96 datasets found
  1. w

    Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel)...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Social Affairs (2020). Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro [Dataset]. https://microdata.worldbank.org/index.php/catalog/81
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset provided by
    Ministry of Social Affairs
    Strategic Marketing & Media Research Institute Group (SMMRI)
    Time period covered
    2003
    Area covered
    Serbia and Montenegro
    Description

    Abstract

    The study included four separate surveys:

    1. The LSMS survey of general population of Serbia in 2002
    2. The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.

    3. The LSMS survey of general population of Serbia in 2003 (panel survey)

    4. The survey of Roma from Roma settlements in 2003 These two datasets are published together.

    Objectives

    LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.

    The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).

    Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]

    Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.

    Geographic coverage

    The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.

    The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.

    The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.

    Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.

    Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.

    Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.

    The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).

    Response rate

    During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.

    In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households

  2. n

    Census Microdata Samples Project

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Jan 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Census Microdata Samples Project [Dataset]. http://identifiers.org/RRID:SCR_008902
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219

  3. Data from: RESEARCH METHODOLOGY FOR NOVELTY TECHNOLOGY

    • scielo.figshare.com
    • search.datacite.org
    jpeg
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    P.C. Lai (2023). RESEARCH METHODOLOGY FOR NOVELTY TECHNOLOGY [Dataset]. http://doi.org/10.6084/m9.figshare.7482734.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    P.C. Lai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract This paper contributes to the existing literature by reviewing the research methodology and the literature review with the focus on potential applications for the novelty technology of the single platform E-payment. These included, but were not restricted to the subjects, population, sample size requirement, data collection method and measurement of variables, pilot study and statistical techniques for data analysis. The reviews will shed some light and potential applications for future researchers, students and others to conceptualize, operationalize and analyze the underlying research methodology to assist in the development of their research methodology.

  4. Z

    Data from: A 24-hour dynamic population distribution dataset based on mobile...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claudia Bergroth; Olle Järv; Henrikki Tenkanen; Matti Manninen; Tuuli Toivonen (2022). A 24-hour dynamic population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4724388
    Explore at:
    Dataset updated
    Feb 16, 2022
    Dataset provided by
    Elisa Corporation
    Digital Geography Lab, Department of Geosciences and Geography, University of Helsinki
    Department of Built Environment, Aalto University / Centre for Advanced Spatial Analysis, University College London
    Unit of Urban Research and Statistics, City of Helsinki / Digital Geography Lab, Department of Geosciences and Geography, University of Helsinki
    Authors
    Claudia Bergroth; Olle Järv; Henrikki Tenkanen; Matti Manninen; Tuuli Toivonen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Helsinki Metropolitan Area, Finland
    Description

    Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.

    In this dataset:

    We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.

    Please cite this dataset as:

    Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4

    Organization of data

    The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:

    HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.

    HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.

    HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.

    target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.

    Column names

    YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.

    H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)

    In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.

    License Creative Commons Attribution 4.0 International.

    Related datasets

    Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612

    Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564

  5. Data from: Population Assessment of Tobacco and Health (PATH) Study [United...

    • icpsr.umich.edu
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2025). Population Assessment of Tobacco and Health (PATH) Study [United States] Restricted-Use Files [Dataset]. http://doi.org/10.3886/ICPSR36231.v43
    Explore at:
    Dataset updated
    Sep 30, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36231/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36231/terms

    Area covered
    United States
    Description

    The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population (CNP) at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Unit (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the CNP at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the CNP at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This "second replenishment sample" was combined for estimation and analysis purposes with the Wave 7 adult and youth respondents from the Wave 4 Cohorts who were at least age 15 and in the CNP at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Restricted-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Dataset 0002 (DS0002) contains the data from the State Design Data. This file contains 7 variables and 82,139 cases. The state identifier in the State Design file reflects the participant's state of residence at the time of selection and recruitment for the PATH Study. Dataset 1011 (DS1011) contains the data from the Wave 1 Adult Questionnaire. This data file contains 2,021 variables and 32,320 cases. Each of the cases represents a single, completed interview. Dataset 1012 (DS1012) contains the data from the Wave 1 Youth and Parent Questionnaire. This file contains 1,431 variables and 13,651 cases. Dataset 1411 (DS1411) contains the Wave 1 State Identifier data for Adults and has 5 variables and 32,320 cases. Dataset 1412 (DS1412) contains the Wave 1 State Identifier data for Youth (and Parents) and has 5 variables and 13,651 cases. The same 5 variables are in each State Identifier dataset, including PERSONID for linking the State Identifier to the questionnaire and biomarker data and 3 variables designating the state (state Federal Information Processing System (FIPS), state abbreviation, and full name of the state). The State Identifier values in these datasets represent participants' state of residence at the time of Wave 1, which is also their state of residence at the time of recruitment. Dataset 1611 (DS1611) contains the Tobacco Universal Product Code (UPC) data from Wave 1. This data file contains 32 variables and 8,601 cases. This file contains UPC values on the packages of tobacco products used or in the possession of adult respondents at the time of Wave 1. The UPC values can be used to identify and validate the specific products used by respondents and augment the analyses of the characteristics of tobacco products used

  6. f

    Summary statistics on study population.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jan 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Barreto, Natalia; Atanasov, Vladimir; Yuan, Andy Ye; Black, Bernard; Weston, Benjamin W.; Franchi, Lorenzo; Zhang, Ruohao; Meurer, John; Whittle, Jeff; Luo, Qian (2024). Summary statistics on study population. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001382552
    Explore at:
    Dataset updated
    Jan 31, 2024
    Authors
    Barreto, Natalia; Atanasov, Vladimir; Yuan, Andy Ye; Black, Bernard; Weston, Benjamin W.; Franchi, Lorenzo; Zhang, Ruohao; Meurer, John; Whittle, Jeff; Luo, Qian
    Description

    COVID-19 mortality rates increase rapidly with age, are higher among men than women, and vary across racial/ethnic groups, but this is also true for other natural causes of death. Prior research on COVID-19 mortality rates and racial/ethnic disparities in those rates has not considered to what extent disparities reflect COVID-19-specific factors, versus preexisting health differences. This study examines both questions. We study the COVID-19-related increase in mortality risk and racial/ethnic disparities in COVID-19 mortality, and how both vary with age, gender, and time period. We use a novel measure validated in prior work, the COVID Excess Mortality Percentage (CEMP), defined as the COVID-19 mortality rate (Covid-MR), divided by the non-COVID natural mortality rate during the same time period (non-Covid NMR), converted to a percentage. The CEMP denominator uses Non-COVID NMR to adjust COVID-19 mortality risk for underlying population health. The CEMP measure generates insights which differ from those using two common measures–the COVID-MR and the all-cause excess mortality rate. By studying both CEMP and COVID-MRMR, we can separate the effects of background health from Covid-specific factors affecting COVID-19 mortality. We study how CEMP and COVID-MR vary by age, gender, race/ethnicity, and time period, using data on all adult decedents from natural causes in Indiana and Wisconsin over April 2020-June 2022 and Illinois over April 2020-December 2021. CEMP levels for racial and ethnic minority groups can be very high relative to White levels, especially for Hispanics in 2020 and the first-half of 2021. For example, during 2020, CEMP for Hispanics aged 18–59 was 68.9% versus 7.2% for non-Hispanic Whites; a ratio of 9.57:1. CEMP disparities are substantial but less extreme for other demographic groups. Disparities were generally lower after age 60 and declined over our sample period. Differences in socio-economic status and education explain only a small part of these disparities.

  7. Accounting for Sampling Error When Inferring Population Synchrony from...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    doc
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hugues Santin-Janin; Bernard Hugueny; Philippe Aubry; David Fouchet; Olivier Gimenez; Dominique Pontier (2023). Accounting for Sampling Error When Inferring Population Synchrony from Time-Series Data: A Bayesian State-Space Modelling Approach with Applications [Dataset]. http://doi.org/10.1371/journal.pone.0087084
    Explore at:
    docAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Hugues Santin-Janin; Bernard Hugueny; Philippe Aubry; David Fouchet; Olivier Gimenez; Dominique Pontier
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundData collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation) is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal) with respect to extrinsic factors (the Moran effect) in generating population synchrony as well as to underestimating the extinction risk of a metapopulation.Methodology/Principal findingsThe aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i) has been previously estimated, and (ii) has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength.Conclusion/SignificanceThe state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for uncertainty in population size estimates.

  8. Worldometer Population Data

    • kaggle.com
    zip
    Updated Jul 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subashanan Nair (2024). Worldometer Population Data [Dataset]. https://www.kaggle.com/datasets/noir1112/worldometer-population-data
    Explore at:
    zip(590905 bytes)Available download formats
    Dataset updated
    Jul 31, 2024
    Authors
    Subashanan Nair
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset Description: Worldometer Data Introduction This dataset contains detailed information on the population statistics of various countries, compiled from Worldometer. It includes demographic data such as yearly population changes, migration numbers, fertility rates, and urbanization metrics over multiple years.

    Dataset Overview Total Entries: 4,104 Total Columns: 14 Columns Description country (object):

    The name of the country. Example: 'India', 'China'. year (float64):

    The year for which the data is recorded. Example: 2024, 2023. population (object):

    The total population for the given year. Example: '1,441,719,852', '1,428,627,663'. yearly_change_pct (object):

    The percentage change in population from the previous year. Example: '0.92%', '0.81%'. yearly_change (object):

    The absolute change in population from the previous year. Example: '13,092,189', '11,454,490'. migrants (object):

    The net number of migrants for the given year. Example: '-486,784', '-486,136'. median_age (object):

    The median age of the population. Example: '28.6', '28.2'. fertility_rate (object):

    The fertility rate for the given year. Example: '1.98', '2.00'. density_p_km2 (object):

    The population density per square kilometer. Example: '485', '481'. urban_pop_pct (object):

    The percentage of the population living in urban areas. Example: '36.8%', '36.3%'. urban_pop (object):

    The total urban population for the given year. Example: '530,387,142', '518,239,122'. share_of_world_pop_pct (object):

    The country's share of the world's population as a percentage. Example: '17.76%', '17.77%'. world_pop (object):

    The total world population for the given year. Example: '8,118,835,999', '8,045,311,447'. global_rank (float64):

    The global population rank of the country for the given year. Example: '1.0', '2.0'. Data Quality Missing Values:

    Some columns have missing values which need to be handled before analysis. Columns with significant missing data: year, population, yearly_change_pct, yearly_change, migrants, median_age, fertility_rate, density_p_km2, urban_pop_pct, urban_pop, share_of_world_pop_pct, world_pop, global_rank. Data Types:

    Most columns are of type object due to the presence of commas and percentage signs. Conversion to appropriate numeric types (e.g., integers, floats) is required for analysis. Potential Uses Demographic Analysis: Study population growth trends, migration patterns, and changes in fertility rates. Urbanization Studies: Analyze urban population growth and density changes over time. Global Ranking: Evaluate and compare the population statistics of different countries. Conclusion This dataset provides a comprehensive view of the world population trends over the years. Cleaning and preprocessing steps, including handling missing values and converting data types, will be necessary to prepare the data for analysis. This dataset can be valuable for researchers, demographers, and data scientists interested in population studies and demographic trends.

    File Details Filename: worldometer_data.csv Size: 4104 rows x 14 columns Format: CSV Source Website: Worldometer Scraped Using: Scrapy

  9. d

    National Longitudinal Mortality Study

    • dknet.org
    • rrid.site
    • +2more
    Updated Jul 2, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). National Longitudinal Mortality Study [Dataset]. http://identifiers.org/RRID:SCR_008946
    Explore at:
    Dataset updated
    Jul 2, 2011
    Description

    A database based on a random sample of the noninstitutionalized population of the United States, developed for the purpose of studying the effects of demographic and socio-economic characteristics on differentials in mortality rates. It consists of data from 26 U.S. Current Population Surveys (CPS) cohorts, annual Social and Economic Supplements, and the 1980 Census cohort, combined with death certificate information to identify mortality status and cause of death covering the time interval, 1979 to 1998. The Current Population Surveys are March Supplements selected from the time period from March 1973 to March 1998. The NLMS routinely links geographical and demographic information from Census Bureau surveys and censuses to the NLMS database, and other available sources upon request. The Census Bureau and CMS have approved the linkage protocol and data acquisition is currently underway. The plan for the NLMS is to link information on mortality to the NLMS every two years from 1998 through 2006 with research on the resulting database to continue, at least, through 2009. The NLMS will continue to incorporate data from the yearly Annual Social and Economic Supplement into the study as the data become available. Based on the expected size of the Annual Social and Economic Supplements to be conducted, the expected number of deaths to be added to the NLMS through the updating process will increase the mortality content of the study to nearly 500,000 cases out of a total number of approximately 3.3 million records. This effort would also include expanding the NLMS population base by incorporating new March Supplement Current Population Survey data into the study as they become available. Linkages to the SEER and CMS datasets are also available. Data Availability: Due to the confidential nature of the data used in the NLMS, the public use dataset consists of a reduced number of CPS cohorts with a fixed follow-up period of five years. NIA does not make the data available directly. Research access to the entire NLMS database can be obtained through the NIA program contact listed. Interested investigators should email the NIA contact and send in a one page prospectus of the proposed project. NIA will approve projects based on their relevance to NIA/BSR''s areas of emphasis. Approved projects are then assigned to NLMS statisticians at the Census Bureau who work directly with the researcher to interface with the database. A modified version of the public use data files is available also through the Census restricted Data Centers. However, since the database is quite complex, many investigators have found that the most efficient way to access it is through the Census programmers. * Dates of Study: 1973-2009 * Study Features: Longitudinal * Sample Size: ~3.3 Million Link: *ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00134

  10. t

    Data from: Data set for the population survey “attitudes towards big data...

    • service.tib.eu
    • radar-service.eu
    • +1more
    Updated Nov 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Data set for the population survey “attitudes towards big data practices and the institutional framework of privacy and data protection” [Dataset]. https://service.tib.eu/ldmservice/dataset/rdr-doi-10-35097-1151
    Explore at:
    Dataset updated
    Nov 28, 2024
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Abstract: The aim of this study is to gain insights into the attitudes of the population towards big data practices and the factors influencing them. To this end, a nationwide survey (N = 1,331), representative of the population of Germany, addressed the attitudes about selected big data practices exemplified by four scenarios, which may have a direct impact on the personal lifestyle. The scenarios contained price discrimination in retail, credit scoring, differentiations in health insurance, and differentiations in employment. The attitudes about the scenarios were set into relation to demographic characteristics, personal value orientations, knowledge about computers and the internet, and general attitudes about privacy and data protection. Another focus of the study is on the institutional framework of privacy and data protection, because the realization of benefits or risks of big data practices for the population also depends on the knowledge about the rights the institutional framework provided to the population and the actual use of those rights. As results, several challenges for the framework by big data practices were confirmed, in particular for the elements of informed consent with privacy policies, purpose limitation, and the individuals’ rights to request information about the processing of personal data and to have these data corrected or erased. TechnicalRemarks: TYPE OF SURVEY AND METHODS The data set includes responses to a survey conducted by professionally trained interviewers of a social and market research company in the form of computer-aided telephone interviews (CATI) from 2017-02 to 2017-04. The target population was inhabitants of Germany aged 18 years and more, who were randomly selected by using the sampling approaches ADM eASYSAMPLe (based on the Gabler-Häder method) for landline connections and eASYMOBILe for mobile connections. The 1,331 completed questionnaires comprise 44.2 percent mobile and 55.8 percent landline phone respondents. Most questions had options to answer with a 5-point rating scale (Likert-like) anchored with ‘Fully agree’ to ‘Do not agree at all’, or ‘Very uncomfortable’ to ‘Very comfortable’, for instance. Responses by the interviewees were weighted to obtain a representation of the entire German population (variable ‘gewicht’ in the data sets). To this end, standard weighting procedures were applied to reduce differences between the sample and the entire population with regard to known rates of response and non-response depending on household size, age, gender, educational level, and place of residence. RELATED PUBLICATION AND FURTHER DETAILS The questionnaire, analysis and results will be published in the corresponding report (main text in English language, questionnaire in Appendix B in German language of the interviews and English translation). The report will be available as open access publication at KIT Scientific Publishing (https://www.ksp.kit.edu/). Reference: Orwat, Carsten; Schankin, Andrea (2018): Attitudes towards big data practices and the institutional framework of privacy and data protection - A population survey, KIT Scientific Report 7753, Karlsruhe: KIT Scientific Publishing. FILE FORMATS The data set of responses is saved for the repository KITopen at 2018-11 in the following file formats: comma-separated values (.csv), tapulator-separated values (.dat), Excel (.xlx), Excel 2007 or newer (.xlxs), and SPSS Statistics (.sav). The questionnaire is saved in the following file formats: comma-separated values (.csv), Excel (.xlx), Excel 2007 or newer (.xlxs), and Portable Document Format (.pdf). PROJECT AND FUNDING The survey is part of the project Assessing Big Data (ABIDA) (from 2015-03 to 2019-02), which receives funding from the Federal Ministry of Education and Research (BMBF), Germany (grant no. 01IS15016A-F). http://www.abida.de

  11. N

    Greenwood, MS Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Greenwood, MS Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Greenwood from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/greenwood-ms-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mississippi, Greenwood
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Greenwood population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Greenwood across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Greenwood was 13,421, a 1.23% decrease year-by-year from 2022. Previously, in 2022, Greenwood population was 13,588, a decline of 3.01% compared to a population of 14,009 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Greenwood decreased by 5,977. In this period, the peak population was 19,398 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Greenwood is shown in this column.
    • Year on Year Change: This column displays the change in Greenwood population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Greenwood Population by Year. You can refer the same here

  12. 2

    UKHLS

    • datacatalogue.ukdataservice.ac.uk
    Updated Oct 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Essex, Institute for Social and Economic Research (2025). UKHLS [Dataset]. http://doi.org/10.5255/UKDA-SN-9471-1
    Explore at:
    Dataset updated
    Oct 21, 2025
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    University of Essex, Institute for Social and Economic Research
    Area covered
    United Kingdom
    Description

    Understanding Society, (UK Household Longitudinal Study), which began in 2009, is conducted by the Institute for Social and Economic Research (ISER) at the University of Essex and the survey research organisations Verian Group (formerly Kantar Public) and NatCen. It builds on and incorporates, the British Household Panel Survey (BHPS), which began in 1991.

    The Understanding Society: Calendar Year Dataset, 2023, is designed for analysts to conduct cross-sectional analysis for the 2023 calendar year. The Calendar Year datasets combine data collected in a specific year from across multiple waves and these are released as separate calendar year studies, with appropriate analysis weights, starting with the 2020 Calendar Year dataset. Each subsequent year, an additional yearly study is released.

    The Calendar Year data is designed to enable timely cross-sectional analysis of individuals and households in a calendar year. Such analysis can however, only involve variables that are collected in every wave (excluding rotating content which is only collected in some of the waves). Due to overlapping fieldwork the data files combine data collected in the three waves that make up a calendar year. Analysis cannot be restricted to data collected in one wave during a calendar year, as this subset will not be representative of the population. Further details and guidance on this study can be found in the xxxx_main_survey_calendar_year_user_guide_2023.

    These calendar year datasets should be used for cross-sectional analysis only. For those interested in longitudinal analyses using Understanding Society please access the main survey datasets: Safeguarded (End User Licence) version or Safeguarded/Special Licence version.

    Understanding Society: the UK Household Longitudinal Study, started in 2009 with a general population sample (GPS) of UK residents living in private households of around 26,000 households and an ethnic minority boost sample (EMBS) of 4,000 households. All members of these responding households and their descendants became part of the core sample who were eligible to be interviewed every year. Anyone who joined these households after this initial wave, were also interviewed as long as they lived with these core sample members to provide the household context. At each annual interview, some basic demographic information was collected about every household member, information about the household is collected from one household member, all 16+ year old household members are eligible for adult interviews, 10-15 year old household members are eligible for youth interviews, and some information is collected about 0-9 year olds from their parents or guardians. Since 1991 until 2008/9 a similar survey, the British Household Panel Survey (BHPS), was fielded. The surviving members of this survey sample were incorporated into Understanding Society in 2010. In 2015, an immigrant and ethnic minority boost sample (IEMBS) of around 2,500 households was added. In 2022 a GPS boost sample (GPS2) of around 5,700 households was added. To know more about the sample design, following rules, interview modes, incentives, consent, questionnaire content please see the study overview and user guide.

    Co-funders

    In addition to the Economic and Social Research Council, co-funders for the study included the Department of Work and Pensions, the Department for Education, the Department for Transport, the Department of Culture, Media and Sport, the Department for Community and Local Government, the Department of Health, the Scottish Government, the Welsh Assembly Government, the Northern Ireland Executive, the Department of Environment and Rural Affairs, and the Food Standards Agency.

    End User Licence and Special Licence versions:

    There are two versions of the Calendar Year 2023 data. One is available under the standard End User Licence (EUL) agreement, and the other is a Special Licence (SL) version. The SL version contains month and year of birth variables instead of just age, more detailed country and occupation coding for a number of variables and various income variables have not been top-coded (see document '9471_eul_vs_sl_variable_differences' for more details). Users are advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements. The SL data have more restrictive access conditions; prospective users of the SL version will need to complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables in order to get permission to use that version. The main longitudinal versions of the Understanding Society study may be found under SNs 6614 (Safeguarded (EUL)) and 6931 (Safeguarded/SL).

    Low- and Medium-level geographical identifiers produced for the mainstage longitudinal dataset can be used with this Calendar Year 2023 dataset, subject to SL access conditions. See the User Guide for further details.

    Suitable data analysis software

    These data are provided by the depositor in Stata format. Users are strongly advised to analyse them in Stata. Transfer to other formats may result in unforeseen issues. Stata SE or MP software is needed to analyse the larger files, which contain about 1,800 variables.

  13. A dataset from a survey investigating disciplinary differences in data...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin, csv, pdf, txt
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anton Boudreau Ninkov; Anton Boudreau Ninkov; Chantal Ripp; Chantal Ripp; Kathleen Gregory; Kathleen Gregory; Isabella Peters; Isabella Peters; Stefanie Haustein; Stefanie Haustein (2024). A dataset from a survey investigating disciplinary differences in data citation [Dataset]. http://doi.org/10.5281/zenodo.7555363
    Explore at:
    csv, txt, pdf, binAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anton Boudreau Ninkov; Anton Boudreau Ninkov; Chantal Ripp; Chantal Ripp; Kathleen Gregory; Kathleen Gregory; Isabella Peters; Isabella Peters; Stefanie Haustein; Stefanie Haustein
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    GENERAL INFORMATION

    Title of Dataset: A dataset from a survey investigating disciplinary differences in data citation

    Date of data collection: January to March 2022

    Collection instrument: SurveyMonkey

    Funding: Alfred P. Sloan Foundation


    SHARING/ACCESS INFORMATION

    Licenses/restrictions placed on the data: These data are available under a CC BY 4.0 license

    Links to publications that cite or use the data:

    Gregory, K., Ninkov, A., Ripp, C., Peters, I., & Haustein, S. (2022). Surveying practices of data citation and reuse across disciplines. Proceedings of the 26th International Conference on Science and Technology Indicators. International Conference on Science and Technology Indicators, Granada, Spain. https://doi.org/10.5281/ZENODO.6951437

    Gregory, K., Ninkov, A., Ripp, C., Roblin, E., Peters, I., & Haustein, S. (2023). Tracing data:
    A survey investigating disciplinary differences in data citation.
    Zenodo. https://doi.org/10.5281/zenodo.7555266


    DATA & FILE OVERVIEW

    File List

    • Filename: MDCDatacitationReuse2021Codebook.pdf
      Codebook
    • Filename: MDCDataCitationReuse2021surveydata.csv
      Dataset format in csv
    • Filename: MDCDataCitationReuse2021surveydata.sav
      Dataset format in SPSS
    • Filename: MDCDataCitationReuseSurvey2021QNR.pdf
      Questionnaire

    Additional related data collected that was not included in the current data package: Open ended questions asked to respondents


    METHODOLOGICAL INFORMATION

    Description of methods used for collection/generation of data:

    The development of the questionnaire (Gregory et al., 2022) was centered around the creation of two main branches of questions for the primary groups of interest in our study: researchers that reuse data (33 questions in total) and researchers that do not reuse data (16 questions in total). The population of interest for this survey consists of researchers from all disciplines and countries, sampled from the corresponding authors of papers indexed in the Web of Science (WoS) between 2016 and 2020.

    Received 3,632 responses, 2,509 of which were completed, representing a completion rate of 68.6%. Incomplete responses were excluded from the dataset. The final total contains 2,492 complete responses and an uncorrected response rate of 1.57%. Controlling for invalid emails, bounced emails and opt-outs (n=5,201) produced a response rate of 1.62%, similar to surveys using comparable recruitment methods (Gregory et al., 2020).

    Methods for processing the data:

    Results were downloaded from SurveyMonkey in CSV format and were prepared for analysis using Excel and SPSS by recoding ordinal and multiple choice questions and by removing missing values.

    Instrument- or software-specific information needed to interpret the data:

    The dataset is provided in SPSS format, which requires IBM SPSS Statistics. The dataset is also available in a coded format in CSV. The Codebook is required to interpret to values.


    DATA-SPECIFIC INFORMATION FOR: MDCDataCitationReuse2021surveydata

    Number of variables: 94

    Number of cases/rows: 2,492

    Missing data codes: 999 Not asked

    Refer to MDCDatacitationReuse2021Codebook.pdf for detailed variable information.

  14. f

    Data from: Sample demographics.

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    • +1more
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Šabanović, Haris; Eitze, Sarah; Cilović-Lagarija, Šeila; Stojisavljević, Stela; Nitzan, Dorit; Habersaat, Katrine Bach; Curtis, Benjamin; Dizdar, Faris; de Arriaga, Miguel Telo; Skočibušić, Siniša; Musa, Sanjin; Scherzer, Martha; Palo, Mirza (2025). Sample demographics. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0002103227
    Explore at:
    Dataset updated
    Apr 17, 2025
    Authors
    Šabanović, Haris; Eitze, Sarah; Cilović-Lagarija, Šeila; Stojisavljević, Stela; Nitzan, Dorit; Habersaat, Katrine Bach; Curtis, Benjamin; Dizdar, Faris; de Arriaga, Miguel Telo; Skočibušić, Siniša; Musa, Sanjin; Scherzer, Martha; Palo, Mirza
    Description

    Background and aimPublic health and social measures (PHSM) are critical aspects of limiting the spread of infections in pandemics. Compliance with PHSM depends on a wide range of factors, including behavioral determinants such as emotional response, trust in institutions or risk perceptions. This study examines self-reported compliance with PHSM during the COVID-19 pandemic in the Federation of Bosnia and Herzegovina (FBIH).Materials and methodsWe analyze the association between compliance and behavioral determinants, using data from five cross-sectional surveys that were conducted between June 2020 and August 2021 in FBIH. Quota-based sampling ensured that the 1000 people per wave were population representative regarding age, sex, and education level based on the data from the latest census in Bosnia and Herzegovina. One-way analysis of variance (ANOVA) was used to identify significant changes between studies on determinants and PHSM measures. Regression was used to find relations between behavioral determinants and PHSM.ResultsParticipants reported strong emotional responses to the rapid spread of the virus and its proximity to them. Risk perception was spiking in December 2020 when rates of infection and death were particularly high. Trends in policy acceptance were divergent; participants did not rate PHSM as exaggerated, but perceived fairness was low. Trust in institutions was low across all waves and declined for specific institutions such as the health ministry. In five wave-specific regression analyses, emotional response (βmin/max = .11*/.21*), risk perception (βmin/max = .06/.18*), policy acceptance (βmin/max = .09/.20*), and trust in institutions (βmin/max = .06/.21*) emerged as significant predictors of PHSM.ConclusionsThis study contributes to the body of research on factors influencing compliance with PHSM. It emphasizes the importance of behavioral monitoring through repeated surveys to understand and improve compliance. The study also affirms the impact of public trust on compliance, the risk of eroding compliance over time, and the need for health literacy support to help reinforce protective behaviors.

  15. f

    Biomarkers used in this study and number of observations for each data set.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alan A. Cohen; Qing Li; Emmanuel Milot; Maxime Leroux; Samuel Faucher; Vincent Morissette-Thomas; Véronique Legault; Linda P. Fried; Luigi Ferrucci (2023). Biomarkers used in this study and number of observations for each data set. [Dataset]. http://doi.org/10.1371/journal.pone.0122541.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Alan A. Cohen; Qing Li; Emmanuel Milot; Maxime Leroux; Samuel Faucher; Vincent Morissette-Thomas; Véronique Legault; Linda P. Fried; Luigi Ferrucci
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Biomarkers used in this study and number of observations for each data set.

  16. f

    Characteristics of studies on depression among university students are...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Oct 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gebresellassie, Moges; Zenebe, Yosef; Kebede, Fasikaw; Anbesaw, Tamrat; Segon, Tesfaye; Bete, Tilahun; Necho, Mogessie (2023). Characteristics of studies on depression among university students are incorporated in this meta-analysis according to author’s first name, year of publication, setting of the study, design, sample size, assessment tools, study population, sampling methods, age, and magnitude of depression, response rate. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001074746
    Explore at:
    Dataset updated
    Oct 12, 2023
    Authors
    Gebresellassie, Moges; Zenebe, Yosef; Kebede, Fasikaw; Anbesaw, Tamrat; Segon, Tesfaye; Bete, Tilahun; Necho, Mogessie
    Description

    Characteristics of studies on depression among university students are incorporated in this meta-analysis according to author’s first name, year of publication, setting of the study, design, sample size, assessment tools, study population, sampling methods, age, and magnitude of depression, response rate.

  17. N

    Nantucket, Massachusetts Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Nantucket, Massachusetts Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Nantucket town from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/nantucket-ma-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Massachusetts, Nantucket
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Nantucket town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Nantucket town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Nantucket town was 14,444, a 0.01% increase year-by-year from 2022. Previously, in 2022, Nantucket town population was 14,443, a decline of 0.43% compared to a population of 14,506 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Nantucket town increased by 4,880. In this period, the peak population was 14,506 in the year 2021. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Nantucket town is shown in this column.
    • Year on Year Change: This column displays the change in Nantucket town population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Nantucket town Population by Year. You can refer the same here

  18. The NIMH Healthy Research Volunteer Dataset

    • openneuro.org
    Updated Dec 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allison C. Nugent; Adam G Thomas; Margaret Mahoney; Alison Gibbons; Jarrod Smith; Antoinette Charles; Jacob S Shaw; Jeffrey D Stout; Anna M Namyst; Arshitha Basavaraj; Eric Earl; Dustin Moraczewski; Emily Guinee; Michael Liu; Travis Riddle; Joseph Snow; Shruti Japee; Morgan Andrews; Adriana Pavletic; Stephen Sinclair; Vinai Roopchansingh; Peter A Bandettini; Joyce Chung (2024). The NIMH Healthy Research Volunteer Dataset [Dataset]. http://doi.org/10.18112/openneuro.ds004215.v2.0.1
    Explore at:
    Dataset updated
    Dec 20, 2024
    Dataset provided by
    OpenNeurohttps://openneuro.org/
    Authors
    Allison C. Nugent; Adam G Thomas; Margaret Mahoney; Alison Gibbons; Jarrod Smith; Antoinette Charles; Jacob S Shaw; Jeffrey D Stout; Anna M Namyst; Arshitha Basavaraj; Eric Earl; Dustin Moraczewski; Emily Guinee; Michael Liu; Travis Riddle; Joseph Snow; Shruti Japee; Morgan Andrews; Adriana Pavletic; Stephen Sinclair; Vinai Roopchansingh; Peter A Bandettini; Joyce Chung
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The National Institute of Mental Health (NIMH) Research Volunteer (RV) Data Set

    A comprehensive dataset characterizing healthy research volunteers in terms of clinical assessments, mood-related psychometrics, cognitive function neuropsychological tests, structural and functional magnetic resonance imaging (MRI), along with diffusion tensor imaging (DTI), and a comprehensive magnetoencephalography battery (MEG).

    In addition, blood samples are currently banked for future genetic analysis. All data collected in this protocol are broadly shared in the OpenNeuro repository, in the Brain Imaging Data Structure (BIDS) format. In addition, task paradigms and basic pre-processing scripts are shared on GitHub. This dataset is unprecedented in its depth of characterization of a healthy population and will allow a wide array of investigations into normal cognition and mood regulation.

    This dataset is licensed under the Creative Commons Zero (CC0) v1.0 License.

    Release Notes

    Release v2.0.0

    This release includes data collected between 2020-06-03 (cut-off date for v1.0.0) and 2024-04-01. Notable changes in this release:

    1. 769 new participants have been added along with re-evaluation data for 15 participants. Total unique participants count is now 1859.
    2. visit and age_at_visit columns added to phenotype files to distinguish between visits and intervals between them.
    3. Follow-up online survey data included.
    4. Replaced Beck Anxiety Inventory (BAI) and Beck Depression Inventory-II (BDI-II) with General Anxiety Disorder-7 (GAD7) and Patient Health Questionnaire 9 (PHQ9) surveys, respectively.
    5. Discontinued the Perceived Health rating survey.
    6. Added Brief Trauma Questionnaire (BTQ) and Big Five personality survey to online screening questionnaires.
    7. MRI:
      • Replaced ADNI-3 resting state sequence with a multi-echo sequence with higher spatial resolution.
      • Replaced field map scans with a shorter reversed-blipped EPI scan.
    8. MEG:
      • Some participants have 6-minute empty room data instead of the shorter duration empty room acquisition.

    See the CHANGES file for complete version-wise changelog.

    Participant Eligibility

    To be eligible for the study, participants need to be medically healthy adults over 18 years of age with the ability to read, speak and understand English. All participants provided electronic informed consent for online pre-screening, and written informed consent for all other procedures. Participants with a history of mental illness or suicidal or self-injury thoughts or behavior are excluded. Additional exclusion criteria include current illicit drug use, abnormal medical exam, and less than an 8th grade education or IQ below 70. Current NIMH employees, or first degree relatives of NIMH employees are prohibited from participating. Study participants are recruited through direct mailings, bulletin boards and listservs, outreach exhibits, print advertisements, and electronic media.

    Clinical Measures

    All potential volunteers visit the study website, check a box indicating consent, and fill out preliminary screening questionnaires. The questionnaires include basic demographics, the World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0), the DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure, the DSM-5 Level 2 Cross-Cutting Symptom Measure - Substance Use, the Alcohol Use Disorders Identification Test (AUDIT), the Edinburgh Handedness Inventory, and a brief clinical history checklist. The WHODAS 2.0 is a 15 item questionnaire that assesses overall general health and disability, with 14 items distributed over 6 domains: cognition, mobility, self-care, “getting along”, life activities, and participation. The DSM-5 Level 1 cross-cutting measure uses 23 items to assess symptoms across diagnoses, although an item regarding self-injurious behavior was removed from the online self-report version. The DSM-5 Level 2 cross-cutting measure is adapted from the NIDA ASSIST measure, and contains 15 items to assess use of both illicit drugs and prescription drugs without a doctor’s prescription. The AUDIT is a 10 item screening assessment used to detect harmful levels of alcohol consumption, and the Edinburgh Handedness Inventory is a systematic assessment of handedness. These online results do not contain any personally identifiable information (PII). At the conclusion of the questionnaires, participants are prompted to send an email to the study team. These results are reviewed by the study team, who determines if the participant is appropriate for an in-person interview.

    Participants who meet all inclusion criteria are scheduled for an in-person screening visit to determine if there are any further exclusions to participation. At this visit, participants receive a History and Physical exam, Structured Clinical Interview for DSM-5 Disorders (SCID-5), the Beck Depression Inventory-II (BDI-II), Beck Anxiety Inventory (BAI), and the Kaufman Brief Intelligence Test, Second Edition (KBIT-2). The purpose of these cognitive and psychometric tests is two-fold. First, these measures are designed to provide a sensitive test of psychopathology. Second, they provide a comprehensive picture of cognitive functioning, including mood regulation. The SCID-5 is a structured interview, administered by a clinician, that establishes the absence of any DSM-5 axis I disorder. The KBIT-2 is a brief (20 minute) assessment of intellectual functioning administered by a trained examiner. There are three subtests, including verbal knowledge, riddles, and matrices.

    Biological and physiological measures

    Biological and physiological measures are acquired, including blood pressure, pulse, weight, height, and BMI. Blood and urine samples are taken and a complete blood count, acute care panel, hepatic panel, thyroid stimulating hormone, viral markers (HCV, HBV, HIV), c-reactive protein, creatine kinase, urine drug screen and urine pregnancy tests are performed. In addition, three additional tubes of blood samples are collected and banked for future analysis, including genetic testing.

    Imaging Studies

    Participants were given the option to enroll in optional magnetic resonance imaging (MRI) and magnetoencephalography (MEG) studies.

    MRI

    On the same visit as the MRI scan, participants are administered a subset of tasks from the NIH Toolbox Cognition Battery. The four tasks asses attention and executive functioning (Flanker Inhibitory Control and Attention Task), executive functioning (Dimensional Change Card Sort Task), episodic memory (Picture Sequence Memory Task), and working memory (List Sorting Working Memory Task). The MRI protocol used was initially based on the ADNI-3 basic protocol, but was later modified to include portions of the ABCD protocol in the following manner:

    1. The T1 scan from ADNI3 was replaced by the T1 scan from the ABCD protocol.
    2. The Axial T2 2D FLAIR acquisition from ADNI2 was added, and fat saturation turned on.
    3. Fat saturation was turned on for the pCASL acquisition.
    4. The high-resolution in-plane hippocampal 2D T2 scan was removed, and replaced with the whole brain 3D T2 scan from the ABCD protocol (which is resolution and bandwidth matched to the T1 scan).
    5. The slice-select gradient reversal method was turned on for DTI acquisition, and reconstruction interpolation turned off.
    6. Scans for distortion correction were added (reversed-blip scans for DTI and resting state scans).
    7. The 3D FLAIR sequence was made optional, and replaced by one where the prescription and other acquisition parameters provide resolution and geometric correspondence between the T1 and T2 scans.

    MEG

    The optional MEG studies were added to the protocol approximately one year after the study was initiated, thus there are relatively fewer MEG recordings in comparison to the MRI dataset. MEG studies are performed on a 275 channel CTF MEG system. The position of the head was localized at the beginning and end of the recording using three fiducial coils. These coils were placed 1.5 cm above the nasion, and at each ear, 1.5 cm from the tragus on a line between the tragus and the outer canthus of the eye. For some participants, photographs were taken of the three coils and used to mark the points on the T1 weighted structural MRI scan for co-registration. For the remainder of the participants, a BrainSight neuro-navigation unit was used to coregister the MRI, anatomical fiducials, and localizer coils directly prior to MEG data acquisition.

    Specific Survey and Test Data within Data Set

    NOTE: In the release 2.0 of the dataset, two measures Brief Trauma Questionnaire (BTQ) and Big Five personality survey were added to the online screening questionnaires. Also, for the in-person screening visit, the Beck Anxiety Inventory (BAI) and Beck Depression Inventory-II (BDI-II) were replaced with the General Anxiety Disorder-7 (GAD7) and Patient Health Questionnaire 9 (PHQ9) surveys, respectively. The Perceived Health rating survey was discontinued.

    1. Preliminary Online Screening Questionnaires

    Survey or TestBIDS TSV Name
    Alcohol Use Disorders Identification Test (AUDIT)audit.tsv
    Brief Trauma Questionnaire (BTQ)btq.tsv
    Big-Five Personalitybig_five_personality.tsv
    Demographicsdemographics.tsv
    Drug Use Questionnaire
  19. m

    NEW NORMAL EDUCATION: THE BEED EXPERIENCES WITH BLENDED LEARNING APPROACHES...

    • data.mendeley.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ERLYN DISCUATAN (2024). NEW NORMAL EDUCATION: THE BEED EXPERIENCES WITH BLENDED LEARNING APPROACHES AMIDST COVID-19 PANDEMIC [Dataset]. http://doi.org/10.17632/dw8rxpvk8v.2
    Explore at:
    Dataset updated
    Nov 7, 2024
    Authors
    ERLYN DISCUATAN
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This study is to examine the experiences of BEED students in new normal education with blended learning approaches Amidst Covid-19 Pandemic. To achieve this, quantitative-inferential and descriptive research method was adopted. This study focuses on the BEED students of College of Teacher Education at Sultan Kudarat State University. Total-enumeration sampling technique is utilized as it will be dealing with only 35 students, a total respondent which is less than 1000 research sample population. Research finding shows that new normal education implementation responded by BEED students shows that the topics delivered in modular learning approach cannot be easily understood solely by the students. Online learning using messenger chatting or texting with the teachers’ messages were sometimes confusing and limiting the meaning of the message(s) taught which in returns had limited as well the understanding of the students about the topic received. Virtual classes and topic discussions in an online classroom meeting ---most students were just connecting via Pesonet and that the internet connectivity is not consistent. Learning experiences of the students in the new normal education specifically in the answering of the students’ learning activities had been observed by the study as neither easy nor difficult. The availability of educational information technology devices for the online class communication are not similarly true to all due to economic deficiency. Thus, students find difficulties in attending classes. The internet connectivity of the student-teacher and their communication to receive updates about the class and in complying to the class requirements is very irregular and not consistent

  20. E

    SweGen whole-genome sequencing from the Northern Sweden Population Health...

    • ega-archive.org
    • researchdata.se
    • +1more
    Updated Apr 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). SweGen whole-genome sequencing from the Northern Sweden Population Health Study [Dataset]. https://ega-archive.org/datasets/EGAD50000001325
    Explore at:
    Dataset updated
    Apr 4, 2025
    License

    https://ega-archive.org/dacs/EGAC50000000433https://ega-archive.org/dacs/EGAC50000000433

    Description

    The dataset contains whole-genome sequencing data (aligned read files) in CRAM-format (lossless compression) for a total of 58 DNA samples originating from the Northern Sweden Population Health Study (NSPHS). For each of the 58 individuals, DNA was extracted from a blood sample and subject to whole genome sequencing (WGS). The WGS was performed using 2x150 bp paired-end chemistry on Illumina HiSeq X Ten instrumentation at the SciLifeLab National Genomics Infrastructure (NGI) in Stockholm and Uppsala. FASTQ files generated by WGS were analyzed using the nf-core pipeline Sarek, which includes pre-processing, alignment to the human GRCh38 reference genome, and germline variant calling. The NSPHS study was approved by the local ethics committee at the University of Uppsala (Regionala Etikprövningsnämnden, Uppsala, 2005:325 and 2016-03-09). All participants gave their written informed consent to the study including the examination of environmental and genetic causes of disease in compliance with the Declaration of Helsinki.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ministry of Social Affairs (2020). Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro [Dataset]. https://microdata.worldbank.org/index.php/catalog/81

Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro

Explore at:
Dataset updated
Jan 30, 2020
Dataset provided by
Ministry of Social Affairs
Strategic Marketing & Media Research Institute Group (SMMRI)
Time period covered
2003
Area covered
Serbia and Montenegro
Description

Abstract

The study included four separate surveys:

  1. The LSMS survey of general population of Serbia in 2002
  2. The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.

  3. The LSMS survey of general population of Serbia in 2003 (panel survey)

  4. The survey of Roma from Roma settlements in 2003 These two datasets are published together.

Objectives

LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.

The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).

Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]

Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.

Geographic coverage

The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).

Kind of data

Sample survey data [ssd]

Sampling procedure

Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.

The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.

The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.

Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.

Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.

Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.

The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.

Mode of data collection

Face-to-face [f2f]

Research instrument

In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).

Response rate

During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.

In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households

Search
Clear search
Close search
Google apps
Main menu