Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The research focus in the field of remotely sensed imagery has shifted from collection and warehousing of data ' tasks for which a mature technology already exists, to auto-extraction of information and knowledge discovery from this valuable resource ' tasks for which technology is still under active development. In particular, intelligent algorithms for analysis of very large rasters, either high resolutions images or medium resolution global datasets, that are becoming more and more prevalent, are lacking. We propose to develop the Geospatial Pattern Analysis Toolbox (GeoPAT) a computationally efficient, scalable, and robust suite of algorithms that supports GIS processes such as segmentation, unsupervised/supervised classification of segments, query and retrieval, and change detection in giga-pixel and larger rasters. At the core of the technology that underpins GeoPAT is the novel concept of pattern-based image analysis. Unlike pixel-based or object-based (OBIA) image analysis, GeoPAT partitions an image into overlapping square scenes containing 1,000'100,000 pixels and performs further processing on those scenes using pattern signature and pattern similarity ' concepts first developed in the field of Content-Based Image Retrieval. This fusion of methods from two different areas of research results in orders of magnitude performance boost in application to very large images without sacrificing quality of the output.
GeoPAT v.1.0 already exists as the GRASS GIS add-on that has been developed and tested on medium resolution continental-scale datasets including the National Land Cover Dataset and the National Elevation Dataset. Proposed project will develop GeoPAT v.2.0 ' much improved and extended version of the present software. We estimate an overall entry TRL for GeoPAT v.1.0 to be 3-4 and the planned exit TRL for GeoPAT v.2.0 to be 5-6. Moreover, several new important functionalities will be added. Proposed improvements includes conversion of GeoPAT from being the GRASS add-on to stand-alone software capable of being integrated with other systems, full implementation of web-based interface, writing new modules to extent it applicability to high resolution images/rasters and medium resolution climate data, extension to spatio-temporal domain, enabling hierarchical search and segmentation, development of improved pattern signature and their similarity measures, parallelization of the code, implementation of divide and conquer strategy to speed up selected modules.
The proposed technology will contribute to a wide range of Earth Science investigations and missions through enabling extraction of information from diverse types of very large datasets. Analyzing the entire dataset without the need of sub-dividing it due to software limitations offers important advantage of uniformity and consistency. We propose to demonstrate the utilization of GeoPAT technology on two specific applications. The first application is a web-based, real time, visual search engine for local physiography utilizing query-by-example on the entire, global-extent SRTM 90 m resolution dataset. User selects region where process of interest is known to occur and the search engine identifies other areas around the world with similar physiographic character and thus potential for similar process. The second application is monitoring urban areas in their entirety at the high resolution including mapping of impervious surface and identifying settlements for improved disaggregation of census data.
CrimeMapTutorial is a step-by-step tutorial for learning crime mapping using ArcView GIS or MapInfo Professional GIS. It was designed to give users a thorough introduction to most of the knowledge and skills needed to produce daily maps and spatial data queries that uniformed officers and detectives find valuable for crime prevention and enforcement. The tutorials can be used either for self-learning or in a laboratory setting. The geographic information system (GIS) and police data were supplied by the Rochester, New York, Police Department. For each mapping software package, there are three PDF tutorial workbooks and one WinZip archive containing sample data and maps. Workbook 1 was designed for GIS users who want to learn how to use a crime-mapping GIS and how to generate maps and data queries. Workbook 2 was created to assist data preparers in processing police data for use in a GIS. This includes address-matching of police incidents to place them on pin maps and aggregating crime counts by areas (like car beats) to produce area or choropleth maps. Workbook 3 was designed for map makers who want to learn how to construct useful crime maps, given police data that have already been address-matched and preprocessed by data preparers. It is estimated that the three tutorials take approximately six hours to complete in total, including exercises.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data was prepared as input for the Selkie GIS-TE tool. This GIS tool aids site selection, logistics optimization and financial analysis of wave or tidal farms in the Irish and Welsh maritime areas. Read more here: https://www.selkie-project.eu/selkie-tools-gis-technoeconomic-model/
This research was funded by the Science Foundation Ireland (SFI) through MaREI, the SFI Research Centre for Energy, Climate and the Marine and by the Sustainable Energy Authority of Ireland (SEAI). Support was also received from the European Union's European Regional Development Fund through the Ireland Wales Cooperation Programme as part of the Selkie project.
File Formats
Results are presented in three file formats:
tif Can be imported into a GIS software (such as ARC GIS) csv Human-readable text format, which can also be opened in Excel png Image files that can be viewed in standard desktop software and give a spatial view of results
Input Data
All calculations use open-source data from the Copernicus store and the open-source software Python. The Python xarray library is used to read the data.
Hourly Data from 2000 to 2019
Wind -
Copernicus ERA5 dataset
17 by 27.5 km grid
10m wind speed
Wave - Copernicus Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis dataset 3 by 5 km grid
Accessibility
The maximum limits for Hs and wind speed are applied when mapping the accessibility of a site.
The Accessibility layer shows the percentage of time the Hs (Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis) and wind speed (ERA5) are below these limits for the month.
Input data is 20 years of hourly wave and wind data from 2000 to 2019, partitioned by month. At each timestep, the accessibility of the site was determined by checking if
the Hs and wind speed were below their respective limits. The percentage accessibility is the number of hours within limits divided by the total number of hours for the month.
Environmental data is from the Copernicus data store (https://cds.climate.copernicus.eu/). Wave hourly data is from the 'Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis' dataset.
Wind hourly data is from the ERA 5 dataset.
Availability
A device's availability to produce electricity depends on the device's reliability and the time to repair any failures. The repair time depends on weather
windows and other logistical factors (for example, the availability of repair vessels and personnel.). A 2013 study by O'Connor et al. determined the
relationship between the accessibility and availability of a wave energy device. The resulting graph (see Fig. 1 of their paper) shows the correlation between
accessibility at Hs of 2m and wind speed of 15.0m/s and availability. This graph is used to calculate the availability layer from the accessibility layer.
The input value, accessibility, measures how accessible a site is for installation or operation and maintenance activities. It is the percentage time the
environmental conditions, i.e. the Hs (Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis) and wind speed (ERA5), are below operational limits.
Input data is 20 years of hourly wave and wind data from 2000 to 2019, partitioned by month. At each timestep, the accessibility of the site was determined
by checking if the Hs and wind speed were below their respective limits. The percentage accessibility is the number of hours within limits divided by the total
number of hours for the month. Once the accessibility was known, the percentage availability was calculated using the O'Connor et al. graph of the relationship
between the two. A mature technology reliability was assumed.
Weather Window
The weather window availability is the percentage of possible x-duration windows where weather conditions (Hs, wind speed) are below maximum limits for the
given duration for the month.
The resolution of the wave dataset (0.05° × 0.05°) is higher than that of the wind dataset
(0.25° x 0.25°), so the nearest wind value is used for each wave data point. The weather window layer is at the resolution of the wave layer.
The first step in calculating the weather window for a particular set of inputs (Hs, wind speed and duration) is to calculate the accessibility at each timestep.
The accessibility is based on a simple boolean evaluation: are the wave and wind conditions within the required limits at the given timestep?
Once the time series of accessibility is calculated, the next step is to look for periods of sustained favourable environmental conditions, i.e. the weather
windows. Here all possible operating periods with a duration matching the required weather-window value are assessed to see if the weather conditions remain
suitable for the entire period. The percentage availability of the weather window is calculated based on the percentage of x-duration windows with suitable
weather conditions for their entire duration.The weather window availability can be considered as the probability of having the required weather window available
at any given point in the month.
Extreme Wind and Wave
The Extreme wave layers show the highest significant wave height expected to occur during the given return period. The Extreme wind layers show the highest wind speed expected to occur during the given return period.
To predict extreme values, we use Extreme Value Analysis (EVA). EVA focuses on the extreme part of the data and seeks to determine a model to fit this reduced
portion accurately. EVA consists of three main stages. The first stage is the selection of extreme values from a time series. The next step is to fit a model
that best approximates the selected extremes by determining the shape parameters for a suitable probability distribution. The model then predicts extreme values
for the selected return period. All calculations use the python pyextremes library. Two methods are used - Block Maxima and Peaks over threshold.
The Block Maxima methods selects the annual maxima and fits a GEVD probability distribution.
The peaks_over_threshold method has two variable calculation parameters. The first is the percentile above which values must be to be selected as extreme (0.9 or 0.998). The
second input is the time difference between extreme values for them to be considered independent (3 days). A Generalised Pareto Distribution is fitted to the selected
extremes and used to calculate the extreme value for the selected return period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The spearfish sample database is being distributed to provide users with a solid database on which to work for learning the tools of GRASS. This document provides some general information about the database and the map layers available. With the release of GRASS 4.1, the GRASS development staff is pleased to announce that the sample data set spearfish is also being distributed. The spearfish data set covers two topographic 1:24,000 quads in western South Dakota. The names of the quads are Spearfish and Deadwood North, SD. The area covered by the data set is in the vicinity of Spearfish, SD and includes a majority of the Black Hills National Forest (i.e., Mount Rushmore). It is anticipated that enough data layers will be provided to allow users to use nearly all of the GRASS tools on the spearfish data set. A majority of this spearfish database was initially provided to USACERL by the EROS Data Center (EDC) in Sioux Falls, SD. The GRASS Development staff expresses acknowledgement and thanks to: the U.S. Geological Survey (USGS) and EROS Data Center for allowing us to distribute this data with our release of GRASS software; and to the U.S. Census Bureau for their samples of TIGER/Line data and the STF1 data which were used in the development of the TIGER programs and tutorials. Thanks also to SPOT Image Corporation for providing multispectral and panchromatic satellite imagery for a portion of the spearfish data set and for allowing us to distribute this imagery with GRASS software. In addition to the data provided by the EDC and SPOT, researchers at USACERL have dev eloped several new layers, thus enhancing the spearfish data set. To use the spearfish data, when entering GRASS, enter spearfish as your choice for the current location.
This is the classical GRASS GIS dataset from 1993 covering a part of Spearfish, South Dakota, USA, with raster, vector and point data. The Spearfish data base covers two 7.5 minute topographic sheets in the northern Black Hills of South Dakota, USA. It is in the Universal Transverse Mercator Projection. It was originally created by Larry Batten while he was with the U. S. Geological Survey's EROS Data Center in South Dakota. The data base was enhanced by USA/CERL and cooperators.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Conception map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Conception map area data layers. Data layers are symbolized as shown on the associated map sheets.
https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/OS20O0https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/OS20O0
The Millennium Coral Reef Mapping Project provides thematic maps of coral reefs worldwide at geomorphological scale. Maps were created by photo-interpretation of Landsat 7 and Landsat 8 satellite images. Maps are provided as standard Shapefiles usable in GIS software. The geomorphological classification scheme is hierarchical and includes 5 levels. The GIS products include for each polygon a number of attributes. The 5 level geomorphological attributes are provided (numerical codes or text). The Level 1 corresponds to the differentiation between oceanic and continental reefs. Then from Levels 2 to 5, the higher the level, the more detailed the thematic classification is. Other binary attributes specify for each polygon if it belongs to terrestrial area (LAND attribute), and sedimentary or hard-bottom reef areas (REEF attribute). Examples and more details on the attributes are provided in the references cited. The products distributed here were created by IRD, in their last version. Shapefiles for 245 atolls of the Pacific Ocean as mapped by the Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). The data set provides one zip file per country or region of interest. Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). Funded by National Aeronautics and Space Administration, NASA grants NAG5-10908 (University of South Florida, PIs: Franck Muller-Karger and Serge Andréfouët) and CARBON-0000-0257 (NASA, PI: Julie Robinson) from 2001 to 2007. Funded by IRD since 2003 (in kind, PI: Serge Andréfouët).
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
A major objective of plant ecology research is to determine the underlying processes responsible for the observed spatial distribution patterns of plant species. Plants can be approximated as points in space for this purpose, and thus, spatial point pattern analysis has become increasingly popular in ecological research. The basic piece of data for point pattern analysis is a point location of an ecological object in some study region. Therefore, point pattern analysis can only be performed if data can be collected. However, due to the lack of a convenient sampling method, a few previous studies have used point pattern analysis to examine the spatial patterns of grassland species. This is unfortunate because being able to explore point patterns in grassland systems has widespread implications for population dynamics, community-level patterns and ecological processes. In this study, we develop a new method to measure individual coordinates of species in grassland communities. This method records plant growing positions via digital picture samples that have been sub-blocked within a geographical information system (GIS). Here, we tested out the new method by measuring the individual coordinates of Stipa grandis in grazed and ungrazed S. grandis communities in a temperate steppe ecosystem in China. Furthermore, we analyzed the pattern of S. grandis by using the pair correlation function g(r) with both a homogeneous Poisson process and a heterogeneous Poisson process. Our results showed that individuals of S. grandis were overdispersed according to the homogeneous Poisson process at 0-0.16 m in the ungrazed community, while they were clustered at 0.19 m according to the homogeneous and heterogeneous Poisson processes in the grazed community. These results suggest that competitive interactions dominated the ungrazed community, while facilitative interactions dominated the grazed community. In sum, we successfully executed a new sampling method, using digital photography and a Geographical Information System, to collect experimental data on the spatial point patterns for the populations in this grassland community.
Methods 1. Data collection using digital photographs and GIS
A flat 5 m x 5 m sampling block was chosen in a study grassland community and divided with bamboo chopsticks into 100 sub-blocks of 50 cm x 50 cm (Fig. 1). A digital camera was then mounted to a telescoping stake and positioned in the center of each sub-block to photograph vegetation within a 0.25 m2 area. Pictures were taken 1.75 m above the ground at an approximate downward angle of 90° (Fig. 2). Automatic camera settings were used for focus, lighting and shutter speed. After photographing the plot as a whole, photographs were taken of each individual plant in each sub-block. In order to identify each individual plant from the digital images, each plant was uniquely marked before the pictures were taken (Fig. 2 B).
Digital images were imported into a computer as JPEG files, and the position of each plant in the pictures was determined using GIS. This involved four steps: 1) A reference frame (Fig. 3) was established using R2V software to designate control points, or the four vertexes of each sub-block (Appendix S1), so that all plants in each sub-block were within the same reference frame. The parallax and optical distortion in the raster images was then geometrically corrected based on these selected control points; 2) Maps, or layers in GIS terminology, were set up for each species as PROJECT files (Appendix S2), and all individuals in each sub-block were digitized using R2V software (Appendix S3). For accuracy, the digitization of plant individual locations was performed manually; 3) Each plant species layer was exported from a PROJECT file to a SHAPE file in R2V software (Appendix S4); 4) Finally each species layer was opened in Arc GIS software in the SHAPE file format, and attribute data from each species layer was exported into Arc GIS to obtain the precise coordinates for each species. This last phase involved four steps of its own, from adding the data (Appendix S5), to opening the attribute table (Appendix S6), to adding new x and y coordinate fields (Appendix S7) and to obtaining the x and y coordinates and filling in the new fields (Appendix S8).
To determine the accuracy of our new method, we measured the individual locations of Leymus chinensis, a perennial rhizome grass, in representative community blocks 5 m x 5 m in size in typical steppe habitat in the Inner Mongolia Autonomous Region of China in July 2010 (Fig. 4 A). As our standard for comparison, we used a ruler to measure the individual coordinates of L. chinensis. We tested for significant differences between (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler (see section 3.2 Data Analysis). If (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler, did not differ significantly, then we could conclude that our new method of measuring the coordinates of L. chinensis was reliable.
We compared the results using a t-test (Table 1). We found no significant differences in either (1) the coordinates of L. chinensis or (2) the pair correlation function g of L. chinensis. Further, we compared the pattern characteristics of L. chinensis when measured by our new method against the ruler measurements using a null model. We found that the two pattern characteristics of L. chinensis did not differ significantly based on the homogenous Poisson process or complete spatial randomness (Fig. 4 B). Thus, we concluded that the data obtained using our new method was reliable enough to perform point pattern analysis with a null model in grassland communities.
Road segments representing centerlines of all roadways or carriageways in a local government. Typically, this information is compiled from orthoimagery or other aerial photography sources. This representation of the road centerlines support address geocoding and mapping. It also serves as a source for public works and other agencies that are responsible for the active management of the road network. (From ESRI Local Government Model "RoadCenterline" Feature)**This dataset was significantly revised in August of 2014 to correct for street segments that were not properly split at intersections. There may be issues with using data based off of the original centerline file. ** The column Speed Limit was updated in November 2014 by the Transportation Intern and is believed to be accurate** The column One Way was updated in November of 2014 by core GIS and is believed to be accurate.[MAXIMOID] A unique id field used in a work order management software called Maximo by IBM. Maximo uses GIS CL data to assign locations to work orders using this field. This field is maintained by the Transportation GIS specialists and is auto incremented when new streets are digitized. For example, if the latest digitized street segment MAXIMOID = 999, the next digitized line will receive MAXIMOID = 1000, and so on. STREET NAMING IS BROKEN INTO THREE FIELDS FOR GEOCODING:PREFIX This field is attributed if a street name has a prefix such as W, N, E, or S.NAME Domain with all street names. The name of the street without prefix or suffix.ROAD_TYPE (Text,4) Describes the type of road aka suffix, if applicable. CAPCOG Addressing Guidelines Sec 504 U. states, “Every road shall have corresponding standard street suffix…” standard street suffix abbreviations comply with USPS Pub 28 Appendix C Street Abbreviations. Examples include, but are not limited to, Rd, Dr, St, Trl, Ln, Gln, Lp, CT. LEFT_LOW The minimum numeric address on the left side of the CL segment. Left side of CL is defined as the left side of the line segment in the From-To direction. For example, if a line has addresses starting at 101 and ending at 201 on its left side, this column will be attributed 101.LEFT_HIGH The largest numeric address on the left side of the CL segment. Left side of CL is defined as the left side of the line segment in the From-To direction. For example, if a line has addresses starting at 101 and ending at 201 on its left side, this column will be attributed 201.LOW The minimum numeric address on the RIGHT side of the CL segment. Right side of CL is defined as the right side of the line segment in the From-To direction. For example, if a line has addresses starting at 100 and ending at 200 on its right side, this column will be attributed 100.HIGHThe maximum numeric address on the RIGHT side of the CL segment. Right side of CL is defined as the right side of the line segment in the From-To direction. For example, if a line has addresses starting at 100 and ending at 200 on its right side, this column will be attributed 200.ALIAS Alternative names for roads if known. This field is useful for geocode re-matching. CLASSThe functional classification of the centerline. For example, Minor (Minor Arterial), Major (Major Arterial). THIS FIELD IS NOT CONSISTENTLY FILLED OUT, NEEDS AN AUDIT. FULLSTREET The full name of the street concatenating the [PREFIX], [NAME], and [SUFFIX] fields. For example, "W San Antonio St."ROWWIDTH Width of right-of-way along the CL segment. Data entry from Plat by Planning GIS Or from Engineering PICPs/ CIPs.NUMLANES Number of striped vehicular driving lanes, including turn lanes if present along majority of segment. Does not inlcude bicycle lanes. LANEMILES Describes the total length of lanes for that segment in miles. It is manually field calculated as follows (( [ShapeLength] / 5280) * [NUMLANES]) and maintained by Transportation GIS.SPEEDLIMIT Speed limit of CL segment if known. If not, assume 30 mph for local and minor arterial streets. If speed limit changes are enacted by city council they will be recorded in the Traffic Register dataset, and this field will be updating accordingly. Initial data entry made by CIP/Planning GIS and maintained by Transportation GIS.[YRBUILT] replaced by [DateBuilt] See below. Will be deleted. 4/21/2017LASTYRRECON (Text,10) Is the last four-digit year a major reconstruction occurred. Most streets have not been reconstructed since orignal construction, and will have values. The Transportation GIS Specialist will update this field. OWNER Describes the governing body or private entity that owns/maintains the CL. It is possible that some streets are owned by other entities but maintained by CoSM. Possible attributes include, CoSM, Hays Owned/City Maintained, TxDOT Owned/City Maintained, TxDOT, one of four counties (Hays, Caldwell, Guadalupe, and Comal), TxState, and Private.ST_FROM Centerline segments are split at their intersections with other CL segments. This field names the nearest cross-street in the From- direction. Should be edited when new CL segments that cause splits are added. ST_TO Centerline segments are split at their intersections with other CL segments. This field names the nearest cross-street in the To- direction. Should be edited when new CL segments that cause splits are added. PAV_WID Pavement width of street in feet from back-of-curb to back-of-curb. This data is entered from as-built by CIP GIS. In January 2017 Transportation Dept. field staff surveyed all streets and measured width from face-of-curb to face-of-curb where curb was present, and edge of pavement to edge of pavement where it was not. This data was used to field calculate pavement width where we had values. A value of 1 foot was added to the field calculation if curb and gutter or stand up curb were present (the face-of-curb to back-of-curb is 6 in, multiple that by 2 to find 1 foot). If no curb was present, the value enter in by the field staff was directly copied over. If values were already present, and entered from asbuilt, they were left alone. ONEWAY Field describes direction of travel along CL in relation to digitized direction. If a street allows bi-directional travel it is attributed "B", a street that is one-way in the From_To direction is attributed "F", a street that is one-way in the To_From direction is attributed "T", and a street that does not allow travel in any direction is attibuted "N". ROADLEVEL Field will be aliased to [MINUTES] and be used to calculate travel time along CL segments in minutes using shape length and [SPEEDLIMIT]. Field calculate using the following expression: [MINUTES] = ( ([SHAPE_LENGTH] / 5280) / ( [SPEEDLIMIT] / 60 ))ROWSTATUS Values include "Open" or "Closed". Describes whether a right-of-way is open or closed. If a street is constructed within ROW it is "Open". If a street has not yet been constructed, and there is ROW, it is "Cosed". UPDATE: This feature class only has CL geometries for "Open" rights-of-way. This field should be deleted or re-purposed. ASBUILT field used to hyper link as-built documents detailing construction of the CL. Field was added in Dec. 2016. DateBuilt Date field used to record month and year a road was constructed from Asbuilt. Data was collected previously without month information. Data without a known month is entered as "1/1/YYYY". When month and year are known enter as "M/1/YYYY". Month and Year from asbuilt. Added by Engineering/CIP. ACCEPTED Date field used to record the month, day, and year that a roadway was officially accepted by the City of San Marcos. Engineering signs off on acceptance letters and stores these documents. This field was added in May of 2018. Due to a lack of data, the date built field was copied into this field for older roadways. Going forward, all new roadways will have this date. . This field will typically be populated well after a road has been drawn into GIS. Entered by Engineering/CIP. ****In an effort to make summarizing the data more efficient in Operations Dashboard, a generic date of "1/1/1900" was assigned to all COSM owned or maintained roads that had NULL values. These were roads that either have not been accepted yet, or roads that were expcepted a long time ago and their accepted date is not known. WARRANTY_EXP Date field used to record the expiration date of a newly accepted roadway. Typically this is one year from acceptance date, but can be greater. This field was added in May of 2018, so only roadways that have been excepted since and older roadways with valid warranty dates within this time frame have been populated.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Database created for replication of GeoStoryTelling. Our life stories evolve in specific and contextualized places. Although our homes may be our primarily shaping environment, our homes are themselves situated in neighborhoods that expose us to the immediate “real world” outside home. Indeed, the places where we are currently experiencing, and have experienced life, play a fundamental role in gaining a deeper and more nuanced understanding of our beliefs, fears, perceptions of the world, and even our prospects of social mobility. Despite the immediate impact of the places where we experience life in reaching a better understanding of our life stories, to date most qualitative and mixed methods researchers forego the analytic and elucidating power that geo-contextualizing our narratives bring to social and health research. From this view then, most research findings and conclusions may have been ignoring the spatial contexts that most likely have shaped the experiences of research participants. The main reason for the underuse of these geo-contextualized stories is the requirement of specialized training in geographical information systems and/or computer and statistical programming along with the absence of cost-free and user-friendly geo-visualization tools that may allow non-GIS experts to benefit from geo-contextualized outputs. To address this gap, we present GeoStoryTelling, an analytic framework and user-friendly, cost-free, multi-platform software that enables researchers to visualize their geo-contextualized data narratives. The use of this software (available in Mac and Windows operative systems) does not require users to learn GIS nor computer programming to obtain state-of-the-art, and visually appealing maps. In addition to providing a toy database to fully replicate the outputs presented, we detail the process that researchers need to follow to build their own databases without the need of specialized external software nor hardware. We show how the resulting HTML outputs are capable of integrating a variety of multi-media inputs (i.e., text, image, videos, sound recordings/music, and hyperlinks to other websites) to provide further context to the geo-located stories we are sharing (example https://cutt.ly/k7X9tfN). Accordingly, the goals of this paper are to describe the components of the methodology, the steps to construct the database, and to provide unrestricted access to the software tool, along with a toy dataset so that researchers may interact first-hand with GeoStoryTelling and fully replicate the outputs discussed herein. Since GeoStoryTelling relied on OpenStreetMap its applications may be used worldwide, thus strengthening its potential reach to the mixed methods and qualitative scientific communities, regardless of location around the world. Keywords: Geographical Information Systems; Interactive Visualizations; Data StoryTelling; Mixed Methods & Qualitative Research Methodologies; Spatial Data Science; Geo-Computation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update NotesMar 16 2024, remove spaces in the file and folder names.Mar 31 2024, delete the underscore in the city names with a space (such as San Francisco) in the '02_TransCAD_results' folder to ensure correct data loading by TransCAD (software version: 9.0).Aug 31 2024, add the 'cityname_link_LinkFlows.csv' file in the '02_TransCAD_results' folder to match the link from input data and the link from TransCAD results (LinkFlows) with the same Link_ID.IntroductionThis is a unified and validated traffic dataset for 20 US cities. There are 3 folders for each city.01 Input datathe initial network data obtained from OpenStreetMap (OSM)the visualization of the OSM dataprocessed node / link / od data02 TransCAD results (software version: 9.0)cityname.dbd : geographical network database of the city supported by TransCAD (version 9.0)cityname_link.shp / cityname_node.shp : network data supported by GIS software, which can be imported into TransCAD manually. Then the corresponding '.dbd' file can be generated for TransCAD with a version lower than 9.0od.mtx : OD matrix supported by TransCADLinkFlows.bin / LinkFlows.csv : traffic assignment results by TransCADcityname_link_LinkFlows.csv: the input link attributes with the traffic assignment results by TransCADShortestPath.mtx / ue_travel_time.csv : the traval time (min) between OD pairs by TransCAD03 AequilibraE results (software version: 0.9.3)cityname.shp : shapefile network data of the city support by QGIS or other GIS softwareod_demand.aem : OD matrix supported by AequilibraEnetwork.csv : the network file used for traffic assignment in AequilibraEassignment_result.csv : traffic assignment results by AequilibraEPublicationXu, X., Zheng, Z., Hu, Z. et al. (2024). A unified dataset for the city-scale traffic assignment model in 20 U.S. cities. Sci Data 11, 325. https://doi.org/10.1038/s41597-024-03149-8Usage NotesIf you use this dataset in your research or any other work, please cite both the dataset and paper above.A brief introduction about how to use this dataset can be found in GitHub. More detailed illustration for compiling the traffic dataset on AequilibraE can be referred to GitHub code or Colab code.ContactIf you have any inquiries, please contact Xiaotong Xu (email: kid-a.xu@connect.polyu.hk).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This folder contains five datasets. One dataset ('Potential.csv') characterizes the potential for eight different holiday styles (city tourism, culture tourism, nature tourism, event tourism, sports tourism, sea, sun and sand tourism, wellness tourism and visiting relatives) in the European Union (EU28) at the NUTS2 level, quantified using spatial data indicating the presence and attractiveness of specific assets. Three datasets ('Number of trips.csv', 'Total distance traveled.csv', 'Total CO2e emissions.csv') characterize leisure travel flows for these eight holiday styles, within and between the NUTS regions of the EU28. Flows are expressed in terms of number of trips, total distance travelled, and aggregate carbon emissions, and are provided by origin region-destination region pair. In all three datasets, flows are also classified into three transport options: air, rail, and road. Each transport option is multimodal, which matters for the calculation of carbon emissions. Therefore, the total distance and carbon emissions are also distributed between different transport modes (car, airplane, train, ferry). For example, the column CO2_AIR_car contains the aggregated carbon emissions of car trips to and from the airport in the origin and destination regions. One dataset ('Spatial patterns (trips) gis.csv') can be open with a gis software using the WKT to visualise and plot the spatial patterns of the flows per holiday style. Note that the input data used to calculate these three datasets are from different years (e.g. we used the average number of trips between EU countries over the period 2010-2018 (Eurostat) to correct for inconsistencies in reporting), so they reflect an average situation rather than the situation in a specific year.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview:
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.
The Copernicus DEM for Europe at 3 arcsec (0:00:03 = 0.00083333333 ~ 90 meter) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).
Processing steps:
The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in VRT format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized:
gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt
In order to reduce the spatial resolution to 3 arc seconds, weighted resampling was performed in GRASS GIS (using r.resamp.stats -w
and the pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief
, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.
Projection + EPSG code:
Latitude-Longitude/WGS84 (EPSG: 4326)
Spatial extent:
north: 82:00:30N
south: 18N
west: 32:00:30W
east: 70E
Spatial resolution:
3 arc seconds (approx. 90 m)
Pixel values:
meters * 1000 (scaled to Integer; example: value 23220 = 23.220 m a.s.l.)
Software used:
GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)
Original dataset license:
https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex.pdf
Processed by:
mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
High-quality GIS land use maps for the Twin Cities Metropolitan Area for 1968 that were developed from paper maps (no GIS version existed previously).The GIS shapefiles were exported using ArcGIS Quick Import Tool from the Data Interoperability Toolbox. The coverage files was imported into a file geodatabase then exported to a .shp file for long-term use without proprietary software. An example output of the final GIS file is include as a pdf, in addition, a scan of the original 1968 map (held in the UMN Borchert Map Library) is included as a pdf. Metadata was extracted as an xml file. Finally, all associated coverage files and original map scans were zipped into one file for download and reuse. Data was uploaded to ArcGIS Online 3/9/2020. Original dataset available from the Data Repository of the University of Minnesota: http://dx.doi.org/10.13020/D63W22
This dataset attempts to represent the point locations of every educational program in the state of Minnesota that is currently operational and reporting to the Minnesota Department of Education. It can be used to identify schools, various individual school programs, school districts (by office location), colleges, and libraries, among other programs. Please note that not all school programs are statutorily required to report, and many types of programs can be reported at any time of the year, so this dataset is by nature an incomplete snapshot in time.
Maintenance of these locations are a result of an ongoing project to identify current school program locations where Food and Nutrition Services Office (FNS) programs are utilized. The FNS Office is in the Minnesota Department of Education (MDE). GIS staff at MDE maintain the dataset using school program and physical addresses provided by local education authorities (LEAs) for an MDE database called "MDE ORG". MDE GIS staff track weekly changes to program locations, along with comprehensive reviews each summer. All records have been reviewed for accuracy or edited at least once since January 1, 2020.
Note that there may remain errors due to the number of program locations and inconsistency in reporting from LEAs and other organizations. In particular, some organization types (such as colleges and treatment programs) are not subject to annual reporting requirements, so some records included in this file may in fact be inactive or inaccurately located.
Note that multiple programs may occur at the same location and are represented as separate records. For example, a junior and a senior high school may be in the same building, but each has a separate record in the data layer. Users leverage the "CLASS" and "ORGTYPE" attributes to filter and sort records according to their needs. In general, records at the same physical address will be located at the same coordinates.
This data is now available in CSV format. For that format only, OBJECTID and Shape columns are removed, and the Shape column is replaced by Latitude and Longitude columns.
Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
The Interpolated Strontium Values dataset Ver. 3.1 presents the interpolated data of strontium isotopes for the southern Trans-Urals, based on the data gathered in 2020-2022. The current dataset consists of five sets of files for five various interpolations: based on grass, mollusks, soil, and water samples, as well as the average of three (excluding the mollusk dataset). Each of the five sets consists of a CSV file and a KML file where the interpolated values are presented to use with a GIS software (ordinary kriging, 5000 m x 5000 m grid). In addition, two GeoTIFF files are provided for each set for a visual reference.
Average 5000 m interpolated points.kml / csv: these files contain averaged values of all three sample types.
Grass 5000 m interpolated points.kml / csv: these files contain data interpolated from the grass sample dataset.
Mollusks 5000 m interpolated points.kml / csv: these files contain data interpolated from the mollusk sample dataset.
Soil 5000 m interpolated points.kml / csv: these files contain data interpolated from the soil sample dataset.
Water 5000 m interpolated points.kml / csv: these files contain data interpolated from the water sample dataset.
The current version is also supplemented with GeoTiff raster files where the same interpolated values are color-coded. These files can be added to Google Earth or any GIS software together with KML files for better interpretation and comparison.
Averaged 5000 m interpolation raster.tif: this file contains a raster representing the averaged values of all three sample types.
Grass 5000 m interpolation raster.tif: this file contains a raster representing the data interpolated from the grass sample dataset.
Mollusks 5000 m interpolation raster.tif: this file contains a raster representing the data interpolated from the mollusk sample dataset.
Soil 5000 m interpolation raster.tif: this file contains a raster representing the data interpolated from the soil sample dataset.
Water 5000 m interpolation raster.tif: this file contains a raster representing the data interpolated from the water sample dataset
In addition, the cross-validation rasters created during the interpolation process are also provided. They can be used as a visual reference of the interpolation reliability. The grey areas on the raster represent the areas where expected values do not differ from interpolated values for more than 0.001. The red areas represent the areas where the error exceeded 0.001 and, thus, the interpolation is not reliable.
How to use it?
The data provided can be used to access interpolated background values of bioavailable strontium in the area of interest. Note that a single value is not a good enough predictor and should never be used as a proxy. Always calculate a mean of 4-6 (or more) nearby values to achieve the best guess possible. Never calculate averages from a single dataset, always rely on cross-validation by comparing data from all five datasets. Check the cross-validation rasters to make sure that the interpolation is reliable for the area of interest.
References
The interpolated datasets are based upon the actual measured values published as follows:
Epimakhov, Andrey; Kisileva, Daria; Chechushkov, Igor; Ankushev, Maksim; Ankusheva, Polina (2022): Strontium isotope ratios (87Sr/86Sr) analysis from various sources the southern Trans-Urals. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.950380
Description of the original dataset of measured strontium isotopic values
The present dataset contains measurements of bioavailable strontium isotopes (87Sr/86Sr) gathered in the southern Trans-Urals. There are four sample types, such as wormwood (n = 103), leached soil (n = 103), water (n = 101), and freshwater mollusks (n = 80), collected to measure bioavailable strontium isotopes. The analysis of Sr isotopic composition was carried out in the cleanrooms (6 and 7 ISO classes) of the Geoanalitik shared research facilities of the Institute of Geology and Geochemistry, the Ural Branch of the Russian Academy of Sciences (Ekaterinburg). Mollusk shell samples preliminarily cleaned with acetic acid, as well as vegetation samples rinsed with deionized water and ashed, were dissolved by open digestion in concentrated HNO 3 with the addition of H 2 O 2 on a hotplate at 150°C. Water samples were acidified with concentrated nitric acid and filtered. To obtain aqueous leachates, pre-ground soil samples weighing 1 g were taken into polypropylene containers, 10 ml of ultrapure water was added and shaken in for 1 hour, after which they were filtered through membrane cellulose acetate filters with a pore diameter of 0.2 μm. In all samples, the strontium content was determined by ICP-MS (NexION 300S). Then the sample volume corresponding to the Sr content of 600 ng was evaporated on a hotplate at 120°C, and the precipitate was dissolved in 7M HNO 3. Sample solutions were centrifuged at 6000 rpm, and strontium was chromatographically isolated using SR resin (Triskem). The strontium isotopic composition was measured on a Neptune Plus multicollector mass spectrometer with inductively coupled plasma (MC-ICP-MS). To correct mass bias, a combination of bracketing and internal normalization according to the exponential law 88 Sr/ 86 Sr = 8.375209 was used. The results were additionally bracketed using the NIST SRM 987 strontium carbonate reference material using an average deviation from the reference value of 0.710245 for every two samples bracketed between NIST SRM 987 measurements. The long-term reproducibility of the strontium isotopic analysis was evaluated using repeated measurements of NIST SRM 987 during 2020-2022 and yielded 87 Sr/ 86 Sr = 0.71025, 2SD = 0.00012 (104 measurements in two replicates). The within-laboratory standard uncertainty (2σ) obtained for SRM-987 was ± 0.003 %.
The impact evaluation study of the MCA-M PRP will be the first fully randomized evaluation of a large-scale land titling program. Randomization will occur at the geographic level akin to a neighborhood. Mongolian cities are divided up into a number of administrative units - the smallest being the “kheseg”. Khesegs were chosen as the unit of randomization for the study because they are a well-defined unit that is small and numerous enough to allow for sufficient statistical power. The baseline estimation strategy will be a differences-in-differences approach, where we compare the outcomes of households in the treatment group with the control group as well as before and after the completion of the formalization activities. Exposure to treatment was 66% in Darkhan and Erdenet, and 50% in Ulaanbaatar districts. There are no results to report as of now because only the baseline has been conducted so far.
Regionally: Ulaanbaatar, Darkhan and Erdenet
Kheseg (Neighborhood)
Households living in hashaa plots in the ger districts of Mongolia's three largest cities: Ulaanbaatar, Darkhan, and Erdenet.
Sample survey data [ssd]
8,552 plots were identified for surveying for the sample. Of these, 6,344 were occupied households and 5,816 were successfully interviewed for a response rate of 68%. 528 households refused to participate in the survey and 2,068 plots were unoccupied, had no one present at the time of any of the survey attempts, or were invalid plots. Plots found to be unoccupied or to be owned or occupied by a business or state entities were deemed unsuitable for the survey and were dropped from the sample. Geographic Information System data on all hashaa plots in the ger areas of the relevant districts of the capital and in Darkhan and Erdenet, were obtained from the PRP PIU. The ownership status of many of these plots was recorded in this GIS data set, though the ownership status information was known to be out of date and inaccurate. The boundaries of administrative units such as city, district, khoroo, and kheseg were also included. IPA processed the GIS data using ArcGIS and Stata computer software.
Once the GIS and administrative cadastral data sets were integrated, sample selection was stratified by kheseg, a geographical unit roughly equivalent to a neighborhood in the United States. First, the number of program-eligible plots per kheseg was calculated. Plots listed as “fully registered” in the GIS data were not included in this calculation since they would not be eligible for project assistance. Weights were then calculated for each kheseg unit that measured the proportion of the total number of eligible plots located in this unit. These weights were then multiplied by 8,000, the total number of plots it was deemed desirable and feasible to include in survey activities, to determine the number of plots to be sampled from each kheseg. After the sample size for each kheseg was determined, plots were randomly selected for inclusion in the survey.
In November of 2010, the survey contractor selected by MCA-M began administering the questionnaire to the households residing on and/or owning the plots selected during the sampling process. Due to the anticipated errors in the Geographic Information System data, not all of the hashaa plots selected for the SHPS sample were occupied. In addition, Mongolian households are extremely mobile. To minimize these challenges, the survey teams were required to make four attempts to locate the hashaa plot to determine the registration status and an additional four attempts to complete the survey questionnaire. Unfortunately, the SHPS had to be suspended after several weeks of data collection due to unforeseen delays in project implementation. The scope of the project was subsequently adjusted and the project implementation areas shifted due to the inflexibility of the data collection contract. The scope of the project was reduced from covering all districts in Ulaanbaatar to covering only the three largest districts, Bayanzurkh, Chingeltei, and Songinokhairkhan.
Household questionnaire prepared in both Mongolian and English. The team organized 4 pilot testings involving 109 respondents. Modules: - Log of attempts made to take survey, - 1. Registration section 2. Control section (filled by enumerator) 3. Introduction to survey 4. Basic Information 5. Demographic, education level and residential information of household members 6. Economic activities and incomes of household members 7. Household assets and properties 8. Planned future investments 9. Registration status of plot being surveyed 10. Implementation level of the 2003 amendment to the Land Law. 11. Accessability of land registration information and service quality at General Authority of State Registration 12. Land conflicts 13. Hashaa plot sales and its market value 14. Infrastructure of hashaa plots 15. Household spendings 16. Household business activities 17. Insurance 18. Household loans 19. Government policy and thoughts on its implementation 20. Citizens' involvement and labor in common 21. Risk evaluation
IDs in the dataset were checked against the original sample frame to make sure that they were correctly entered and complete. In addition,team leaders manually inspected each survey to ensure accuarcy of data collected and for logicallly consistancy. Back checks were also performed.
The response rate was 68%.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Bolinas map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Bolinas map area data layers. Data layers are symbolized as shown on the associated map sheets.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information