A random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of John Day by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for John Day. The dataset can be utilized to understand the population distribution of John Day by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in John Day. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for John Day.
Key observations
Largest age group (population): Male # 60-64 years (85) | Female # 10-14 years (102). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for John Day Population by Gender. You can refer the same here
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors.
Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 33 data element restricted access dataset.
The following apply to the public use datasets and the restricted access dataset:
Overview
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by public health jurisdictions using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19. Current versions of these case definitions are available at: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/. All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for lab-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. States and territories continue to use this form.
Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<11 COVID-19 case records with a given values). Suppression includes low frequency combinations of case month, geographic characteristics (county and state of residence), and demographic characteristics (sex, age group, race, and ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These and other COVID-19 data are available from multiple public locations: COVID Data Tracker; United States COVID-19 Cases and Deaths by State; COVID-19 Vaccination Reporting Data Systems; and COVID-19 Death Data and Resources.
Notes:
March 1, 2022: The "COVID-19 Case Surveillance Public Use Data with Geography" will be updated on a monthly basis.
April 7, 2022: An adjustment was made to CDC’s cleaning algorithm for COVID-19 line level case notification data. An assumption in CDC's algorithm led to misclassifying deaths that were not COVID-19 related. The algorithm has since been revised, and this dataset update reflects corrected individual level information about death status for all cases collected to date.
June 25, 2024: An adjustment
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset shows whether each dataset on data.maryland.gov has been updated recently enough. For example, datasets containing weekly data should be updated at least every 7 days. Datasets containing monthly data should be updated at least every 31 days. This dataset also shows a compendium of metadata from all data.maryland.gov datasets.
This report was created by the Department of Information Technology (DoIT) on August 12 2015. New reports will be uploaded daily (this report is itself included in the report, so that users can see whether new reports are consistently being uploaded each week). Generation of this report uses the Socrata Open Data (API) to retrieve metadata on date of last data update and update frequency. Analysis and formatting of the metadata use Javascript, jQuery, and AJAX.
This report will be used during meetings of the Maryland Open Data Council to curate datasets for maintenance and make sure the Open Data Portal's data stays up to date.
This dataset contains crime reports from the City of Somerville Police Department's records management system from 2017 to present. Each data point represents an incident, which may involve multiple offenses (the most severe offense is provided here). Incidents deemed sensitive by enforcement agencies are included in the data set but are stripped of time or location information to protect the privacy of victims. For these incidents, only the year of the offense is provided. This data set is refreshed daily with data appearing with a one-month delay (for example, crime reports from 1/1 will appear on 2/1). If a daily update does not refresh, please email data@somervillema.gov.
This dataset shows whether each dataset on data.maryland.gov has been updated recently enough. For example, datasets containing weekly data should be updated at least every 7 days. Datasets containing monthly data should be updated at least every 31 days. This dataset also shows a compendium of metadata from all data.maryland.gov datasets.
This report was created by the Department of Information Technology (DoIT) on August 12 2015. New reports will be uploaded daily (this report is itself included in the report, so that users can see whether new reports are consistently being uploaded each week). Generation of this report uses the Socrata Open Data (API) to retrieve metadata on date of last data update and update frequency. Analysis and formatting of the metadata use Javascript, jQuery, and AJAX.
This report will be used during meetings of the Maryland Open Data Council to curate datasets for maintenance and make sure the Open Data Portal's data stays up to date.
The United States Environmental Protection Agency (EPA), in cooperation with the States, biennially collects information regarding the generation, management, and final disposition of hazardous wastes regulated under the Resource Conservation and Recovery Act of 1976 (RCRA), as amended. Collection, validation and verification of the Biennial Report (BR) data is the responsibility of RCRA authorized states and EPA regions. EPA does not modify the data reported by the states or regions. Any questions regarding the information reported for a RCRA handler should be directed to the state agency or region responsible for the BR data collection. BR data are collected every other year (odd-numbered years) and submitted in the following year. The BR data are used to support regulatory activities and provide basic statistics and trend of hazardous waste generation and management. BR data is available to the public through 3 mechanisms. 1. The RCRAInfo website includes data collected from 2001 to present-day (https://rcrainfo.epa.gov/rcrainfoweb/action/main-menu/view). Users of the RCRAInfo website can run queries and output reports for different data collection years at this site. All BR data collected from 2001 to present-day is stored in RCRAInfo, and is accessible through this website. 2. BR data files collected from 1999 - present day may be downloaded directory in zip file format from (https://rcrapublic.epa.gov/rcra-public-export/?outputType=Fixed or https://rcrapublic.epa.gov/rcra-public-export/?outputType=CSV). 3. Historical data collected prior to 1999 may be ordered on CD. Please see contact information in this metadata file to order historical BR data. BR data are typically published in December of the year following their collection. Data must be received by authorized states and EPA regions if a state is not authorized to implement the BR program by March 1st of the year following collection, and are usually published in December of the year following collection. For example, data collected in 2001 would be received by states and EPA regions by March 1, 2002 and states and EPA regions compile the BR data submitted by facilities and load the state data set into RCRAInfo, the system which EPA Headquarters (HQ) manage. Then EPA HQ published the data files around December 2002. Additional information regarding the biennial report data is available here: https://rcrapublic.epa.gov/rcra-public-export/rcrainfo_flat_file_documentation_v5.pdf and here: https://www.epa.gov/hwgenerators/biennial-hazardous-waste-report. Please note that the update frequency field for this data set indicates annual, but that the true update period is biennial (every other year). There is no selection option for biennial for the update frequency field.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Watts by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Watts. The dataset can be utilized to understand the population distribution of Watts by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Watts. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Watts.
Key observations
Largest age group (population): Male # 45-49 years (16) | Female # 85+ years (16). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Watts Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of North Pole by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for North Pole. The dataset can be utilized to understand the population distribution of North Pole by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in North Pole. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for North Pole.
Key observations
Largest age group (population): Male # 5-9 years (261) | Female # 30-34 years (183). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for North Pole Population by Gender. You can refer the same here
The dataset was generated by FEMA’s Individual Assistance (IA) reporting team and contains raw, unedited data from FEMA's National Emergency Management Information System (NEMIS).rnThis dataset contains aggregated, non-PII data for registration renters from FEMA’s Housing Assistance program within the state, county, zip where the registration is valid for the declarations, starting with disaster declaration DR4116 (declared in 2013). Core data elements include number of applicants, county, zip code, and severity of damage, with individual data elements and descriptions listed in the metadata information within the dataset. rnData is self-reported and subject to human error. For example, when an applicant registers online, they enter their street and city address. The system runs a check and suggests a county. The applicant can override that choice. Similarly, with a call center registration, the Human Services Specialist (HSS) representatives are instructed to ask what county they live in. An applicant has the right to choose the county.rnThe financial information is derived from NEMIS and not FEMA's official financial systems. Due to differences in reporting periods, status of obligations and application of business rules, this financial information may differ slightly from official publication on public websites such as usaspending.gov. This dataset is not intended to be used for any official federal reporting.rnTo learn more about disaster assistance please visit https://www.fema.gov/individual-disaster-assistance.rnCitation: The Agency’s preferred citation for datasets (API usage or file downloads) can be found on the OpenFEMA Terms and Conditions page, Citing Data section: https://www.fema.gov/about/openfema/terms-conditions.rnIf you have media inquiries about this dataset, please email the FEMA News Desk FEMA-News-Desk@fema.dhs.gov or call (202) 646-3272. For inquiries about FEMA's data and Open government program please contact the OpenFEMA team via email OpenFEMA@fema.dhs.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Page by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Page. The dataset can be utilized to understand the population distribution of Page by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Page. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Page.
Key observations
Largest age group (population): Male # 5-9 years (14) | Female # 30-34 years (17). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Page Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Jacksonville by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Jacksonville. The dataset can be utilized to understand the population distribution of Jacksonville by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Jacksonville. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Jacksonville.
Key observations
Largest age group (population): Male # 20-24 years (1,501) | Female # 30-34 years (2,030). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Jacksonville Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Ovid by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Ovid. The dataset can be utilized to understand the population distribution of Ovid by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Ovid. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Ovid.
Key observations
Largest age group (population): Male # 15-19 years (26) | Female # 10-14 years (31). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ovid Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Hatch by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Hatch. The dataset can be utilized to understand the population distribution of Hatch by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Hatch. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Hatch.
Key observations
Largest age group (population): Male # 10-14 years (11) | Female # 55-59 years (14). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hatch Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Orem by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Orem. The dataset can be utilized to understand the population distribution of Orem by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Orem. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Orem.
Key observations
Largest age group (population): Male # 20-24 years (7,099) | Female # 20-24 years (6,872). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Orem Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of West Des Moines by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for West Des Moines. The dataset can be utilized to understand the population distribution of West Des Moines by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in West Des Moines. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for West Des Moines.
Key observations
Largest age group (population): Male # 25-29 years (3,613) | Female # 25-29 years (2,901). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for West Des Moines Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of New York by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for New York. The dataset can be utilized to understand the population distribution of New York by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in New York. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for New York.
Key observations
Largest age group (population): Male # 30-34 years (718,807) | Female # 30-34 years (715,027). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New York Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Portland by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Portland. The dataset can be utilized to understand the population distribution of Portland by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Portland. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Portland.
Key observations
Largest age group (population): Male # 30-34 years (32,332) | Female # 30-34 years (32,785). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Portland Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Provo by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Provo. The dataset can be utilized to understand the population distribution of Provo by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Provo. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Provo.
Key observations
Largest age group (population): Male # 20-24 years (18,909) | Female # 20-24 years (18,256). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Provo Population by Gender. You can refer the same here
A random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.