The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains Spatial Transcriptomics (ST) data matching with Matrix Assisted Laser Desorption/Ionization - Mass Spetrometry Imaging (MALDI-MSI). This data is complementary to data contained in the same project. FIles with the same identifiers in the two datasets originated from the very same tissue section and can be combined in a multimodal ST-MSI object. For more information about the dataset please see our manuscript posted on BioRxiv (doi: https://doi.org/10.1101/2023.01.26.525195). This dataset includes ST data from 19 tissue sections, including human post-mortem and mouse samples. The spatial transcriptomics data was generated using the Visium protocol (10x Genomics). The murine tissue sections come from three different mice unilaterally injected with 6-OHDA. 6-OHDA is a neurotoxin that when injected in the brain can selectively destroy dopaminergic neurons. We used this mouse model to show the applicability of the technology that we developed, named Spatial Multimodal Analysis (SMA). Using our technology on these mouse brain tissue sections we were able to detect both dopamine with MALDI-MSI and the corresponding gene expression with ST. This dataset includes also one human post-mortem striatum sample that was placed on one Visium slide across the four capture areas. This sample was analyzed with a different ST protocol named RRST (Mirzazadeh, R., Andrusivova, Z., Larsson, L. et al. Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples. Nat Commun 14, 509 (2023). https://doi.org/10.1038/s41467-023-36071-5), where probes capturing the whole transcriptome are first hybridized in the tissue section and then spatially detected. Each tissue section contained in the dataset has been given a unique identifier that is composed of the Visium array ID and capture area ID of the Visium slide that the tissue section was placed on. This unique identifier is included in the file names of all the files relative to the same tissue section, including the MALDI-MSI files published in the other dataset included in this project. In this dataset you will find the following files for each tissue section: - raw files: these are the read one fastq files (containing the pattern *R1*fastq.gz in the file name), read two fastq files (containing the pattern *R1*fastq.gz in the file name) and the raw microscope images (containing the pattern Spot.jpg in the file name). These are the only files needed to run the Space Ranger pipeline, which is freely available for any user (please see the 10x Genomics website for information on how to install and run Space Ranger); - processed data files: we provide processed data files of two types: a) Space Ranger outputs that were used to produce the figures in our publication; b) manual annotation tables in csv format produced using Loupe Browser 6 (csv tables with file names ending _RegionLoupe.csv, _filter.csv, _dopamine.csv, _lesion.csv, _region.csv patterns); c) json files that we used as input for Space Ranger in the cases where the automatic tissue detection included in the pipeline failed to recognize the tissue or the fiducials. Using these processed files the user can reproduce the figures of our publication without having to restart from the raw data files. The MALDI-MSI analyses preceding ST was performed with different matrices in different tissue section. We used 1) 9-aminoacridine (9-AA) for detection of metabolites in negative ionization mode, 2) 2,5-dihydroxybenzoic acid (DHB) for detection of metabolites in positive ionization mode, 3) 4-(anthracen-9-yl)-2-fluoro-1-ethylpyridin-1-ium iodide (FMP-10), which charge-tags molecules with phenolic hydroxyls and/or primary amines, including neurotransmitters. The information about which matrix was sprayed on the tissue sections and other information about the samples is included in the metadata table. We also used three types of control samples: - standard Visium: samples processed with standard Visium (i.e. no matrix spraying, no MALDI-MSI, protocol as recommended by 10x Gemomics with no exeptions) - internal controls (iCTRL): samples not sprayed with any matrix, neither processed with MALDI-MSI, but located on the same Visium slide were other samples were processed with MALDI-MSI - FMP-10-iCTRL: sample sprayed with FMP-10, and then processed as an iCTRL. This and other information is provided in the metadata table.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Geostatistics analyzes and predicts the values associated with spatial or spatial-temporal phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data within the analyses. It is a practical means of describing spatial patterns and interpolating values for locations where samples were not taken (and measures the uncertainty of those values, which is critical to informed decision making). This archive contains results of geostatistical analysis of COVID-19 case counts for all available US counties. Test results were obtained with ArcGIS Pro (ESRI). Sources are state health departments, which are scraped and aggregated by the Johns Hopkins Coronavirus Resource Center and then pre-processed by MappingSupport.com.
This update of the Zenodo dataset (version 6) consists of three compressed archives containing geostatistical analyses of SARS-CoV-2 testing data. This dataset utilizes many of the geostatistical techniques used in previous versions of this Zenodo archive, but has been significantly expanded to include analyses of up-to-date U.S. COVID-19 case data (from March 24th to September 8th, 2020):
Archive #1: “1.Geostat. Space-Time analysis of SARS-CoV-2 in the US (Mar24-Sept6).zip” – results of a geostatistical analysis of COVID-19 cases incorporating spatially-weighted hotspots that are conserved over one-week timespans. Results are reported starting from when U.S. COVID-19 case data first became available (March 24th, 2020) for 25 consecutive 1-week intervals (March 24th through to September 6th, 2020). Hotspots, where found, are reported in each individual state, rather than the entire continental United States.
Archive #2: "2.Geostat. Spatial analysis of SARS-CoV-2 in the US (Mar24-Sept8).zip" – the results from geostatistical spatial analyses only of corrected COVID-19 case data for the continental United States, spanning the period from March 24th through September 8th, 2020. The geostatistical techniques utilized in this archive includes ‘Hot Spot’ analysis and ‘Cluster and Outlier’ analysis.
Archive #3: "3.Kriging and Densification of SARS-CoV-2 in LA and MA.zip" – this dataset provides preliminary kriging and densification analysis of COVID-19 case data for certain dates within the U.S. states of Louisiana and Massachusetts.
These archives consist of map files (as both static images and as animations) and data files (including text files which contain the underlying data of said map files [where applicable]) which were generated when performing the following Geostatistical analyses: Hot Spot analysis (Getis-Ord Gi*) [‘Archive #1’: consecutive weeklong Space-Time Hot Spot analysis; ‘Archive #2’: daily Hot Spot Analysis], Cluster and Outlier analysis (Anselin Local Moran's I) [‘Archive #2’], Spatial Autocorrelation (Global Moran's I) [‘Archive #2’], and point-to-point comparisons with Kriging and Densification analysis [‘Archive #3’].
The Word document provided ("Description-of-Archive.Updated-Geostatistical-Analysis-of-SARS-CoV-2 (version 6).docx") details the contents of each file and folder within these three archives and gives general interpretations of these results.
This project is a component of a broader effort focused on geothermal heating and cooling (GHC) with the aim of illustrating the numerous benefits of incorporating GHC and geothermal heat exchange (GHX) into community energy planning and national decarbonization strategies. To better assist private sector investment, it is currently necessary to define and assess the potential of low-temperature geothermal resources. For shallow GHC/GHX fields, there is no formal compilation of subsurface characteristics shared among industry practitioners that can improve system design and operations. Alaska is specifically noted in this work, because heretofore, it has not received a similar focus in geothermal potential evaluations as the contiguous United States. The methodology consists of leveraging relevant data to generate a baseline geospatial dataset of low-temperature resources (less than 150 degrees C) to compare and analyze information accessible to anyone trying to understand the potential of GHC/GHX and small-scale low-temperature geothermal power in Alaska (e.g., energy modelers, communities, planners, and policymakers). Importantly, this project identifies data related to (1) the evaluation of GHC/GHX in the shallow subsurface, and (2) the evaluation of low-temperature geothermal resource availability. Additionally, data is being compiled to assess repurposing of oil and gas wells to contribute co-produced fluids toward the geothermal direct use and heating and cooling resource potential. In this work we identified new data from three different datasets of isolated geothermal systems in Alaska and bottom-hole temperature data from oil and gas wells that can be leveraged for evaluation of low-temperature geothermal resource potential. The goal of this project is to facilitate future deployment of GHC/GHX analysis and community-led programs and update the low-temperature geothermal resources assessment of Alaska. A better understanding of shallow potential for GHX will improve design and operations of highly efficient GHC systems. The deployment and impact that can be achieved for low-temperature geothermal resources will contribute to decarbonization goals and facilitate widespread electrification by shaving and shifting grid loads. Most of the data uses WGS84 coordinate system. However, each dataset come from different sources and has a metadata file with the original coordinate system.
Unlock the power of 164M+ verified locations across 220+ countries with high-precision geospatial data. Featuring 50+ enriched attributes including coordinates, building type, and geometry. Our AI-powered dataset ensures unmatched accuracy through advanced deduplication and enrichment. With 30+ years of industry expertise, we deliver trusted, customizable data solutions for mapping, navigation, urban planning, and marketing, empowering smarter decision-making and strategic growth.
Key use cases of Geospatial data have helped our customers in several areas:
CrimeMapTutorial is a step-by-step tutorial for learning crime mapping using ArcView GIS or MapInfo Professional GIS. It was designed to give users a thorough introduction to most of the knowledge and skills needed to produce daily maps and spatial data queries that uniformed officers and detectives find valuable for crime prevention and enforcement. The tutorials can be used either for self-learning or in a laboratory setting. The geographic information system (GIS) and police data were supplied by the Rochester, New York, Police Department. For each mapping software package, there are three PDF tutorial workbooks and one WinZip archive containing sample data and maps. Workbook 1 was designed for GIS users who want to learn how to use a crime-mapping GIS and how to generate maps and data queries. Workbook 2 was created to assist data preparers in processing police data for use in a GIS. This includes address-matching of police incidents to place them on pin maps and aggregating crime counts by areas (like car beats) to produce area or choropleth maps. Workbook 3 was designed for map makers who want to learn how to construct useful crime maps, given police data that have already been address-matched and preprocessed by data preparers. It is estimated that the three tutorials take approximately six hours to complete in total, including exercises.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Replication data for the turnout example in Chapter 5 of Spatial Analysis for the Social Sciences.
Our dataset delivers unprecedented scale and diversity for geospatial AI training:
🌍 Massive scale: 125,000 unique 3D map sequences and locations, 57,500,000 images, 35 TB of Data, orders of magnitude larger than datasets currently used for SOTA Vision/Spatial Models.
⏱️ Constantly growing dataset: 12k new 3D Map sequences and locations monthly.
📷 Full-frame, high-res captures: OVER retains full-resolution, dynamic aspect-ratio images with complete Exif metadata (GPS, timestamp, device orientation), multiple resolutions 1920x1080 - 3840x2880, pre-computed COLMAP poses.
🧭 Global diversity: Environments span urban, suburban, rural, and natural settings across 120+ countries, capturing architectural, infrastructural, and environmental variety.
📐 Rich metadata: Per-image geolocation (±3 m accuracy), timestamps, device pose, COLMAP pose; per-map calibration data (camera intrinsics/extrinsics).
🧠 Applications: Spatial Models Training, Multi-view stereo & NeRF/3DGS training, semantic segmentation, novel view synthesis, 3D object detection, geolocation, urban planning, AR/VR, autonomous navigation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
Resource contains an ArcGIS file geodatabase raster for the National Vegetation Information System (NVIS) Major Vegetation Groups - Australia-wide, present extent (FGDB_NVIS4_1_AUST_MVG_EXT).
Related datasets are also included: FGDB_NVIS4_1_KEY_LAYERS_EXT - ArcGIS File Geodatabase Feature Class of the Key Datasets that make up NVIS Version 4.1 - Australia wide; and FGDB_NVIS4_1_LUT_KEY_LAYERS - Lookup table for Dataset Key Layers.
This raster dataset provides the latest summary information (November 2012) on Australia's present (extant) native vegetation. It is in Albers Equal Area projection with a 100 m x 100 m (1 Ha) cell size. A comparable Estimated Pre-1750 (pre-european, pre-clearing) raster dataset is available: - NVIS4_1_AUST_MVG_PRE_ALB. State and Territory vegetation mapping agencies supplied a new version of the National Vegetation Information System (NVIS) in 2009-2011. Some agencies did not supply new data for this version but approved re-use of Version 3.1 data. Summaries were derived from the best available data in the NVIS extant theme as at June 2012. This product is derived from a compilation of data collected at different scales on different dates by different organisations. Please refer to the separate key map showing scales of the input datasets. Gaps in the NVIS database were filled by non-NVIS data, notably parts of South Australia and small areas of New South Wales such as the Curlewis area. The data represent on-ground dates of up to 2006 in Queensland, 2001 to 2005 in South Australia (depending on the region) and 2004/5 in other jurisdictions, except NSW. NVIS data was partially updated in NSW with 2001-09 data, with extensive areas of 1997 data remaining from the earlier version of NVIS. Major Vegetation Groups were identified to summarise the type and distribution of Australia's native vegetation. The classification contains different mixes of plant species within the canopy, shrub or ground layers, but are structurally similar and are often dominated by a single genus. In a mapping sense, the groups reflect the dominant vegetation occurring in a map unit where there are a mix of several vegetation types. Subdominant vegetation groups which may also be present in the map unit are not shown. For example, the dominant vegetation in an area may be mapped as dominated by eucalypt open forest, although it contains pockets of rainforest, shrubland and grassland vegetation as subdominants. The (related) Major Vegetation Subgroups represent more detail about the understorey and floristics of the Major Vegetation Groups and are available as separate raster datasets: - NVIS4_1_AUST_MVS_EXT_ALB - NVIS4_1_AUST_MVS_PRE_ALB A number of other non-vegetation and non-native vegetation land cover types are also represented as Major Vegetation Groups. These are provided for cartographic purposes, but should not be used for analyses. For further background and other NVIS products, please see the links on http://www.environment.gov.au/erin/nvis/index.html.
The current NVIS data products are available from http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system.
For use in Bioregional Assessment land classification analyses
NVIS Version 4.1
The input vegetation data were provided from over 100 individual projects representing the majority of Australia's regional vegetation mapping over the last 50 years. State and Territory custodians translated the vegetation descriptions from these datasets into a common attribute framework, the National Vegetation Information System (ESCAVI, 2003). Scales of input mapping ranged from 1:25,000 to 1:5,000,000. These were combined into an Australia-wide set of vector data. Non-terrestrial areas were mostly removed by the State and Territory custodians before supplying the data to the Environmental Resources Information Network (ERIN), Department of Sustainability Environment Water Population and Communities (DSEWPaC).
Each NVIS vegetation description was written to the NVIS XML format file by the custodian, transferred to ERIN and loaded into the NVIS database at ERIN. A considerable number of quality checks were performed automatically by this system to ensure conformity to the NVIS attribute standards (ESCAVI, 2003) and consistency between levels of the NVIS Information Hierarchy within each description. Descriptions for non-vegetation and non-native vegetation mapping codes were transferred via CSV files.
The NVIS vector (polygon) data for Australia comprised a series of jig-saw pieces, eachup to approx 500,000 polygons - the maximum tractable size for routine geoprocesssing. The spatial data was processed to conform to the NVIS spatial format (ESCAVI, 2003; other papers). Spatial processing and attribute additions were done mostly in ESRI File Geodatabases. Topology and minor geometric corrections were also performed at this stage. These datasets were then loaded into ESRI Spatial Database Engine as per the ERIN standard. NVIS attributes were then populated using Oracle database tables provided by custodians, mostly using PL/SQL Developer or in ArcGIS using the field calculator (where simple).
Each spatial dataset was joined to and checked against a lookup table for the relevant State/Territory to ensure that all mapping codes in the dominant vegetation type of each polygon (NVISDSC1) had a valid lookup description, including an allocated MVG. Minor vegetation components of each map unit (NVISDSC2-6) were not checked, but could be considered mostly complete.
Each NVIS vegetation description was allocated to a Major Vegetation Group (MVG) by manual interpretation at ERIN. The Australian Natural Resources Atlas (http://www.anra.gov.au/topics/vegetation/pubs/native_vegetation/vegfsheet.html) provides detailed descriptions of most Major Vegetation Groups. Three new MVGs were created for version 4.1 to better represent open woodland formations and forests (in the NT) with no further data available. NVIS vegetation descriptions were reallocated into these classes, if appropriate:
Unclassified Forest
Other Open Woodlands
Mallee Open Woodlands and Sparse Mallee Shublands
(Thus there are a total of 33 MVGs existing as at June 2012). Data values defined as cleared or non-native by data custodians were attributed specific MVG values such as 25 - Cleared or non native, 27 - naturally bare, 28 - seas & estuaries, and 99 - Unknown.
As part of the process to fill gaps in NVIS, the descriptive data from non-NVIS sources was also referenced in the NVIS database, but with blank vegetation descriptions. In general. the gap-fill data comprised (a) fine scale (1:250K or better) State/Territory vegetation maps for which NVIS descriptions were unavailable and (b) coarse-scale (1:1M) maps from Commonwealth and other sources. MVGs were then allocated to each description from the available desciptions in accompanying publications and other sources.
Parts of New South Wales, South Australia, QLD and the ACT have extensive areas of vector "NoData", thus appearing as an inland sea. The No Data areas were dealt with differently by state. In the ACT and SA, the vector data was 'gap-filled' and attributed using satellite imagery as a guide prior to rasterising. Most of these areas comprised a mixture of MVG 24 (inland water) and 25 (cleared), and in some case 99 (Unknown). The NSW & QLD 'No Data' areas were filled using a raster mask to fill the 'holes'. These areas were attributed with MVG 24, 26 (water & unclassified veg), MVG 25 (cleared); or MVG 99 Unknown/no data, where these areas were a mixture of unknown proportions.
Each spatial dataset with joined lookup table (including MVG_NUMBER linked to NVISDSC1) was exported to a File Geodatabase as a feature class. These were reprojected into Albers Equal Area projection (Central_Meridian: 132.000000, Standard_Parallel_1: -18.000000, Standard_Parallel_2: -36.000000, Linear Unit: Meter (1.000000), Datum GDA94, other parameters 0).
Each feature class was then rasterised to a 100m raster with extents to a multiple of 1000 m, to ensure alignment. In some instances, areas of 'NoData' had to be modelled in raster. For example, in NSW where non-native areas (cleared, water bodies etc) have not been mapped. The rasters were then merged into a 'state wide' raster. State rasters were then merged into this 'Australia wide' raster dataset.
November 2012 Corrections
Closer inspection of the original 4.1 MVG Extant raster dataset highlighted some issues with the raster creation process which meant that raster pixels in some areas did not align as intended. These were corrected, and the new properly aligned rasters released in November 2012.
Department of the Environment (2012) Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m analysis product). Bioregional Assessment Source Dataset. Viewed 10 July 2017, http://data.bioregionalassessments.gov.au/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374.
https://www.icpsr.umich.edu/web/ICPSR/studies/8379/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8379/terms
This dataset consists of cartographic data in digital line graph (DLG) form for the northeastern states (Connecticut, Maine, Massachusetts, New Hampshire, New York, Rhode Island and Vermont). Information is presented on two planimetric base categories, political boundaries and administrative boundaries, each available in two formats: the topologically structured format and a simpler format optimized for graphic display. These DGL data can be used to plot base maps and for various kinds of spatial analysis. They may also be combined with other geographically referenced data to facilitate analysis, for example the Geographic Names Information System.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Database created for replication of GeoStoryTelling. Our life stories evolve in specific and contextualized places. Although our homes may be our primarily shaping environment, our homes are themselves situated in neighborhoods that expose us to the immediate “real world” outside home. Indeed, the places where we are currently experiencing, and have experienced life, play a fundamental role in gaining a deeper and more nuanced understanding of our beliefs, fears, perceptions of the world, and even our prospects of social mobility. Despite the immediate impact of the places where we experience life in reaching a better understanding of our life stories, to date most qualitative and mixed methods researchers forego the analytic and elucidating power that geo-contextualizing our narratives bring to social and health research. From this view then, most research findings and conclusions may have been ignoring the spatial contexts that most likely have shaped the experiences of research participants. The main reason for the underuse of these geo-contextualized stories is the requirement of specialized training in geographical information systems and/or computer and statistical programming along with the absence of cost-free and user-friendly geo-visualization tools that may allow non-GIS experts to benefit from geo-contextualized outputs. To address this gap, we present GeoStoryTelling, an analytic framework and user-friendly, cost-free, multi-platform software that enables researchers to visualize their geo-contextualized data narratives. The use of this software (available in Mac and Windows operative systems) does not require users to learn GIS nor computer programming to obtain state-of-the-art, and visually appealing maps. In addition to providing a toy database to fully replicate the outputs presented, we detail the process that researchers need to follow to build their own databases without the need of specialized external software nor hardware. We show how the resulting HTML outputs are capable of integrating a variety of multi-media inputs (i.e., text, image, videos, sound recordings/music, and hyperlinks to other websites) to provide further context to the geo-located stories we are sharing (example https://cutt.ly/k7X9tfN). Accordingly, the goals of this paper are to describe the components of the methodology, the steps to construct the database, and to provide unrestricted access to the software tool, along with a toy dataset so that researchers may interact first-hand with GeoStoryTelling and fully replicate the outputs discussed herein. Since GeoStoryTelling relied on OpenStreetMap its applications may be used worldwide, thus strengthening its potential reach to the mixed methods and qualitative scientific communities, regardless of location around the world. Keywords: Geographical Information Systems; Interactive Visualizations; Data StoryTelling; Mixed Methods & Qualitative Research Methodologies; Spatial Data Science; Geo-Computation.
Xverum’s Global GIS & Geospatial Data is a high-precision dataset featuring 230M+ verified points of interest across 249 countries. With rich metadata, structured geographic attributes, and continuous updates, our dataset empowers businesses, researchers, and governments to extract location intelligence and conduct advanced geospatial analysis.
Perfectly suited for GIS systems, mapping tools, and location intelligence platforms, this dataset covers everything from businesses and landmarks to public infrastructure, all classified into over 5000 categories. Whether you're planning urban developments, analyzing territories, or building location-based products, our data delivers unmatched coverage and accuracy.
Key Features: ✅ 230M+ Global POIs Includes commercial, governmental, industrial, and service locations - updated regularly for accurate relevance.
✅ Comprehensive Geographic Coverage Worldwide dataset covering 249 countries, with attributes including latitude, longitude, city, country code, postal code, etc.
✅ Detailed Mapping Metadata Get structured address data, place names, categories, and location, which are ideal for map visualization and geospatial modeling.
✅ Bulk Delivery for GIS Platforms Available in .json - delivered via S3 Bucket or cloud storage for easy integration into ArcGIS, QGIS, Mapbox, and similar systems.
✅ Continuous Discovery & Refresh New POIs added and existing ones refreshed on a regular refresh cycle, ensuring reliable, up-to-date insights.
✅ Compliance & Scalability 100% compliant with global data regulations and scalable for enterprise use across mapping, urban planning, and retail analytics.
Use Cases: 📍 Location Intelligence & Market Analysis Identify high-density commercial zones, assess regional activity, and understand spatial relationships between locations.
🏙️ Urban Planning & Smart City Development Design infrastructure, zoning plans, and accessibility strategies using accurate location-based data.
🗺️ Mapping & Navigation Enrich digital maps with verified business listings, categories, and address-level geographic attributes.
📊 Retail Site Selection & Expansion Analyze proximity to key POIs for smarter retail or franchise placement.
📌 Risk & Catchment Area Assessment Evaluate location clusters for insurance, logistics, or regional outreach strategies.
Why Xverum? ✅ Global Coverage: One of the largest POI geospatial databases on the market ✅ Location Intelligence Ready: Built for GIS platforms and spatial analysis use ✅ Continuously Updated: New POIs discovered and refreshed regularly ✅ Enterprise-Friendly: Scalable, compliant, and customizable ✅ Flexible Delivery: Structured format for smooth data onboarding
Request a free sample and discover how Xverum’s geospatial data can power your mapping, planning, and spatial analysis projects.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These datasets provide the data underlying the publication on "Lines in the sand: quantifying the cumulative development footprint in the world’s largest remaining temperate woodland" https://link.springer.com/article/10.1007/s10980-017-0558-z. . The datasets are: (A) data in csv format: [1] development footprint by sample area: Information on the 24, ~490 km^2 sample areas assessed in the study, including the different infrastructure types (roads, railways, mapped tracks, un-mapped tracks which have been manually digitized in the study using aerial imagery and hub infrastructure such as mine pits and waste rock dumps, also manually digitized in the study). Also contains some key co-variables assessed as potential explanatory variables for development footprint. The region-wide modelling of development footprint found strong positive effects of mining project density and pastoralism, as well as a highly significant negative interaction between the two. At low mining project densities, development footprints are more extensive in pastoral areas, but at high mining project densities, pastoral areas are relatively less developed than non-pastoral areas, on average. [2] Great Western Woodlands (GWW) 20 km grid: The datasets provides data for the 20x20 km grid placed over the whole GWW and used for the regional estimation of development footprint, linear infrastructure density, and linear infrastructure type based on the region-wide analysis. Data is for each cell in the grid and provides the total length of roads in that grid cell, MINEDEX mining projects, pastoral status, etc. This dateset was used to project the data from the 24 study areas across the whole of the Great Western Woodlands and calculate region-wide estimates of development footprint and linear infrastructure lengths. [3] disturbance by patch: This dataset provides the data for each patch for the analysis of patch-level drivers of development footprint, which was performed to gain further insights into the effects of other landscape variables that what could be gleaned from the region-wide analysis. For this analysis, we divided sample areas into polygonal patch types, each with a unique combination of the following categorical co-variables: pastoral tenure, greenstone lithology, conservation tenure, ironstone formation, schedule-1 area clearing restrictions, environmentally sensitive area designation, vegetation formation, and sample area. For each patch type (n=261), we calculated the following attributes: a) number of mining projects, b) number of dead mineral tenements, c) sum of duration of all live and dead tenements, d) type of tenements (exploration/prospecting tenement, mining and related activities tenement, none), e) primary target commodity (gold, nickel, iron-ore, other), f) distance to wheatbelt, and g) distance to the nearest town. [4] mapped versus digitized tracks: This dataset provides mapped and un-mapped track widths, measured using high-resolution aerial imagery at at least 20 randomly-generated locations within each of 24 sample areas. Pastoral tenure and mining intensity for each sample area are included for analysis purposes. [5] edge effect scenarios: Hypothetical edge effect zones were created, based on effect zones gleaned from the literature and arranged under three scenarios, to reflect potential risks of offsite impacts in areas adjacent to development footprints observed (see appendix 3 of article). The calculated proportion of the entire GWW within edge effect zones varied from ~3% under the conservative scenario to ~35% under the maximal scenario. Within the range of development footprints observed in this study, the proportion of a landscape that lies within edge effect zones increases hyperbolically with the number of mining projects, and approaches 100% in the maximal scenario, 60% in the moderate scenario, and ~20% under the conservative scenario. shapefiles: [6] Great Western Woodlands boundary, [7] sample areas (layer file shows sample areas by category).
Abstract The semiconductor industry is constantly searching for new ways to increase the rate of both process development and yield learning. As more data is being collected and stored throughout the chip manufacturing process, it has become increasingly more difficult to analyze yield signals using traditional statistical methods. Most of the serious yield issues manifest themselves as non-random electrical failure maps. Our semi-supervised fault detection framework has elements of Spatial Signature Analysis (SSA) to capture yield signals for very large datasets without losing the critical details typically involved with summarization techniques. It includes signature detection, de-noising, clustering, and purification that allow one to create a true spatial response metric of the yield issue. Once this has been accomplished, one can load process data to join with the spatial response and invoke customized rule induction algorithms that generate a set of hypotheses - likely process causes for a specific spatial target response. The framework has been successfully used at Intel and represents an example of the growing influence of modern statistical learning in the semiconductor industry. Speaker: Dr. Eugene Tuv, Intel Dr. Eugene Tuv is a Senior Staff Research Scientist in the Logic Technology Department at Intel. His research interests include supervised and unsupervised non-parametric machine learning with massive heterogeneous data. Prior to Intel he worked as a research scientist in the Institute of Nuclear Research, Ukrainian Academy of Science. He holds postgraduate degrees in Mathematics and Applied Statistics.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This CO2 data is available in the R package `fields' except that the data here has been converted into a more user-friendly long-table format. In the package contains the following data description: This is an example of moderately large spatial data set and consists of simulated CO2 concentrations that are irregularly sampled from a lon/lat grid. Also included is the complete CO2 field used to generate the synthetic observations. This data was generously provided by Dorit Hammerling and Randy Kawa as a test example for the spatial analysis of remotely sensed (i.e. satellite) and irregular observations. The synthetic data is based on a true CO2 field simulated from a geophysical, numerical model. Format: co2sim.csv The CSV file has three columns: lon: longitude coordinate. lat: latitude coordinate. z: CO2 concentration in parts per million. co2true.csv The CSV file has three columns: lon: longitude coordinate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the data processed to demonstrate the multi-source spatial data integration methodology proposed in the paper "Multisource spatial data integration for use cases applications".
It contains:
- the building footprint extracted from the IFC model of a newly designed building in WKT format, by using the GeoBIM_Tool (https://github.com/twut/GEOBIM_Tool);
- the extrusion of the footprint until the measured height measured with the same GeoBIM_Tool;
- a portion of the Rotterdam 3D city model generated with 3dfier and available at https://3d.bk.tudelft.nl/opendata/3dfier/, converted in CityJSON with the citygml-tools (https://www.cityjson.org/tutorials/conversion/), developed to convert data between CityGML and CityJSON.
This specialized location dataset delivers detailed information about marina establishments. Maritime industry professionals, coastal planners, and tourism researchers can leverage precise location insights to understand maritime infrastructure, analyze recreational boating landscapes, and develop targeted strategies.
How Do We Create Polygons? -All our polygons are manually crafted using advanced GIS tools like QGIS, ArcGIS, and similar applications. This involves leveraging aerial imagery and street-level views to ensure precision. -Beyond visual data, our expert GIS data engineers integrate venue layout/elevation plans sourced from official company websites to construct detailed indoor polygons. This meticulous process ensures higher accuracy and consistency. -We verify our polygons through multiple quality checks, focusing on accuracy, relevance, and completeness.
What's More? -Custom Polygon Creation: Our team can build polygons for any location or category based on your specific requirements. Whether it’s a new retail chain, transportation hub, or niche point of interest, we’ve got you covered. -Enhanced Customization: In addition to polygons, we capture critical details such as entry and exit points, parking areas, and adjacent pathways, adding greater context to your geospatial data. -Flexible Data Delivery Formats: We provide datasets in industry-standard formats like WKT, GeoJSON, Shapefile, and GDB, making them compatible with various systems and tools. -Regular Data Updates: Stay ahead with our customizable refresh schedules, ensuring your polygon data is always up-to-date for evolving business needs.
Unlock the Power of POI and Geospatial Data With our robust polygon datasets and point-of-interest data, you can: -Perform detailed market analyses to identify growth opportunities. -Pinpoint the ideal location for your next store or business expansion. -Decode consumer behavior patterns using geospatial insights. -Execute targeted, location-driven marketing campaigns for better ROI. -Gain an edge over competitors by leveraging geofencing and spatial intelligence.
Why Choose LocationsXYZ? LocationsXYZ is trusted by leading brands to unlock actionable business insights with our spatial data solutions. Join our growing network of successful clients who have scaled their operations with precise polygon and POI data. Request your free sample today and explore how we can help accelerate your business growth.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Replication data for the Senate roll-call voting example in Chapter 6 of Spatial Analysis for the Social Sciences.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This spatial dataset is quantifying soil organic carbon (SOC) and total nitrogen (TN) storage with their carbon to nitrogen ratio (C/N) in soils of the northern circumpolar permafrost region (17.9 × 10⁶ km²) based on ESA’s Climate Change Initiative (CCI) Global Land Cover dataset at 300 m pixel resolution.
The dataset contains GIS grids of the northern circumpolar permafrost region for SOC, TN and C/N ratio for the following depth increments (0 – 30, 0 – 50, 0 – 100, 100 – 200, 200 – 300, 0 – 300 cm). These GIS grids are based on 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region.
Additional metadata with the actual pedon and profile data is available as a companion dataset.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Matthias Siewert, Niels Weiss, Gustaf Hugelius (2022) A high spatial resolution soil carbon and nitrogen dataset for the northern permafrost region. Dataset version 1. Bolin Centre Database. https://doi.org/10.17043/palmtag-2022-spatial-1
The dataset contains 18 GIS grids of the northern circumpolar permafrost region; one grid for each of the three variables SOC, TN and C/N ratio for each of the following six depth increments (0 – 30, 0 – 50, 0 – 100, 100 – 200, 200 – 300, 0 – 300 cm).
There GIS grids are provided as tif, tfw and xml files. Total uncompressed file size: 10 GB. A compressed (zip) file is available for download. Compressed file size: 141.5 MB.
The used permafrost region dataset stretches over 17.9 × 10⁶ km² of the Northern Hemisphere, and is based on equilibrium state model for the temperature at the top of the permafrost (TTOP) for the 2000 – 2016 period (Obu et al. 2019).
Detailed pedon data on soil carbon and nitrogen for the northern permafrost region, based on 6529 analyzed samples from 651 soil pedons in 16 different sampling locations, is available as a companion dataset.
The GIS dataset is based on the companion dataset and is part of a publication.
All profiles were assigned to land cover class based on field descriptions. The main aim of the field studies compiled in the companion dataset was to perform SOC/TN pool inventories of each study area considering different land cover types, geomorphological landforms and soil properties.
For the upscaling, we used the land cover map from the Global ESA Land cover Climate Change Initiative (CCI) project at 300 m spatial resolution, retrieved from the ESA Climate Change Initiative Land Cover visualization interface.
We thank the ESA CCI Land Cover project for providing their data, which was used for upscaling our product to circumpolar scale.
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt