form or paper surveys offered at the point of application for services. These surveys are anonymous. Each record represents an anonymized demographic profile of an individual applicant for social services, disaggregated by response option, agency, and program. Response options include information regarding ancestry, race, primary and secondary languages, English proficiency, gender identity, and sexual orientation. Idiosyncrasies or Limitations: Note that while the dataset contains the total number of individuals who have identified their ancestry or languages spoke, because such data is collected anonymously, there may be instances of a single individual completing multiple voluntary surveys. Additionally, the survey being both voluntary and anonymous has advantages as well as disadvantages: it increases the likelihood of full and honest answers, but since it is not connected to the individual case, it does not directly inform delivery of services to the applicant. The paper and online versions of the survey ask the same questions but free-form text is handled differently. Free-form text fields are expected to be entered in English although the form is available in several languages. Surveys are presented in 11 languages. Paper Surveys 1. Are optional 2. Survey taker is expected to specify agency that provides service 2. Survey taker can skip or elect not to answer questions 3. Invalid/unreadable data may be entered for survey date or date may be skipped 4. OCRing of free-form tet fields may fail. 5. Analytical value of free-form text answers is unclear Online Survey 1. Are optional 2. Agency is defaulted based on the URL 3. Some questions must be answered 4. Date of survey is automated

  2. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  3. d

    Community Survey: 2021 Random Sample Results

    • catalog.data.gov
    • data.bloomington.in.gov
    Updated May 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.bloomington.in.gov (2023). Community Survey: 2021 Random Sample Results [Dataset]. https://catalog.data.gov/dataset/community-survey-2021-random-sample-results-69942
    Explore at:
    Dataset updated
    May 20, 2023
    Dataset provided by
    data.bloomington.in.gov
    Description

    A random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.

  4. u

    Annual Population Survey: Well-Being, April 2011 - March 2015: Secure Access...

    • beta.ukdataservice.ac.uk
    Updated 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Survey Division Office For National Statistics (2016). Annual Population Survey: Well-Being, April 2011 - March 2015: Secure Access [Dataset]. http://doi.org/10.5255/ukda-sn-7961-1
    Explore at:
    Dataset updated
    2016
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Social Survey Division Office For National Statistics
    Description

    The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS) (held at the UK Data Archive under GN 33246), all of its associated LFS boosts and the APS boost. Thus, the APS combines results from five different sources: the LFS (waves 1 and 5); the English Local Labour Force Survey (LLFS), the Welsh Labour Force Survey (WLFS), the Scottish Labour Force Survey (SLFS) and the Annual Population Survey Boost Sample (APS(B) - however, this ceased to exist at the end of December 2005, so APS data from January 2006 onwards will contain all the above data apart from APS(B)). Users should note that the LLFS, WLFS, SLFS and APS(B) are not held separately at the UK Data Archive. For further detailed information about methodology, users should consult the Labour Force Survey User Guide, selected volumes of which have been included with the APS documentation for reference purposes (see 'Documentation' table below).

    The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples such as the WLFS and SLFS, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.

    APS Well-Being data
    Since April 2011, the APS has included questions about personal and subjective well-being. The responses to these questions have been made available as annual sub-sets to the APS Person level files. It is important to note that the size of the achieved sample of the well-being questions within the dataset is approximately 165,000 people. This reduction is due to the well-being questions being only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. As a result some caution should be used when using analysis of responses to well-being questions at detailed geography areas and also in relation to any other variables where respondent numbers are relatively small. It is recommended that for lower level geography analysis that the variable UACNTY09 is used.

    As well as annual datasets, three-year pooled datasets are available. When combining multiple APS datasets together, it is important to account for the rotational design of the APS and ensure that no person appears more than once in the multiple year dataset. This is because the well-being datasets are not designed to be longitudinal e.g. they are not designed to track individuals over time/be used for longitudinal analysis. They are instead cross-sectional, and are designed to use a cross-section of the population to make inferences about the whole population. For this reason, the three-year dataset has been designed to include only a selection of the cases from the individual year APS datasets, chosen in such a way that no individuals are included more than once, and the cases included are approximately equally spread across the three years. Further information is available in the 'Documentation' section below.

    Secure Access APS Well-Being data
    Secure Access datasets for the APS Well-Being include additional variables not included in either the standard End User Licence (EUL) versions (see under GN 33357) or the Special Licence (SL) access versions (see under GN 33376). Extra variables that typically can be found in the Secure Access version but not in the EUL or SL versions relate to:

    • geography, including:
      • Postcodes
      • Census Area Statistics (CAS) Wards
      • Census Output Areas
      • Nomenclature of Units for Territorial Statistics (NUTS) level 2 and 3 areas
      • Lower and Middle Layer Super Output Areas
      • Travel to Work Areas
      • Unitary authority / Local Authority District of place of work (main job)
      • region of place of work for first and second jobs
    • qualifications, education and training including level of highest qualification, qualifications from Government schemes, qualifications related to work, qualifications from school, qualifications from university of college and qualifications gained from outside the UK
    • detailed ethnic group for Scottish respondents
    • detailed religious denomination for Northern Irish respondents
    • length health problem has limited activity
    • learning difficulty or learning disability
    • occupation in apprenticeship or second job
    • number of bedrooms
    • number of dependent children in household aged under 19
    Prospective users of the Secure Access version of the APS Well-Being will need to fulfil additional requirements, commencing with the completion of an extra application form to demonstrate to the data owners exactly why they need access to the extra, more detailed variables, in order to obtain permission to use that version. Secure Access data users must also complete face-to-face training and agree to the Secure Access User Agreement and Licence Compliance Policy (see 'Access' section below). Therefore, users are encouraged to download and inspect the EUL version of the data prior to ordering the Secure Access (or SL) version. Further details and links to all APS studies available from the UK Data Archive can be found via the APS Key Data series webpage.

    APS Well-Being Datasets: Information, July 2016
    From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Users should no longer use the bespoke well-being datasets (SNs 6994, 6999, 7091, 7092, 7364, 7365, 7565, 7566 and 7961, but should now use the variables included on the April-March APS person datasets instead. Further information on the transition can be found on the Personal well-being in the UK: 2015 to 2016

    Documentation and coding frames
    The APS is compiled from variables present in the LFS. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation (e.g. coding frames for education, industrial and geographic variables, which are held in LFS User Guide Vol.5, Classifications), users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    May 2018 Update
    Due to a change in the Travel-to-Work Area coding structure from 2001 to 2011, the variable TTWA9D has been relabelled in the pooled data file for 2012-2015.

  5. a

    Demographic and Health Survey 2000 - Armenia

    • microdata.armstat.am
    • catalog.ihsn.org
    • +2more
    Updated Oct 10, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health (2019). Demographic and Health Survey 2000 - Armenia [Dataset]. https://microdata.armstat.am/index.php/catalog/1
    Explore at:
    Dataset updated
    Oct 10, 2019
    Dataset provided by
    National Statistical Service
    Ministry of Health
    Time period covered
    2000
    Area covered
    Armenia
    Description

    Abstract

    The Armenia Demographic and Health Survey (ADHS) was a nationally representative sample survey designed to provide information on population and health issues in Armenia. The primary goal of the survey was to develop a single integrated set of demographic and health data, the first such data set pertaining to the population of the Republic of Armenia. In addition to integrating measures of reproductive, child, and adult health, another feature of the DHS survey is that the majority of data are presented at the marz level.

    The ADHS was conducted by the National Statistical Service and the Ministry of Health of the Republic of Armenia during October through December 2000. ORC Macro provided technical support for the survey through the MEASURE DHS+ project. MEASURE DHS+ is a worldwide project, sponsored by the USAID, with a mandate to assist countries in obtaining information on key population and health indicators. USAID/Armenia provided funding for the survey. The United Nations Children’s Fund (UNICEF)/Armenia provided support through the donation of equipment.

    The ADHS collected national- and regional-level data on fertility and contraceptive use, maternal and child health, adult health, and AIDS and other sexually transmitted diseases. The survey obtained detailed information on these issues from women of reproductive age and, on certain topics, from men as well. Data are presented by marz wherever sample size permits.

    The ADHS results are intended to provide the information needed to evaluate existing social programs and to design new strategies for improving the health of and health services for the people of Armenia. The ADHS also contributes to the growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-54

    Kind of data

    Sample survey data

    Sampling procedure

    The sample was designed to provide estimates of most survey indicators (including fertility, abortion, and contraceptive prevalence) for Yerevan and each of the other ten administrative regions (marzes). The design also called for estimates of infant and child mortality at the national level for Yerevan and other urban areas and rural areas.

    The target sample size of 6,500 completed interviews with women age 15-49 was allocated as follows: 1,500 to Yerevan and 500 to each of the ten marzes. Within each marz, the sample was allocated between urban and rural areas in proportion to the population size. This gave a target sample of approximately 2,300 completed interviews for urban areas exclusive of Yerevan and 2,700 completed interviews for the rural sector. Interviews were completed with 6,430 women. Men age 15-54 were interviewed in every third household; this yielded 1,719 completed interviews.

    A two-stage sample was used. In the first stage, 260 areas or primary sampling units (PSUs) were selected with probability proportional to population size (PPS) by systematic selection from a list of areas. The list of areas was the 1996 Data Base of Addresses and Households constructed by the National Statistical Service. Because most selected areas were too large to be directly listed, a separate segmentation operation was conducted prior to household listing. Large selected areas were divided into segments of which two segments were included in the sample. A complete listing of households was then carried out in selected segments as well as selected areas that were not segmented.

    The listing of households served as the sampling frame for the selection of households in the second stage of sampling. Within each area, households were selected systematically so as to yield an average of 25 completed interviews with eligible women per area. All women 15-49 who stayed in the sampled households on the night before the interview were eligible for the survey. In each segment, a subsample of one-third of all households was selected for the men's component of the survey. In these households, all men 15-54 who stayed in the household on the previous night were eligible for the survey.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three questionnaires were used in the ADHS: a Household Questionnaire, a Women’s Questionnaire, and a Men’s Questionnaire. The questionnaires were based on the model survey instruments developed for the MEASURE DHS+ program. The model questionnaires were adapted for use during a series of expert meetings hosted by the Center of Perinatology, Obstetrics, and Gynecology. The questionnaires were developed in English and translated into Armenian and Russian. The questionnaires were pretested in July 2000.

    The Household Questionnaire was used to list all usual members of and visitors to a household and to collect information on the physical characteristics of the dwelling unit. The first part of the household questionnaire collected information on the age, sex, residence, educational attainment, and relationship to the household head of each household member or visitor. This information provided basic demographic data for Armenian households. It also was used to identify the women and men who were eligible for the individual interview (i.e., women 15-49 and men 15-54). The second part of the Household Questionnaire consisted of questions on housing characteristics (e.g., the flooring material, the source of water, and the type of toilet facilities) and on ownership of a variety of consumer goods.

    The Women’s Questionnaire obtained information on the following topics: - Background characteristics - Pregnancy history - Antenatal, delivery, and postnatal care - Knowledge and use of contraception - Attitudes toward contraception and abortion - Reproductive and adult health - Vaccinations, birth registration, and health of children under age five - Episodes of diarrhea and respiratory illness of children under age five - Breastfeeding and weaning practices - Height and weight of women and children under age five - Hemoglobin measurement of women and children under age five - Marriage and recent sexual activity - Fertility preferences - Knowledge of and attitude toward AIDS and other sexually transmitted infections.

    The Men’s Questionnaire focused on the following topics: - Background characteristics - Health - Marriage and recent sexual activity - Attitudes toward and use of condoms - Knowledge of and attitude toward AIDS and other sexually transmitted infections.

    Cleaning operations

    After a team had completed interviewing in a cluster, questionnaires were returned promptly to the National Statistical Service in Yerevan for data processing. The office editing staff first checked that questionnaires for all selected households and eligible respondents had been received from the field staff. In addition, a few questions that had not been precoded (e.g., occupation) were coded at this time. Using the ISSA (Integrated System for Survey Analysis) software, a specially trained team of data processing staff entered the questionnaires and edited the resulting data set on microcomputers. The process of office editing and data processing was initiated soon after the beginning of fieldwork and was completed by the end of January 2001.

    Response rate

    A total of 6,524 households were selected for the sample, of which 6,150 were occupied at the time of fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. Of the occupied households, 97 percent were successfully interviewed.

    In these households, 6,685 women were identified as eligible for the individual interview (i.e., age 15-49). Interviews were completed with 96 percent of them. Of the 1,913 eligible men identified, 90 percent were successfully interviewed. The principal reason for non-response among eligible women and men was the failure to find them at home despite repeated visits to the household. The refusal rate was low.

    The overall response rates, the product of the household and the individual response rates, were 94 percent for women and 87 percent for men.

    Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2000 Armenia Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey

  6. N

    Weston, OR Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Weston, OR Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/weston-or-population-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Weston
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Weston by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Weston. The dataset can be utilized to understand the population distribution of Weston by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Weston. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Weston.

    Key observations

    Largest age group (population): Male # 55-59 years (36) | Female # 55-59 years (28). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Weston population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Weston is shown in the following column.
    • Population (Female): The female population in the Weston is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Weston for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Weston Population by Gender. You can refer the same here

  7. Demographic and Health Survey 2017 - Indonesia

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jul 12, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health (Kemenkes) (2019). Demographic and Health Survey 2017 - Indonesia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3477
    Explore at:
    Dataset updated
    Jul 12, 2019
    Dataset provided by
    Statistics Indonesiahttp://www.bps.go.id/
    National Population and Family Planning Board (BKKBN)
    Ministry of Health (Kemenkes)
    Time period covered
    2017
    Area covered
    Indonesia
    Description

    Abstract

    The primary objective of the 2017 Indonesia Dmographic and Health Survey (IDHS) is to provide up-to-date estimates of basic demographic and health indicators. The IDHS provides a comprehensive overview of population and maternal and child health issues in Indonesia. More specifically, the IDHS was designed to: - provide data on fertility, family planning, maternal and child health, and awareness of HIV/AIDS and sexually transmitted infections (STIs) to help program managers, policy makers, and researchers to evaluate and improve existing programs; - measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as residence, education, breastfeeding practices, and knowledge, use, and availability of contraceptive methods; - evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; - assess married men’s knowledge of utilization of health services for their family’s health and participation in the health care of their families; - participate in creating an international database to allow cross-country comparisons in the areas of fertility, family planning, and health.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-54

    Universe

    The survey covered all de jure household members (usual residents), all women age 15-49 years resident in the household, and all men age 15-54 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2017 IDHS sample covered 1,970 census blocks in urban and rural areas and was expected to obtain responses from 49,250 households. The sampled households were expected to identify about 59,100 women age 15-49 and 24,625 never-married men age 15-24 eligible for individual interview. Eight households were selected in each selected census block to yield 14,193 married men age 15-54 to be interviewed with the Married Man's Questionnaire. The sample frame of the 2017 IDHS is the Master Sample of Census Blocks from the 2010 Population Census. The frame for the household sample selection is the updated list of ordinary households in the selected census blocks. This list does not include institutional households, such as orphanages, police/military barracks, and prisons, or special households (boarding houses with a minimum of 10 people).

    The sampling design of the 2017 IDHS used two-stage stratified sampling: Stage 1: Several census blocks were selected with systematic sampling proportional to size, where size is the number of households listed in the 2010 Population Census. In the implicit stratification, the census blocks were stratified by urban and rural areas and ordered by wealth index category.

    Stage 2: In each selected census block, 25 ordinary households were selected with systematic sampling from the updated household listing. Eight households were selected systematically to obtain a sample of married men.

    For further details on sample design, see Appendix B of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2017 IDHS used four questionnaires: the Household Questionnaire, Woman’s Questionnaire, Married Man’s Questionnaire, and Never Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49, the Woman’s Questionnaire had questions added for never married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey Questionnaire. The Household Questionnaire and the Woman’s Questionnaire are largely based on standard DHS phase 7 questionnaires (2015 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were included in the IDHS. Response categories were modified to reflect the local situation.

    Cleaning operations

    All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computer-identified errors. Data processing activities were carried out by a team of 34 editors, 112 data entry operators, 33 compare officers, 19 secondary data editors, and 2 data entry supervisors. The questionnaires were entered twice and the entries were compared to detect and correct keying errors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2017 IDHS.

    Response rate

    Of the 49,261 eligible households, 48,216 households were found by the interviewer teams. Among these households, 47,963 households were successfully interviewed, a response rate of almost 100%.

    In the interviewed households, 50,730 women were identified as eligible for individual interview and, from these, completed interviews were conducted with 49,627 women, yielding a response rate of 98%. From the selected household sample of married men, 10,440 married men were identified as eligible for interview, of which 10,009 were successfully interviewed, yielding a response rate of 96%. The lower response rate for men was due to the more frequent and longer absence of men from the household. In general, response rates in rural areas were higher than those in urban areas.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors result from mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017 Indonesia Demographic and Health Survey (2017 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2017 IDHS is a STATA program. This program used the Taylor linearization method for variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix C of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months

    See details of the data quality tables in Appendix D of the survey final report.

  8. Gallup Poll Social Series (GPSS)

    • redivis.com
    • stanford.redivis.com
    application/jsonl +7
    Updated Jul 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford University Libraries (2025). Gallup Poll Social Series (GPSS) [Dataset]. http://doi.org/10.57761/vxfa-he67
    Explore at:
    csv, spss, sas, avro, stata, arrow, parquet, application/jsonlAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford University Libraries
    Description

    Abstract

    The Gallup Poll Social Series (GPSS) is a set of public opinion surveys designed to monitor U.S. adults' views on numerous social, economic, and political topics. The topics are arranged thematically across 12 surveys. Gallup administers these surveys during the same month every year and includes the survey's core trend questions in the same order each administration. Using this consistent standard allows for unprecedented analysis of changes in trend data that are not susceptible to question order bias and seasonal effects.

    Introduced in 2001, the GPSS is the primary method Gallup uses to update several hundred long-term Gallup trend questions, some dating back to the 1930s. The series also includes many newer questions added to address contemporary issues as they emerge.

    The dataset currently includes responses from up to and including 2025.

    Methodology

    Gallup conducts one GPSS survey per month, with each devoted to a different topic, as follows:

    January: Mood of the Nation

    February: World Affairs

    March: Environment

    April: Economy and Finance

    May: Values and Beliefs

    June: Minority Rights and Relations (discontinued after 2016)

    July: Consumption Habits

    August: Work and Education

    September: Governance

    October: Crime

    November: Health

    December: Lifestyle (conducted 2001-2008)

    The core questions of the surveys differ each month, but several questions assessing the state of the nation are standard on all 12: presidential job approval, congressional job approval, satisfaction with the direction of the U.S., assessment of the U.S. job market, and an open-ended measurement of the nation's "most important problem." Additionally, Gallup includes extensive demographic questions on each survey, allowing for in-depth analysis of trends.

    Interviews are conducted with U.S. adults aged 18 and older living in all 50 states and the District of Columbia using a dual-frame design, which includes both landline and cellphone numbers. Gallup samples landline and cellphone numbers using random-digit-dial methods. Gallup purchases samples for this study from Survey Sampling International (SSI). Gallup chooses landline respondents at random within each household based on which member had the next birthday. Each sample of national adults includes a minimum quota of 70% cellphone respondents and 30% landline respondents, with additional minimum quotas by time zone within region. Gallup conducts interviews in Spanish for respondents who are primarily Spanish-speaking.

    Gallup interviews a minimum of 1,000 U.S. adults aged 18 and older for each GPSS survey. Samples for the June Minority Rights and Relations survey are significantly larger because Gallup includes oversamples of Blacks and Hispanics to allow for reliable estimates among these key subgroups.

    Gallup weights samples to correct for unequal selection probability, nonresponse, and double coverage of landline and cellphone users in the two sampling frames. Gallup also weights its final samples to match the U.S. population according to gender, age, race, Hispanic ethnicity, education, region, population density, and phone status (cellphone only, landline only, both, and cellphone mostly).

    Demographic weighting targets are based on the most recent Current Population Survey figures for the aged 18 and older U.S. population. Phone status targets are based on the most recent National Health Interview Survey. Population density targets are based on the most recent U.S. Census.

    Usage

    The year appended to each table name represents when the data was last updated. For example, January: Mood of the Nation - 2025** **has survey data collected up to and including 2025.

    For more information about what survey questions were asked over time, see the Supporting Files.

    Bulk Data Access

    Data access is required to view this section.

  9. n

    Somali Health and Demographic Survey 2020 - Somalia

    • microdata.nbs.gov.so
    Updated Jul 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Somali National Bureau of Statistics (2023). Somali Health and Demographic Survey 2020 - Somalia [Dataset]. https://microdata.nbs.gov.so/index.php/catalog/50
    Explore at:
    Dataset updated
    Jul 21, 2023
    Dataset authored and provided by
    Somali National Bureau of Statistics
    Time period covered
    2018 - 2019
    Area covered
    Somalia
    Description

    Abstract

    The SHDS is a national sample survey designed to provide information on population, birth spacing, reproductive health, nutrition, maternal and child health, child survival, HIV/AIDS and sexually transmitted infections (STIs), in Somalia.. The main objective of the SHDS was to provide evidence on the health and demographic characteristics of the Somali population that will guide the development of programmes and formulation of effective policies. This information would also help monitor and evaluate national, sub-national and sector development plans, including the Sustainable Development Goals (SDGs), both by the government and development partners. The target population for SHDS was the women between 15 and 49 years of age, and the children less than the age of 5 years

    Geographic coverage

    The SHDS 2020 was a nationally representative household survey.

    Analysis unit

    The unit analysis of this survey are households, women aged 15-49 and children aged 0-5

    Universe

    This sample survey covered Women aged 15-49 and Children aged 0-5 years.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The sample for the SHDS was designed to provide estimates of key indicators for the country as a whole, for each of the eighteen pre-war geographical regions, which are the country's first-level administrative divisions, as well as separately for urban, rural and nomadic areas. With the exception of Banadir region, which is considered fully urban, each region was stratified into urban, rural and nomadic areas, yielding a total of 55 sampling strata. All three strata of Lower Shabelle and Middle Juba regions, as well as the rural and nomadic strata of Bay region, were completely excluded from the survey due to security reasons. A final total of 47 sampling strata formed the sampling frame. Through the use of up-to-date, high-resolution satellite imagery, as well as on-the-ground knowledge of staff from the respective ministries of planning, all dwelling structures were digitized in urban and rural areas. Enumeration Areas (EAs) were formed onscreen through a spatial count of dwelling structures in a Geographic Information System (GIS) software. Thereafter, a sample ground verification of the digitized structures was carried out for large urban and rural areas and necessary adjustments made to the frame.

    Each EA created had a minimum of 50 and a maximum of 149 dwelling structures. A total of 10,525 EAs were digitized: 7,488 in urban areas and 3,037 in rural areas. However, because of security and accessibility constraints, not all digitized areas were included in the final sampling frame-9,136 EAs (7,308 in urban and 1,828 in rural) formed the final frame. The nomadic frame comprised an updated list of temporary nomadic settlements (TNS) obtained from the nomadic link workers who are tied to these settlements. A total of 2,521 TNS formed the SHDS nomadic sampling frame. The SHDS followed a three-stage stratified cluster sample design in urban and rural strata with a probability proportional to size, for the sampling of Primary Sampling Units (PSU) and Secondary Sampling Units (SSU) (respectively at the first and second stage), and systematic sampling of households at the third stage. For the nomadic stratum, a two-stage stratified cluster sample design was applied with a probability proportional to size for sampling of PSUs at the first stage and systematic sampling of households at the second stage. To ensure that the survey precision is comparable across regions, PSUs were allocated equally to all regions with slight adjustments in two regions. Within each stratum, a sample of 35 EAs was selected independently, with probability proportional to the number of digitized dwelling structures. In this first stage, a total of 1,433 EAs were allocated (to urban - 770 EAs, rural - 488 EAs, and nomadic - 175 EAs) representing about 16 percent of the total frame of EAs. In the urban and rural selected EAs, all households were listed and information on births and deaths was recorded through the maternal mortality questionnaire. The data collected in this first phase was cleaned and a summary of households listed per EA formed the sampling frames for the second phase. In the second stage, 10 EAs were sampled out of the possible 35 that were listed, using probability proportional to the number of households. All households in each of these 10 EAs were serialized based on their location in the EA and 30 of these households sampled for the survey. The serialization was done to ensure distribution of the households interviewed for the survey in the EA sampled. A total of 220 EAs and 150 EAs were allocated to urban and rural strata respectively, while in the third stage, an average of 30 households were selected from the listed households in every EA to yield a total of 16,360 households from 538 EAs covered (220 EAs in urban, 147 EAs in rural and 171 EAs in nomadic) out of the sampled 545 EAs. In nomadic areas, a sample of 10 EAs (in this case TNS) were selected from each nomadic stratum, with probability proportional to the number of estimated households. A complete listing of households was carried out in the selected TNS followed by the selection of 30 households for the main survey interview. In those TNS with less than 30 households, all households were interviewed for the main survey. All eligible ever-married women aged 12 to 49 and never-married women aged 15 to 49 were interviewed in the selected households, while the household questionnaire was administered to all households selected. The maternal mortality questionnaire was administered to all households in each sampled TNS.

    Mode of data collection

    Face-to-face [f2f]

    Response rate

    A total of 16,360 households were selected for the sample, of which 15,870 were occupied. Of the occupied households, 15,826 were successfully interviewed, yielding a response rate of 99.7 percent. The SHDS 2020 interviewed 16,486 women-11,876 ever-married women and 4,610 never-married women.

    Sampling error estimates

    Sampling errors are important data quality parameters which give measure of the precision of the survey estimates. They aid in determining the statistical reliability of survey estimates. The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the Somaliland Health and Demographic Survey ( SHDS 2020) to minimise this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically. Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the SHDS 2020 is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design. If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the SHDS 2020 sample was the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The variance approximation procedure that account for the complex sample design used R program was estimated sampling errors in SHDS which is Taylor series linearization. The non-linear estimates are approximated by linear ones for estimating variance. The linear approximation is derived by taking the first-order Tylor series approximation. Standard variance estimation methods for linear statistics are then used to estimate the variance of the linearized estimator. The Taylor linearisation method treats any linear statistic such as a percentage or mean as a ratio estimate, r = y/x, where y represents the total sample value for variable y and x represents the total number of cases in the group or subgroup under consideration

    Data appraisal

    • Household age distribution
    • Age distribution of eligible and interviewed women
    • Pregnancy- related mortality trends Note: See detailed data quality tables in APPENDIX C of the report.
  10. w

    Synthetic Data for an Imaginary Country, Sample, 2023 - World

    • microdata.worldbank.org
    • nada-demo.ihsn.org
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Data Group, Data Analytics Unit (2023). Synthetic Data for an Imaginary Country, Sample, 2023 - World [Dataset]. https://microdata.worldbank.org/index.php/catalog/5906
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Development Data Group, Data Analytics Unit
    Time period covered
    2023
    Area covered
    World, World
    Description

    Abstract

    The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.

    The full-population dataset (with about 10 million individuals) is also distributed as open data.

    Geographic coverage

    The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.

    Analysis unit

    Household, Individual

    Universe

    The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.

    Kind of data

    ssd

    Sampling procedure

    The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.

    Mode of data collection

    other

    Research instrument

    The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.

    Cleaning operations

    The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.

    Response rate

    This is a synthetic dataset; the "response rate" is 100%.

  11. H

    National Health and Nutrition Examination Survey (NHANES)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). National Health and Nutrition Examination Survey (NHANES) [Dataset]. http://doi.org/10.7910/DVN/IMWQPJ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the national health and nutrition examination survey (nhanes) with r nhanes is this fascinating survey where doctors and dentists accompany survey interviewers in a little mobile medical center that drives around the country. while the survey folks are interviewing people, the medical professionals administer laboratory tests and conduct a real doctor's examination. the b lood work and medical exam allow researchers like you and me to answer tough questions like, "how many people have diabetes but don't know they have diabetes?" conducting the lab tests and the physical isn't cheap, so a new nhanes data set becomes available once every two years and only includes about twelve thousand respondents. since the number of respondents is so small, analysts often pool multiple years of data together. the replication scripts below give a few different examples of how multiple years of data can be pooled with r. the survey gets conducted by the centers for disease control and prevention (cdc), and generalizes to the united states non-institutional, non-active duty military population. most of the data tables produced by the cdc include only a small number of variables, so importation with the foreign package's read.xport function is pretty straightforward. but that makes merging the appropriate data sets trickier, since it might not be clear what to pull for which variables. for every analysis, start with the table with 'demo' in the name -- this file includes basic demographics, weighting, and complex sample survey design variables. since it's quick to download the files directly from the cdc's ftp site, there's no massive ftp download automation script. this new github repository co ntains five scripts: 2009-2010 interview only - download and analyze.R download, import, save the demographics and health insurance files onto your local computer load both files, limit them to the variables needed for the analysis, merge them together perform a few example variable recodes create the complex sample survey object, using the interview weights run a series of pretty generic analyses on the health insurance ques tions 2009-2010 interview plus laboratory - download and analyze.R download, import, save the demographics and cholesterol files onto your local computer load both files, limit them to the variables needed for the analysis, merge them together perform a few example variable recodes create the complex sample survey object, using the mobile examination component (mec) weights perform a direct-method age-adjustment and matc h figure 1 of this cdc cholesterol brief replicate 2005-2008 pooled cdc oral examination figure.R download, import, save, pool, recode, create a survey object, run some basic analyses replicate figure 3 from this cdc oral health databrief - the whole barplot replicate cdc publications.R download, import, save, pool, merge, and recode the demographics file plus cholesterol laboratory, blood pressure questionnaire, and blood pressure laboratory files match the cdc's example sas and sudaan syntax file's output for descriptive means match the cdc's example sas and sudaan synta x file's output for descriptive proportions match the cdc's example sas and sudaan syntax file's output for descriptive percentiles replicate human exposure to chemicals report.R (user-contributed) download, import, save, pool, merge, and recode the demographics file plus urinary bisphenol a (bpa) laboratory files log-transform some of the columns to calculate the geometric means and quantiles match the 2007-2008 statistics shown on pdf page 21 of the cdc's fourth edition of the report click here to view these five scripts for more detail about the national health and nutrition examination survey (nhanes), visit: the cdc's nhanes homepage the national cancer institute's page of nhanes web tutorials notes: nhanes includes interview-only weights and interview + mobile examination component (mec) weights. if you o nly use questions from the basic interview in your analysis, use the interview-only weights (the sample size is a bit larger). i haven't really figured out a use for the interview-only weights -- nhanes draws most of its power from the combination of the interview and the mobile examination component variables. if you're only using variables from the interview, see if you can use a data set with a larger sample size like the current population (cps), national health interview survey (nhis), or medical expenditure panel survey (meps) instead. confidential to sas, spss, stata, sudaan users: why are you still riding around on a donkey after we've invented the internal combustion engine? time to transition to r. :D

  12. N

    Mountain View, CO Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Mountain View, CO Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1f38183-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mountain View
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Mountain View by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Mountain View. The dataset can be utilized to understand the population distribution of Mountain View by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Mountain View. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Mountain View.

    Key observations

    Largest age group (population): Male # 35-39 years (40) | Female # 30-34 years (32). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Mountain View population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Mountain View is shown in the following column.
    • Population (Female): The female population in the Mountain View is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Mountain View for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Mountain View Population by Gender. You can refer the same here

  13. N

    Gratis, OH Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Gratis, OH Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/66af7481-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ohio, Gratis
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Gratis by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Gratis. The dataset can be utilized to understand the population distribution of Gratis by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Gratis. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Gratis.

    Key observations

    Largest age group (population): Male # 0-4 years (74) | Female # 25-29 years (74). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Gratis population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Gratis is shown in the following column.
    • Population (Female): The female population in the Gratis is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Gratis for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Gratis Population by Gender. You can refer the same here

  14. d

    City of Tempe 2022 Community Survey Data

    • catalog.data.gov
    • performance.tempe.gov
    • +9more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). City of Tempe 2022 Community Survey Data [Dataset]. https://catalog.data.gov/dataset/city-of-tempe-2022-community-survey-data
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    Description and PurposeThese data include the individual responses for the City of Tempe Annual Community Survey conducted by ETC Institute. These data help determine priorities for the community as part of the City's on-going strategic planning process. Averaged Community Survey results are used as indicators for several city performance measures. The summary data for each performance measure is provided as an open dataset for that measure (separate from this dataset). The performance measures with indicators from the survey include the following (as of 2022):1. Safe and Secure Communities1.04 Fire Services Satisfaction1.06 Crime Reporting1.07 Police Services Satisfaction1.09 Victim of Crime1.10 Worry About Being a Victim1.11 Feeling Safe in City Facilities1.23 Feeling of Safety in Parks2. Strong Community Connections2.02 Customer Service Satisfaction2.04 City Website Satisfaction2.05 Online Services Satisfaction Rate2.15 Feeling Invited to Participate in City Decisions2.21 Satisfaction with Availability of City Information3. Quality of Life3.16 City Recreation, Arts, and Cultural Centers3.17 Community Services Programs3.19 Value of Special Events3.23 Right of Way Landscape Maintenance3.36 Quality of City Services4. Sustainable Growth & DevelopmentNo Performance Measures in this category presently relate directly to the Community Survey5. Financial Stability & VitalityNo Performance Measures in this category presently relate directly to the Community SurveyMethodsThe survey is mailed to a random sample of households in the City of Tempe. Follow up emails and texts are also sent to encourage participation. A link to the survey is provided with each communication. To prevent people who do not live in Tempe or who were not selected as part of the random sample from completing the survey, everyone who completed the survey was required to provide their address. These addresses were then matched to those used for the random representative sample. If the respondent’s address did not match, the response was not used. To better understand how services are being delivered across the city, individual results were mapped to determine overall distribution across the city. Additionally, demographic data were used to monitor the distribution of responses to ensure the responding population of each survey is representative of city population. Processing and LimitationsThe location data in this dataset is generalized to the block level to protect privacy. This means that only the first two digits of an address are used to map the location. When they data are shared with the city only the latitude/longitude of the block level address points are provided. This results in points that overlap. In order to better visualize the data, overlapping points were randomly dispersed to remove overlap. The result of these two adjustments ensure that they are not related to a specific address, but are still close enough to allow insights about service delivery in different areas of the city. This data is the weighted data provided by the ETC Institute, which is used in the final published PDF report.The 2022 Annual Community Survey report is available on data.tempe.gov. The individual survey questions as well as the definition of the response scale (for example, 1 means “very dissatisfied” and 5 means “very satisfied”) are provided in the data dictionary.Additional InformationSource: Community Attitude SurveyContact (author): Wydale HolmesContact E-Mail (author): wydale_holmes@tempe.govContact (maintainer): Wydale HolmesContact E-Mail (maintainer): wydale_holmes@tempe.govData Source Type: Excel tablePreparation Method: Data received from vendor after report is completedPublish Frequency: AnnualPublish Method: ManualData Dictionary

  15. e

    Annual Population Survey: Well-Being, April 2011 - March 2015: Secure Access...

    • b2find.eudat.eu
    Updated Mar 15, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Annual Population Survey: Well-Being, April 2011 - March 2015: Secure Access - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/b5c11ddf-55c3-57c2-9730-80e7c5bdb940
    Explore at:
    Dataset updated
    Mar 15, 2015
    Description

    Abstract copyright UK Data Service and data collection copyright owner. The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS) (held at the UK Data Archive under GN 33246), all of its associated LFS boosts and the APS boost. Thus, the APS combines results from five different sources: the LFS (waves 1 and 5); the English Local Labour Force Survey (LLFS), the Welsh Labour Force Survey (WLFS), the Scottish Labour Force Survey (SLFS) and the Annual Population Survey Boost Sample (APS(B) - however, this ceased to exist at the end of December 2005, so APS data from January 2006 onwards will contain all the above data apart from APS(B)). Users should note that the LLFS, WLFS, SLFS and APS(B) are not held separately at the UK Data Archive. For further detailed information about methodology, users should consult the Labour Force Survey User Guide, selected volumes of which have been included with the APS documentation for reference purposes (see 'Documentation' table below). The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples such as the WLFS and SLFS, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom. APS Well-Being data Since April 2011, the APS has included questions about personal and subjective well-being. The responses to these questions have been made available as annual sub-sets to the APS Person level files. It is important to note that the size of the achieved sample of the well-being questions within the dataset is approximately 165,000 people. This reduction is due to the well-being questions being only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. As a result some caution should be used when using analysis of responses to well-being questions at detailed geography areas and also in relation to any other variables where respondent numbers are relatively small. It is recommended that for lower level geography analysis that the variable UACNTY09 is used. As well as annual datasets, three-year pooled datasets are available. When combining multiple APS datasets together, it is important to account for the rotational design of the APS and ensure that no person appears more than once in the multiple year dataset. This is because the well-being datasets are not designed to be longitudinal e.g. they are not designed to track individuals over time/be used for longitudinal analysis. They are instead cross-sectional, and are designed to use a cross-section of the population to make inferences about the whole population. For this reason, the three-year dataset has been designed to include only a selection of the cases from the individual year APS datasets, chosen in such a way that no individuals are included more than once, and the cases included are approximately equally spread across the three years. Further information is available in the 'Documentation' section below. Secure Access APS Well-Being data Secure Access datasets for the APS Well-Being include additional variables not included in either the standard End User Licence (EUL) versions (see under GN 33357) or the Special Licence (SL) access versions (see under GN 33376). Extra variables that typically can be found in the Secure Access version but not in the EUL or SL versions relate to:geography, including:Postcodes Census Area Statistics (CAS) WardsCensus Output AreasNomenclature of Units for Territorial Statistics (NUTS) level 2 and 3 areasLower and Middle Layer Super Output AreasTravel to Work AreasUnitary authority / Local Authority District of place of work (main job)region of place of work for first and second jobsqualifications, education and training including level of highest qualification, qualifications from Government schemes, qualifications related to work, qualifications from school, qualifications from university of college and qualifications gained from outside the UK detailed ethnic group for Scottish respondentsdetailed religious denomination for Northern Irish respondentslength health problem has limited activity learning difficulty or learning disabilityoccupation in apprenticeship or second job number of bedrooms number of dependent children in household aged under 19Prospective users of the Secure Access version of the APS Well-Being will need to fulfil additional requirements, commencing with the completion of an extra application form to demonstrate to the data owners exactly why they need access to the extra, more detailed variables, in order to obtain permission to use that version. Secure Access data users must also complete face-to-face training and agree to the Secure Access User Agreement and Licence Compliance Policy (see 'Access' section below). Therefore, users are encouraged to download and inspect the EUL version of the data prior to ordering the Secure Access (or SL) version. Further details and links to all APS studies available from the UK Data Archive can be found via the APS Key Data series webpage. APS Well-Being Datasets: Information, July 2016 From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Users should no longer use the bespoke well-being datasets (SNs 6994, 6999, 7091, 7092, 7364, 7365, 7565, 7566 and 7961, but should now use the variables included on the April-March APS person datasets instead. Further information on the transition can be found on the Personal well-being in the UK: 2015 to 2016 Documentation and coding frames The APS is compiled from variables present in the LFS. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation (e.g. coding frames for education, industrial and geographic variables, which are held in LFS User Guide Vol.5, Classifications), users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages. May 2018 Update Due to a change in the Travel-to-Work Area coding structure from 2001 to 2011, the variable TTWA9D has been relabelled in the pooled data file for 2012-2015. Main Topics: Topics covered include: household composition and relationships, housing tenure, nationality, ethnicity and residential history, employment and training (including government schemes), workplace and location, job hunting, educational background and qualifications. Many of the variables included in the survey are the same as those in the LFS. Multi-stage stratified random sample Face-to-face interview Telephone interview 2011 2015 ACADEMIC ACHIEVEMENT ADULT EDUCATION ADVANCED LEVEL EXAM... ADVANCED SUPPLEMENT... AGE ANXIETY APPLICATION FOR EMP... APPRENTICESHIP ARMED FORCES ATTITUDES BEDROOMS BUSINESS AND TECHNO... CARE OF DEPENDANTS CERTIFICATE OF SECO... CERTIFICATE OF SIXT... CHILDREN CITY AND GUILDS OF ... COHABITATION Censuses DEBILITATIVE ILLNESS DEGREES DISABILITIES DISABLED PERSONS ECONOMIC ACTIVITY EDUCATIONAL BACKGROUND EDUCATIONAL CERTIFI... EDUCATIONAL COURSES EDUCATIONAL STATUS EMPLOYEES EMPLOYER SPONSORED ... EMPLOYMENT EMPLOYMENT HISTORY EMPLOYMENT PROGRAMMES EMPLOYMENT SERVICES ETHNIC GROUPS FAMILIES FIELDS OF STUDY FULL TIME EMPLOYMENT FURNISHED ACCOMMODA... FURTHER EDUCATION GENDER GENERAL CERTIFICATE... GENERAL NATIONAL VO... GENERAL SCOTTISH VO... HAPPINESS HEADS OF HOUSEHOLD HEALTH HEALTH STATUS HIGHER EDUCATION HIGHER NATIONAL CER... HOURS OF WORK HOUSEHOLDS HOUSING HOUSING TENURE ILL HEALTH INCOME INDUSTRIES JOB CHANGING JOB HUNTING LANDLORDS LEARNING DISABILITIES LONGTERM UNEMPLOYMENT Labour and employment MANAGERS MARITAL STATUS NATIONAL IDENTITY NATIONAL VOCATIONAL... NATIONALITY NURSING EDUCATION OCCUPATIONAL QUALIF... OCCUPATIONS ORDINARY LEVEL EXAM... ORDINARY NATIONAL C... OVERTIME PART TIME COURSES PART TIME EMPLOYMENT PLACE OF BIRTH PLACE OF RESIDENCE PRIVATE SECTOR PUBLIC SECTOR QUALIFICATIONS REDUNDANCY RELIGIOUS AFFILIATION RESIDENTIAL MOBILITY ROYAL SOCIETY OF AR... RURAL AREAS SCOTTISH CERTIFICAT... SCOTTISH VOCATIONAL... SCOTTISH VOCATIONAL... SELF EMPLOYED SICK LEAVE SMOKING SOCIAL SECURITY BEN... SOCIO ECONOMIC STATUS SPOUSES STUDENTS SUBSIDIARY EMPLOYMENT SUPERVISORS SUPERVISORY STATUS TEMPORARY EMPLOYMENT TERMINATION OF SERVICE TIED HOUSING TRAINING TRAINING COURSES UNEMPLOYED UNEMPLOYMENT UNFURNISHED ACCOMMO... UNWAGED WORKERS URBAN AREAS United Kingdom VOCATIONAL EDUCATIO... WAGES WELL BEING SOCIETY WORKING CONDITIONS WORKPLACE

  16. Data from: Population Assessment of Tobacco and Health (PATH) Study [United...

    • icpsr.umich.edu
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2025). Population Assessment of Tobacco and Health (PATH) Study [United States] Restricted-Use Files [Dataset]. http://doi.org/10.3886/ICPSR36231.v42
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36231/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36231/terms

    Area covered
    United States
    Description

    The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population (CNP) at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Unit (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the CNP at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the CNP at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This "second replenishment sample" was combined for estimation and analysis purposes with the Wave 7 adult and youth respondents from the Wave 4 Cohorts who were at least age 15 and in the CNP at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Restricted-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Dataset 0002 (DS0002) contains the data from the State Design Data. This file contains 7 variables and 82,139 cases. The state identifier in the State Design file reflects the participant's state of residence at the time of selection and recruitment for the PATH Study. Dataset 1011 (DS1011) contains the data from the Wave 1 Adult Questionnaire. This data file contains 2,021 variables and 32,320 cases. Each of the cases represents a single, completed interview. Dataset 1012 (DS1012) contains the data from the Wave 1 Youth and Parent Questionnaire. This file contains 1,431 variables and 13,651 cases. Dataset 1411 (DS1411) contains the Wave 1 State Identifier data for Adults and has 5 variables and 32,320 cases. Dataset 1412 (DS1412) contains the Wave 1 State Identifier data for Youth (and Parents) and has 5 variables and 13,651 cases. The same 5 variables are in each State Identifier dataset, including PERSONID for linking the State Identifier to the questionnaire and biomarker data and 3 variables designating the state (state Federal Information Processing System (FIPS), state abbreviation, and full name of the state). The State Identifier values in these datasets represent participants' state of residence at the time of Wave 1, which is also their state of residence at the time of recruitment. Dataset 1611 (DS1611) contains the Tobacco Universal Product Code (UPC) data from Wave 1. This data file contains 32 variables and 8,601 cases. This file contains UPC values on the packages of tobacco products used or in the possession of adult respondents at the time of Wave 1. The UPC values can be used to identify and validate the specific products used by respondents and augment the analyses of the characteristics of tobacco products used

  17. Pew Survey on Israel's Religiously Divided Society Data Set

    • thearda.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pew Forum on Religion and Public Life, Pew Survey on Israel's Religiously Divided Society Data Set [Dataset]. http://doi.org/10.17605/OSF.IO/GSQVJ
    Explore at:
    Dataset provided by
    Association of Religion Data Archives
    Authors
    Pew Forum on Religion and Public Life
    Dataset funded by
    The Pew Charitable Trusts
    Pew Research Centerhttp://pewresearch.org/
    The Neubauer Family Foundation
    Description

    Between Oct. 14, 2014, and May 21, 2015, Pew Research Center, with generous funding from The Pew Charitable Trusts and the Neubauer Family Foundation, completed 5,601 face-to-face interviews with non-institutionalized adults ages 18 and older living in Israel.

    The survey sampling plan was based on six districts defined in the 2008 Israeli census. In addition, Jewish residents of West Bank (Judea and Samaria) were included.

    The sample includes interviews with 3,789 respondents defined as Jews, 871 Muslims, 468 Christians and 439 Druze. An additional 34 respondents belong to other religions or are religiously unaffiliated. Five groups were oversampled as part of the survey design: Jews living in the West Bank, Haredim, Christian Arabs, Arabs living in East Jerusalem and Druze.

    Interviews were conducted under the direction of Public Opinion and Marketing Research of Israel (PORI). Surveys were administered through face-to-face, paper and pencil interviews conducted at the respondent's place of residence. Sampling was conducted through a multi-stage stratified area probability sampling design based on national population data available through the Israel's Central Bureau of Statistics' 2008 census.

    The questionnaire was designed by Pew Research Center staff in consultation with subject matter experts and advisers to the project. The questionnaire was translated into Hebrew, Russian and Arabic, independently verified by professional linguists conversant in regional dialects and pretested prior to fieldwork.

    The questionnaire was divided into four sections. All respondents who took the survey in Russian or Hebrew were branched into the Jewish questionnaire (Questionnaire A). Arabic-speaking respondents were branched into the Muslim (Questionnaire B), Christian (Questionnaire C) or Druze questionnaire (D) based on their response to the religious identification question. For the full question wording and exact order of questions, please see the questionnaire.

    Note that not all respondents who took the questionnaire in Hebrew or Russian are classified as Jews in this study. For further details on how respondents were classified as Jews, Muslims, Christians and Druze in the study, please see sidebar in the report titled "http://www.pewforum.org/2016/03/08/israels-religiously-divided-society/" Target="_blank">"How Religious are Defined".

    Following fieldwork, survey performance was assessed by comparing the results for key demographic variables with population statistics available through the census. Data were weighted to account for different probabilities of selection among respondents. Where appropriate, data also were weighted through an iterative procedure to more closely align the samples with official population figures for gender, age and education. The reported margins of sampling error and the statistical tests of significance used in the analysis take into account the design effects due to weighting and sample design.

    In addition to sampling error and other practical difficulties, one should bear in mind that question wording also can have an impact on the findings of opinion polls.

  18. w

    Demographic and Health Survey 2022 - Bangladesh

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Sep 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mitra and Associates (2024). Demographic and Health Survey 2022 - Bangladesh [Dataset]. https://microdata.worldbank.org/index.php/catalog/6290
    Explore at:
    Dataset updated
    Sep 9, 2024
    Dataset authored and provided by
    Mitra and Associates
    Time period covered
    2022
    Area covered
    Bangladesh
    Description

    Abstract

    The 2022 Bangladesh Demographic and Health Survey (2022 BDHS) is the ninth national survey to report on the demographic and health conditions of women and their families in Bangladesh. The survey was conducted under the authority of the National Institute of Population Research and Training (NIPORT), Medical Education and Family Welfare Division, Ministry of Health and Family Welfare (MOHFW), Government of Bangladesh.

    The primary objective of the 2022 BDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the BDHS collected information on: • Fertility and childhood mortality levels • Fertility preferences • Awareness, approval, and use of family planning methods • Maternal and child health, including breastfeeding practices • Nutrition levels • Newborn care

    The information collected through the 2022 BDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the population of Bangladesh. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Bangladesh.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2022 BDHS is the Integrated Multi-Purpose Sampling Master Sample, selected from a complete list of enumeration areas (EAs) covering the whole country. It was prepared by the Bangladesh Bureau of Statistics (BBS) for the 2011 population census of the People’s Republic of Bangladesh. The sampling frame contains information on EA location, type of residence (city corporation, other than city corporation, or rural), and the estimated number of residential households. A sketch map that delineates geographic boundaries is available for each EA.

    Bangladesh contains eight administrative divisions: Barishal, Chattogram, Dhaka, Khulna, Mymensingh, Rajshahi, Rangpur, and Sylhet. Each division is divided into zilas and each zila into upazilas. Each urban area in an upazila is divided into wards, which are further subdivided into mohallas. A rural area in an upazila is divided into union parishads (UPs) and, within UPs, into mouzas. These administrative divisions allow the country to be separated into rural and urban areas.

    The survey is based on a two-stage stratified sample of households. In the first stage, 675 EAs (237 in urban areas and 438 in rural areas) were selected with probability proportional to EA size. The BBS drew the sample in the first stage following specifications provided by ICF. A complete household listing operation was then carried out by Mitra and Associates in all selected EAs to provide a sampling frame for the second-stage selection of households.

    In the second stage of sampling, a systematic sample of an average of 45 households per EA was selected to provide statistically reliable estimates of key demographic and health variables for urban and rural areas separately and for each of the eight divisions in Bangladesh.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four types of questionnaires were used for the 2022 BDHS: the Household Questionnaire, the Woman’s Questionnaire (completed by ever-married women age 15–49), the Biomarker Questionnaire, and two verbal autopsy questionnaires. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect population and health issues relevant to Bangladesh. In addition, a selfadministered Fieldworker Questionnaire collected information about the survey’s fieldworkers. The questionnaires were adapted for use in Bangladesh after a series of meetings with a Technical Working Group (TWG). The questionnaires were developed in English and then translated to and printed in Bangla.

    Cleaning operations

    The survey data were collected using tablet PCs running Windows 10.1 and Census and Survey Processing System (CSPro) software, jointly developed by the United States Census Bureau, ICF, and Serpro S.A. The Bangla language questionnaire was used for collecting data via computer-assisted personal interviewing (CAPI). The CAPI program accepted only valid responses, automatically performed checks on ranges of values, skipped to the appropriate question based on the responses given, and checked the consistency of the data collected. Answers to the survey questions were entered into the PC tablets by each interviewer. Supervisors downloaded interview data to their computer, checked the data for completeness, and monitored fieldwork progress

    Each day, after completion of interviews, field supervisors submitted data to the servers. Data were sent to the central office via the internet or other modes of telecommunication allowing electronic transfer of files. The data processing manager monitored the quality of the data received and downloaded completed files into the system. ICF provided the CSPro software for data processing and offered technical assistance in preparation of the data editing programs. Secondary editing was conducted simultaneously with data collection. All technical support for data processing and use of PC tablets was provided by ICF.

  19. d

    COVID Impact Survey - Public Data

    • data.world
    csv, zip
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2024). COVID Impact Survey - Public Data [Dataset]. https://data.world/associatedpress/covid-impact-survey-public-data
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Oct 16, 2024
    Authors
    The Associated Press
    Description

    Overview

    The Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.

    Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).

    The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.

    The survey is focused on three core areas of research:

    • Physical Health: Symptoms related to COVID-19, relevant existing conditions and health insurance coverage.
    • Economic and Financial Health: Employment, food security, and government cash assistance.
    • Social and Mental Health: Communication with friends and family, anxiety and volunteerism. (Questions based on those used on the U.S. Census Bureau’s Current Population Survey.) ## Using this Data - IMPORTANT This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!

    Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.

    Queries

    If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".

    Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.

    Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.

    The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."

    Margin of Error

    The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:

    • At least twice the margin of error, you can report there is a clear difference.
    • At least as large as the margin of error, you can report there is a slight or apparent difference.
    • Less than or equal to the margin of error, you can report that the respondents are divided or there is no difference. ## A Note on Timing Survey results will generally be posted under embargo on Tuesday evenings. The data is available for release at 1 p.m. ET Thursdays.

    About the Data

    The survey data will be provided under embargo in both comma-delimited and statistical formats.

    Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)

    Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.

    Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.

    Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.

    Attribution

    Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.

    AP Data Distributions

    ​To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  20. w

    Demographic and Health Survey 2017-2018 - Pakistan

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Feb 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Population Studies (NIPS) (2019). Demographic and Health Survey 2017-2018 - Pakistan [Dataset]. https://microdata.worldbank.org/index.php/catalog/3411
    Explore at:
    Dataset updated
    Feb 26, 2019
    Dataset authored and provided by
    National Institute of Population Studies (NIPS)
    Time period covered
    2017 - 2018
    Area covered
    Pakistan
    Description

    Abstract

    The Pakistan Demographic and Health Survey PDHS 2017-18 was the fourth of its kind in Pakistan, following the 1990-91, 2006-07, and 2012-13 PDHS surveys.

    The primary objective of the 2017-18 PDHS is to provide up-to-date estimates of basic demographic and health indicators. The PDHS provides a comprehensive overview of population, maternal, and child health issues in Pakistan. Specifically, the 2017-18 PDHS collected information on:

    • Key demographic indicators, particularly fertility and under-5 mortality rates, at the national level, for urban and rural areas, and within the country’s eight regions
    • Direct and indirect factors that determine levels and trends of fertility and child mortality
    • Contraceptive knowledge and practice
    • Maternal health and care including antenatal, perinatal, and postnatal care
    • Child feeding practices, including breastfeeding, and anthropometric measures to assess the nutritional status of children under age 5 and women age 15-49
    • Key aspects of family health, including vaccination coverage and prevalence of diseases among infants and children under age 5
    • Knowledge and attitudes of women and men about sexually transmitted infections (STIs), including HIV/AIDS, and potential exposure to risk
    • Women's empowerment and its relationship to reproductive health and family planning
    • Disability level
    • Extent of gender-based violence
    • Migration patterns

    The information collected through the 2017-18 PDHS is intended to assist policymakers and program managers at the federal and provincial government levels, in the private sector, and at international organisations in evaluating and designing programs and strategies for improving the health of the country’s population. The data also provides information on indicators relevant to the Sustainable Development Goals.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-49

    Universe

    The survey covered all de jure household members (usual residents), children age 0-5 years, women age 15-49 years and men age 15-49 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2017-18 PDHS is a complete list of enumeration blocks (EBs) created for the Pakistan Population and Housing Census 2017, which was conducted from March to May 2017. The Pakistan Bureau of Statistics (PBS) supported the sample design of the survey and worked in close coordination with NIPS. The 2017-18 PDHS represents the population of Pakistan including Azad Jammu and Kashmir (AJK) and the former Federally Administrated Tribal Areas (FATA), which were not included in the 2012-13 PDHS. The results of the 2017-18 PDHS are representative at the national level and for the urban and rural areas separately. The survey estimates are also representative for the four provinces of Punjab, Sindh, Khyber Pakhtunkhwa, and Balochistan; for two regions including AJK and Gilgit Baltistan (GB); for Islamabad Capital Territory (ICT); and for FATA. In total, there are 13 secondlevel survey domains.

    The 2017-18 PDHS followed a stratified two-stage sample design. The stratification was achieved by separating each of the eight regions into urban and rural areas. In total, 16 sampling strata were created. Samples were selected independently in every stratum through a two-stage selection process. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units at different levels, and by using a probability-proportional-to-size selection at the first stage of sampling.

    The first stage involved selecting sample points (clusters) consisting of EBs. EBs were drawn with a probability proportional to their size, which is the number of households residing in the EB at the time of the census. A total of 580 clusters were selected.

    The second stage involved systematic sampling of households. A household listing operation was undertaken in all of the selected clusters, and a fixed number of 28 households per cluster was selected with an equal probability systematic selection process, for a total sample size of approximately 16,240 households. The household selection was carried out centrally at the NIPS data processing office. The survey teams only interviewed the pre-selected households. To prevent bias, no replacements and no changes to the pre-selected households were allowed at the implementing stages.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Six questionnaires were used in the 2017-18 PDHS: Household Questionnaire, Woman’s Questionnaire, Man’s Questionnaire, Biomarker Questionnaire, Fieldworker Questionnaire, and the Community Questionnaire. The first five questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Pakistan. The Community Questionnaire was based on the instrument used in the previous rounds of the Pakistan DHS. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. The survey protocol was reviewed and approved by the National Bioethics Committee, Pakistan Health Research Council, and ICF Institutional Review Board. After the questionnaires were finalised in English, they were translated into Urdu and Sindhi. The 2017-18 PDHS used paper-based questionnaires for data collection, while computerassisted field editing (CAFE) was used to edit the questionnaires in the field.

    Cleaning operations

    The processing of the 2017-18 PDHS data began simultaneously with the fieldwork. As soon as data collection was completed in each cluster, all electronic data files were transferred via IFSS to the NIPS central office in Islamabad. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing was carried out in the central office, which involved resolving inconsistencies and coding the openended questions. The NIPS data processing manager coordinated the exercise at the central office. The PDHS core team members assisted with the secondary editing. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage as it maximised the likelihood of the data being error-free and accurate. The secondary editing of the data was completed in the first week of May 2018. The final cleaning of the data set was carried out by The DHS Program data processing specialist and completed on 25 May 2018.

    Response rate

    A total of 15,671 households were selected for the survey, of which 15,051 were occupied. The response rates are presented separately for Pakistan, Azad Jammu and Kashmir, and Gilgit Baltistan. Of the 12,338 occupied households in Pakistan, 11,869 households were successfully interviewed, yielding a response rate of 96%. Similarly, the household response rates were 98% in Azad Jammu and Kashmir and 99% in Gilgit Baltistan.

    In the interviewed households, 94% of ever-married women age 15-49 in Pakistan, 97% in Azad Jammu and Kashmir, and 94% in Gilgit Baltistan were interviewed. In the subsample of households selected for the male survey, 87% of ever-married men age 15-49 in Pakistan, 94% in Azad Jammu and Kashmir, and 84% in Gilgit Baltistan were successfully interviewed.

    Overall, the response rates were lower in urban than in rural areas. The difference is slightly less pronounced for Azad Jammu and Kashmir and Gilgit Baltistan. The response rates for men are lower than those for women, as men are often away from their households for work.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Pakistan Demographic and Health Survey (2017-18 PDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 PDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.cityofnewyork.us (2025). Mayor’s Office of Operations: Demographic Survey [Dataset]. https://catalog.data.gov/dataset/mayors-office-of-operations-demographic-survey

Mayor’s Office of Operations: Demographic Survey

Explore at:
Dataset updated
Jul 19, 2025
Dataset provided by
data.cityofnewyork.us
Description

Pursuant to Local Laws 126, 127, and 128 of 2016, certain demographic data is collected voluntarily and anonymously by persons voluntarily seeking social services. This data can be used by agencies and the public to better understand the demographic makeup of client populations and to better understand and serve residents of all backgrounds and identities. The data presented here has been collected through either electronic form or paper surveys offered at the point of application for services. These surveys are anonymous. Each record represents an anonymized demographic profile of an individual applicant for social services, disaggregated by response option, agency, and program. Response options include information regarding ancestry, race, primary and secondary languages, English proficiency, gender identity, and sexual orientation. Idiosyncrasies or Limitations: Note that while the dataset contains the total number of individuals who have identified their ancestry or languages spoke, because such data is collected anonymously, there may be instances of a single individual completing multiple voluntary surveys. Additionally, the survey being both voluntary and anonymous has advantages as well as disadvantages: it increases the likelihood of full and honest answers, but since it is not connected to the individual case, it does not directly inform delivery of services to the applicant. The paper and online versions of the survey ask the same questions but free-form text is handled differently. Free-form text fields are expected to be entered in English although the form is available in several languages. Surveys are presented in 11 languages. Paper Surveys 1. Are optional 2. Survey taker is expected to specify agency that provides service 2. Survey taker can skip or elect not to answer questions 3. Invalid/unreadable data may be entered for survey date or date may be skipped 4. OCRing of free-form tet fields may fail. 5. Analytical value of free-form text answers is unclear Online Survey 1. Are optional 2. Agency is defaulted based on the URL 3. Some questions must be answered 4. Date of survey is automated

Search
Clear search
Close search
Google apps
Main menu