71 datasets found
  1. e

    Interactive Story Maps for Cultural Heritage

    • data.europa.eu
    html
    Updated Oct 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joint Research Centre (2024). Interactive Story Maps for Cultural Heritage [Dataset]. https://data.europa.eu/euodp/hr/data/dataset/jrc-citsci-10003
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 11, 2024
    Dataset authored and provided by
    Joint Research Centre
    License

    http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj

    Description

    The Story Maps, developed by the Joint Research Centre, the Commission's science and knowledge service, inform in an easily accessible way about several initiatives across Europe linked to cultural heritage. These include actions like the European Heritage Days, the EU Prize for Cultural Heritage or the European Heritage Label, funded by Creative Europe, the EU programme that supports the cultural and creative sectors. The website also contains links to the digital collections of Europeana – the EU digital platform for cultural heritage. This platform allows users to explore more than 50 million artworks, artefacts, books, videos and sounds from more than 3500 museums, galleries, libraries and archives across Europe. These maps will be updated and developed, for example taking into account tips from young people exploring Europe's cultural heritage through the new DiscoverEU initiative.

  2. Requirements data sets (user stories)

    • zenodo.org
    • data.mendeley.com
    txt
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabiano Dalpiaz; Fabiano Dalpiaz (2025). Requirements data sets (user stories) [Dataset]. http://doi.org/10.17632/7zbk8zsd8y.1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 13, 2025
    Dataset provided by
    Mendeley Ltd.
    Authors
    Fabiano Dalpiaz; Fabiano Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A collection of 22 data set of 50+ requirements each, expressed as user stories.

    The dataset has been created by gathering data from web sources and we are not aware of license agreements or intellectual property rights on the requirements / user stories. The curator took utmost diligence in minimizing the risks of copyright infringement by using non-recent data that is less likely to be critical, by sampling a subset of the original requirements collection, and by qualitatively analyzing the requirements. In case of copyright infringement, please contact the dataset curator (Fabiano Dalpiaz, f.dalpiaz@uu.nl) to discuss the possibility of removal of that dataset [see Zenodo's policies]

    The data sets have been originally used to conduct experiments about ambiguity detection with the REVV-Light tool: https://github.com/RELabUU/revv-light

    This collection has been originally published in Mendeley data: https://data.mendeley.com/datasets/7zbk8zsd8y/1

    Overview of the datasets [data and links added in December 2024]

    The following text provides a description of the datasets, including links to the systems and websites, when available. The datasets are organized by macro-category and then by identifier.

    Public administration and transparency

    g02-federalspending.txt (2018) originates from early data in the Federal Spending Transparency project, which pertain to the website that is used to share publicly the spending data for the U.S. government. The website was created because of the Digital Accountability and Transparency Act of 2014 (DATA Act). The specific dataset pertains a system called DAIMS or Data Broker, which stands for DATA Act Information Model Schema. The sample that was gathered refers to a sub-project related to allowing the government to act as a data broker, thereby providing data to third parties. The data for the Data Broker project is currently not available online, although the backend seems to be hosted in GitHub under a CC0 1.0 Universal license. Current and recent snapshots of federal spending related websites, including many more projects than the one described in the shared collection, can be found here.

    g03-loudoun.txt (2018) is a set of extracted requirements from a document, by the Loudoun County Virginia, that describes the to-be user stories and use cases about a system for land management readiness assessment called Loudoun County LandMARC. The source document can be found here and it is part of the Electronic Land Management System and EPlan Review Project - RFP RFQ issued in March 2018. More information about the overall LandMARC system and services can be found here.

    g04-recycling.txt(2017) concerns a web application where recycling and waste disposal facilities can be searched and located. The application operates through the visualization of a map that the user can interact with. The dataset has obtained from a GitHub website and it is at the basis of a students' project on web site design; the code is available (no license).

    g05-openspending.txt (2018) is about the OpenSpending project (www), a project of the Open Knowledge foundation which aims at transparency about how local governments spend money. At the time of the collection, the data was retrieved from a Trello board that is currently unavailable. The sample focuses on publishing, importing and editing datasets, and how the data should be presented. Currently, OpenSpending is managed via a GitHub repository which contains multiple sub-projects with unknown license.

    g11-nsf.txt (2018) refers to a collection of user stories referring to the NSF Site Redesign & Content Discovery project, which originates from a publicly accessible GitHub repository (GPL 2.0 license). In particular, the user stories refer to an early version of the NSF's website. The user stories can be found as closed Issues.

    (Research) data and meta-data management

    g08-frictionless.txt (2016) regards the Frictionless Data project, which offers an open source dataset for building data infrastructures, to be used by researchers, data scientists, and data engineers. Links to the many projects within the Frictionless Data project are on GitHub (with a mix of Unlicense and MIT license) and web. The specific set of user stories has been collected in 2016 by GitHub user @danfowler and are stored in a Trello board.

    g14-datahub.txt (2013) concerns the open source project DataHub, which is currently developed via a GitHub repository (the code has Apache License 2.0). DataHub is a data discovery platform which has been developed over multiple years. The specific data set is an initial set of user stories, which we can date back to 2013 thanks to a comment therein.

    g16-mis.txt (2015) is a collection of user stories that pertains a repository for researchers and archivists. The source of the dataset is a public Trello repository. Although the user stories do not have explicit links to projects, it can be inferred that the stories originate from some project related to the library of Duke University.

    g17-cask.txt (2016) refers to the Cask Data Application Platform (CDAP). CDAP is an open source application platform (GitHub, under Apache License 2.0) that can be used to develop applications within the Apache Hadoop ecosystem, an open-source framework which can be used for distributed processing of large datasets. The user stories are extracted from a document that includes requirements regarding dataset management for Cask 4.0, which includes the scenarios, user stories and a design for the implementation of these user stories. The raw data is available in the following environment.

    g18-neurohub.txt (2012) is concerned with the NeuroHub platform, a neuroscience data management, analysis and collaboration platform for researchers in neuroscience to collect, store, and share data with colleagues or with the research community. The user stories were collected at a time NeuroHub was still a research project sponsored by the UK Joint Information Systems Committee (JISC). For information about the research project from which the requirements were collected, see the following record.

    g22-rdadmp.txt (2018) is a collection of user stories from the Research Data Alliance's working group on DMP Common Standards. Their GitHub repository contains a collection of user stories that were created by asking the community to suggest functionality that should part of a website that manages data management plans. Each user story is stored as an issue on the GitHub's page.

    g23-archivesspace.txt (2012-2013) refers to ArchivesSpace: an open source, web application for managing archives information. The application is designed to support core functions in archives administration such as accessioning; description and arrangement of processed materials including analog, hybrid, and
    born digital content; management of authorities and rights; and reference service. The application supports collection management through collection management records, tracking of events, and a growing number of administrative reports. ArchivesSpace is open source and its

  3. d

    Biomass Field Plot dataset: Tidal marsh biomass field samples for six...

    • catalog.data.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Biomass Field Plot dataset: Tidal marsh biomass field samples for six regions in the conterminous United States (ver. 2.0, June 2020) [Dataset]. https://catalog.data.gov/dataset/biomass-field-plot-dataset-tidal-marsh-biomass-field-samples-for-six-regions-in-the-conter
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). To meet this objective we developed the first national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. We tested how plant community composition and vegetation structure differences across estuaries influence model development, and whether data from multiple sensors, in particular Sentinel-1 C-band synthetic aperture radar and Landsat, can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n=409, RMSE=464 g/m2, 12.2% normalized RMSE), successfully predicted biomass and carbon for a range of marsh plant functional types defined by height, leaf angle and growth form. Model error was reduced by scaling field measured biomass by Landsat fraction green vegetation derived from object-based classification of National Agriculture Imagery Program imagery. We generated 30m resolution biomass maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map for each region. With a mean plant %C of 44.1% (n=1384, 95% C.I.=43.99% - 44.37%) we estimated mean aboveground carbon densities (Mg/ha) and total carbon stocks for each wetland type for each region. We applied a multivariate delta method to calculate uncertainties in regional carbon estimates that considered standard error in map area, mean biomass and mean %C. The original version 1.0 of the dataset can be obtained by contacting kbyrd@usgs.gov.

  4. African Development Bank Project Report

    • sdg-template-cat-sdgs.opendata.arcgis.com
    • data.amerigeoss.org
    Updated Oct 5, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri National Government (2015). African Development Bank Project Report [Dataset]. https://sdg-template-cat-sdgs.opendata.arcgis.com/datasets/esrifederal::african-development-bank-project-report
    Explore at:
    Dataset updated
    Oct 5, 2015
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri National Government
    Description

    To create this app:Make a map of the AfDB projects CSV file in the Training Materials group.Download the CSV file, click Map (at the top of the page), and drag and drop the file onto your mapFrom the layer menu on your Projects layer choose Change Symbols and show the projects using Unique Symbols and the Status of field.Make a second map of the AfDB projects shown using Unique Symbols and the Sector field.HINT: Create a copy of your first map using Save As... and modify the copy.Assemble your story map on the Esri Story Maps websiteGo to storymaps.arcgis.comAt the top of the site, click AppsFind the Story Map Tabbed app and click Build a Tabbed Story MapFollow the instructions in the app builder. Add the maps you made in previous steps and copy the text from this sample app to your app. Explore and experiment with the app configuration settings.=============OPTIONAL - Make a third map of the AFDB projects summarized by country and add it to your story map.Add the World Countries layer to your map (Add > Search for Layers)From the layer menu on your Projects layer choose Perform Analysis > Summarize Data > Aggregate Points and run the tool to summarize the projects in each country.HINT: UNCHECK "Keep areas with no points"Experiment with changing the symbols and settings on your new layer and remove other unnecessary layers.Save AS... a new map.At the top of the site, click My Content.Find your story map application item, open its Details page, and click Configure App.Use the builder to add your third map and a description to the app and save it.

  5. a

    Grand Canyon Citizen Science Story Map

    • disasters-usnsdi.opendata.arcgis.com
    • azgeo-open-data-agic.hub.arcgis.com
    • +3more
    Updated Mar 19, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2015). Grand Canyon Citizen Science Story Map [Dataset]. https://disasters-usnsdi.opendata.arcgis.com/datasets/USGS::grand-canyon-citizen-science-story-map
    Explore at:
    Dataset updated
    Mar 19, 2015
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    Area covered
    Description

    In 2012 we started collaborating with commercial river guides (http://www.gcrg.org/) and Grand Canyon Youth (http://www.gcyouth.org/) to quantify insect emergence throughout the 240 mile long segment of the Colorado River in Marble and Grand Canyon. Each night in camp, guides put out a simple light trap to collect flying insects. After one hour, the light was turned off, the sample poured into a collection bottle, and some notes were recorded in a field book. After the conclusion of the river trip, guides dropped off samples and field notes at our office and we processed the samples in the laboratory. This project is ongoing and will be conducted annually. This web application shows data collected as part of this Citizen Science initiative for the years 2012 to 2014.

  6. a

    Faust Park App

    • data-stlcogis.opendata.arcgis.com
    • data.stlouisco.com
    • +2more
    Updated Jul 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saint Louis County GIS Service Center (2018). Faust Park App [Dataset]. https://data-stlcogis.opendata.arcgis.com/datasets/faust-park-app
    Explore at:
    Dataset updated
    Jul 5, 2018
    Dataset authored and provided by
    Saint Louis County GIS Service Center
    Area covered
    Description

    This app allows users to learn more about the many historic buildings and features located within Faust Park. Link to metadata.

  7. Geospatial data for the Vegetation Mapping Inventory Project of Valley Forge...

    • s.cnmilf.com
    • gimi9.com
    • +2more
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Valley Forge National Historical Park [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-valley-forge-national-hist
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Valley Forge
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Upon completion of the formation-level classification, CEO staff created a draft association-level vegetation map using a classification scheme based on The Nature Conservancy’s Terrestrial Vegetation of the United States and association-level classes developed by PSO-TNC. Copies of the Valley Forge National Historical Park data in PLOTS database (MS ACCESS) format and the PC-ORD formatted data (MS EXCEL spreadsheet) were provided to NatureServe and The Nature Conservancy. A draft vegetation classification was provided to CEO photointerpreters by the end of January 2001. The draft classification was accompanied by an ARCVIEW shapefile indicating the _location and plot number of each sample plot, as well as the vegetation association to which that plot was classified. CEO photointerpreters used the draft classification and related ARCVIEW shapefile to help inform the attribution of associations to the association-level map polygons.

  8. d

    Geospatial data for the Vegetation Mapping Inventory Project of Pipestone...

    • datasets.ai
    • catalog.data.gov
    • +1more
    57
    Updated Sep 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Geospatial data for the Vegetation Mapping Inventory Project of Pipestone National Monument [Dataset]. https://datasets.ai/datasets/geospatial-data-for-the-vegetation-mapping-inventory-project-of-pipestone-national-monumen
    Explore at:
    57Available download formats
    Dataset updated
    Sep 11, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Pipestone
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles.

    Random sample points were generated in ArcGIS. Points were buffered 40 meters from the park boundary and 80 meters from another point. The minimum mapping unit used in delineating vegetation polygons was 0.5 hectare. All random points were selected within the park boundary to avoid any private land issues. Randomly selected site locations were loaded onto a Garmin GPS unit for field navigation. All accuracy assessment field work was completed on June 26, 2012. Field staff was provided with a GPS unit, dichotomous key for mapping vegetation map classes and vegetation class definitions. Plot shape and size varied according to the extent of the vegetation class patch containing the sample point. Circular 0.25 hectare (28 m radius) plots were used for larger patches while circular 0.1 hectare (18 m radius) plots were used for small patches approaching the minimum mapping unit. A circular plot size of 0.5 hectare (40 m radius) was used to capture information for a single large homogenous patch. In all cases, plot size exceeded the minimum patch size for PIPE.

    Minimum Mapping Unit = 0.5 hectare Minimum Patch Size=.007 hectares Total Size = 55 Polygons Average Polygon Size = 5.39 acres (2.18 hectares) Overall Thematic Accuracy = 97.9% Project Completion Date: 12/2013

  9. c

    Snags - Spears and Didion Ranches [ds317] GIS Dataset

    • map.dfg.ca.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Snags - Spears and Didion Ranches [ds317] GIS Dataset [Dataset]. https://map.dfg.ca.gov/metadata/ds0317.html
    Explore at:
    Description

    CDFW BIOS GIS Dataset, Contact: Armand Gonzales, Description: These data are the characteristics of the individual snags (standing dead trees) found at 15 sample points with three 0.05-ha circular plot habitat samples taken in 2005 at sample points at Spears and Didion Ranches, Placer County, California. Twelve of the forty-five 0.05-ha circular plots contained snags. To be counted, snags had to be > 4" dbh and > 9.8 ft tall and within the 12.6 m radius plot.

  10. DATS 6401 - Final Project - Yon ho Cheong.zip

    • figshare.com
    zip
    Updated Dec 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yon ho Cheong (2018). DATS 6401 - Final Project - Yon ho Cheong.zip [Dataset]. http://doi.org/10.6084/m9.figshare.7471007.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 15, 2018
    Dataset provided by
    figshare
    Authors
    Yon ho Cheong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    AbstractThe H1B is an employment-based visa category for temporary foreign workers in the United States. Every year, the US immigration department receives over 200,000 petitions and selects 85,000 applications through a random process and the U.S. employer must submit a petition for an H1B visa to the US immigration department. This is the most common visa status applied to international students once they complete college or higher education and begin working in a full-time position. The project provides essential information on job titles, preferred regions of settlement, foreign applicants and employers' trends for H1B visa application. According to locations, employers, job titles and salary range make up most of the H1B petitions, so different visualization utilizing tools will be used in order to analyze and interpreted in relation to the trends of the H1B visa to provide a recommendation to the applicant. This report is the base of the project for Visualization of Complex Data class at the George Washington University, some examples in this project has an analysis for the different relevant variables (Case Status, Employer Name, SOC name, Job Title, Prevailing Wage, Worksite, and Latitude and Longitude information) from Kaggle and Office of Foreign Labor Certification(OFLC) in order to see the H1B visa changes in the past several decades. Keywords: H1B visa, Data Analysis, Visualization of Complex Data, HTML, JavaScript, CSS, Tableau, D3.jsDatasetThe dataset contains 10 columns and covers a total of 3 million records spanning from 2011-2016. The relevant columns in the dataset include case status, employer name, SOC name, jobe title, full time position, prevailing wage, year, worksite, and latitude and longitude information.Link to dataset: https://www.kaggle.com/nsharan/h-1b-visaLink to dataset(FY2017): https://www.foreignlaborcert.doleta.gov/performancedata.cfmRunning the codeOpen Index.htmlData ProcessingDoing some data preprocessing to transform the raw data into an understandable format.Find and combine any other external datasets to enrich the analysis such as dataset of FY2017.To make appropriated Visualizations, variables should be Developed and compiled into visualization programs.Draw a geo map and scatter plot to compare the fastest growth in fixed value and in percentages.Extract some aspects and analyze the changes in employers’ preference as well as forecasts for the future trends.VisualizationsCombo chart: this chart shows the overall volume of receipts and approvals rate.Scatter plot: scatter plot shows the beneficiary country of birth.Geo map: this map shows All States of H1B petitions filed.Line chart: this chart shows top10 states of H1B petitions filed. Pie chart: this chart shows comparison of Education level and occupations for petitions FY2011 vs FY2017.Tree map: tree map shows overall top employers who submit the greatest number of applications.Side-by-side bar chart: this chart shows overall comparison of Data Scientist and Data Analyst.Highlight table: this table shows mean wage of a Data Scientist and Data Analyst with case status certified.Bubble chart: this chart shows top10 companies for Data Scientist and Data Analyst.Related ResearchThe H-1B Visa Debate, Explained - Harvard Business Reviewhttps://hbr.org/2017/05/the-h-1b-visa-debate-explainedForeign Labor Certification Data Centerhttps://www.foreignlaborcert.doleta.govKey facts about the U.S. H-1B visa programhttp://www.pewresearch.org/fact-tank/2017/04/27/key-facts-about-the-u-s-h-1b-visa-program/H1B visa News and Updates from The Economic Timeshttps://economictimes.indiatimes.com/topic/H1B-visa/newsH-1B visa - Wikipediahttps://en.wikipedia.org/wiki/H-1B_visaKey FindingsFrom the analysis, the government is cutting down the number of approvals for H1B on 2017.In the past decade, due to the nature of demand for high-skilled workers, visa holders have clustered in STEM fields and come mostly from countries in Asia such as China and India.Technical Jobs fill up the majority of Top 10 Jobs among foreign workers such as Computer Systems Analyst and Software Developers.The employers located in the metro areas thrive to find foreign workforce who can fill the technical position that they have in their organization.States like California, New York, Washington, New Jersey, Massachusetts, Illinois, and Texas are the prime location for foreign workers and provide many job opportunities. Top Companies such Infosys, Tata, IBM India that submit most H1B Visa Applications are companies based in India associated with software and IT services.Data Scientist position has experienced an exponential growth in terms of H1B visa applications and jobs are clustered in West region with the highest number.Visualization utilizing programsHTML, JavaScript, CSS, D3.js, Google API, Python, R, and Tableau

  11. ACS Median Household Income Variables - Boundaries

    • covid-hub.gio.georgia.gov
    • resilience.climate.gov
    • +12more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Median Household Income Variables - Boundaries [Dataset]. https://covid-hub.gio.georgia.gov/maps/45ede6d6ff7e4cbbbffa60d34227e462
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  12. World Soils 250m Organic Carbon Density

    • climate.esri.ca
    • climat.esri.ca
    • +2more
    Updated Oct 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). World Soils 250m Organic Carbon Density [Dataset]. https://climate.esri.ca/maps/efd491203720432d893f3dedf9eedf3d
    Explore at:
    Dataset updated
    Oct 24, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the chemical soil variable organic carbon density (ocd) which measures carbon mass in proportion to volume of soil (mass divided by volume.)From Agriculture Victoria: Soil carbon provides a source of nutrients through mineralisation, helps to aggregate soil particles (structure) to provide resilience to physical degradation, increases microbial activity, increases water storage and availability to plants, and protects soil from erosion.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for organic carbon density are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Organic carbon density in kg/m³Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for ocd were used to create this layer. You may access organic carbon density values in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.

  13. ACS Internet Access by Age and Race Variables - Boundaries

    • coronavirus-resources.esri.com
    • resilience.climate.gov
    • +9more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Age and Race Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/5a1b51d3c6374c3cbb7c9ff7acdba16b
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by age and race. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of population age 18 to 64 in households with no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28005, B28003, B28009B, B28009C, B28009D, B28009E, B28009F, B28009G, B28009H, B28009I Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  14. Geospatial data for the Vegetation Mapping Inventory Project of Kennesaw...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Kennesaw Mountain National Battlefield Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-kennesaw-mountain-national-8c030
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Kennesaw Mountain
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. A geodatabase containing various feature class layers and tables was constructed to show the locations of vegetation types and general land cover (vegetation map), vegetation plot samples, AA sites, project boundary extent, and aerial photographic centers. The feature class layer for the KEMO vegetation map provides 296 polygons of detailed attribute data covering 1419.2 hectares, with an average polygon size of 9.4 hectares. Of the area mapped, 195 polygons (65.9% of all polygons) represent natural/semi-natural vegetation types in the NVCS, encompassing 1,129.1.6 hectares (79.6%) of the total map extent.

  15. ACS Internet Access by Education Variables - Boundaries

    • hub.arcgis.com
    • covid-hub.gio.georgia.gov
    • +2more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Education Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/62faad5b76b04b90adf47c020d7406ba
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by education. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of the population age 25+ who are high school graduates (includes equivalency) and have some college or associate's degree in households that have no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28006 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  16. Geospatial data for the Vegetation Mapping Inventory Project of Cumberland...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Cumberland Island National Seashore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-cumberland-island-national
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Cumberland Island
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. A geodatabase containing various feature class layers and tables was constructed to show the locations of vegetation types and general land cover (vegetation map), vegetation plot samples, AA sites, project boundary extent, and aerial photographic centers. The feature class layer for the CUIS vegetation map provides 1,005 polygons of detailed attribute data covering 15,163.4 hectares, with an average polygon size of 144.7 hectares. Of the area mapped, 816 polygons (81% of all polygons) represent natural/semi-natural vegetation types in the NVCS, encompassing 9,542.8 hectares (62.9%) of the total map extent.

  17. Bird survey with mapping at the permanent sample plots in the...

    • gbif.org
    Updated Oct 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anastasia Pedenko; Sofia Demyanetc; Anastasia Pedenko; Sofia Demyanetc (2020). Bird survey with mapping at the permanent sample plots in the Prioksko-Terrasnyi Biosphere Reserve [Dataset]. http://doi.org/10.15468/8qxxhm
    Explore at:
    Dataset updated
    Oct 27, 2020
    Dataset provided by
    Global Biodiversity Information Facilityhttps://www.gbif.org/
    Prioksko-Terrasnyi Biosphere Reserve
    Authors
    Anastasia Pedenko; Sofia Demyanetc; Anastasia Pedenko; Sofia Demyanetc
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The data set includes data on the territorial distribution, species composition, nesting and behaviors of birds during the breeding season in permanent sample plots (areas for the bird census). All bird observations are marked on a map in WGS 84 coordinates determined using a mobile device with OS Android. Surveys were conducted from 2018 to 2020 in season of the birds nesting between end of April and the middle of July. The permanent sample plots are located in typical forest habitats of the strict nature reserve (category IUCN Ia) – Core area Prioiksko-Terrasnyi Biosphere Reserve. There are 3 sample plots in different type of forest: pine forest (sample plot 35, square 45 ha), oakwood (sample plot 41, square 25 ha), and mixed forest (sample plot 18, square 40 ha). During survey, 66 species of birds were recorded in total. Each census is a map of the distribution of birds on the site on the day of visit. The collected data make it possible to create a map of the distribution of the individual territories of birds on permanent areas in different years.

    Набор данных включает данные о территориальном распределении, видовом составе, гнездовании и поведении птиц в период размножения на постоянных пробных площадках (площадки для учета птиц). Все наблюдения за птицами отмечены на карте в координатах WGS 84, определенных при помощи мобильного устройства c OC Андроид. Исследования проводились с 2018 по 2020 год в сезон гнездования птиц с конца апреля по середину июля. Постоянные пробные участки расположены в типичных лесных местообитаниях природного заповедника (категория IUCN Ia) – ядра Приокско-Террасного биосферного резервата. Обследование проведено на 3-х пробных площадях в различных типах спелого леса (возраст 70-120 лет): сосновый лес (plot 35, площадь 35 га), дубовый лес (plot 41, площадь 25 га) и смешанный лес (plot 18, площадь 40 га). Всего в ходе обследований было зафиксировано 66 видов птиц. Каждый учет представляет собой карту распределения птиц на площадке в день учета. Собранные данные позволяют составить карту распределения мест гнездования птиц на постоянных площадях в разные годы.

  18. Geospatial data for the Vegetation Mapping Inventory Project of Buffalo...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Buffalo National River [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-buffalo-national-river
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. A geodatabase containing various feature-class layers and tables show the locations of vegetation types and general land cover (vegetation map), vegetation plot samples, AA sites, project boundary extent, and aerial photographic centers. The feature class layer for the BUFF vegetation map provides 11,279 polygons of detailed attribute data covering 37,828.4 ha, with an average polygon size of 3.4 ha.

  19. ACS Poverty Status Variables - Boundaries

    • mapdirect-fdep.opendata.arcgis.com
    • opendata.suffolkcountyny.gov
    • +12more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Poverty Status Variables - Boundaries [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/maps/0e468b75bca545ee8dc4b039cbb5aff6
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows poverty status by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. This layer is symbolized to show the percentage of the population whose income falls below the Federal poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  20. c

    Population

    • data.clevelandohio.gov
    • hub.arcgis.com
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cleveland | GIS (2023). Population [Dataset]. https://data.clevelandohio.gov/datasets/population/explore
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset authored and provided by
    Cleveland | GIS
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    This layer shows total population count by sex and age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of the population that are considered dependent (ages 65+ and <18). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B01001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 7, 2023The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2022 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Joint Research Centre (2024). Interactive Story Maps for Cultural Heritage [Dataset]. https://data.europa.eu/euodp/hr/data/dataset/jrc-citsci-10003

Interactive Story Maps for Cultural Heritage

Explore at:
htmlAvailable download formats
Dataset updated
Oct 11, 2024
Dataset authored and provided by
Joint Research Centre
License

http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj

Description

The Story Maps, developed by the Joint Research Centre, the Commission's science and knowledge service, inform in an easily accessible way about several initiatives across Europe linked to cultural heritage. These include actions like the European Heritage Days, the EU Prize for Cultural Heritage or the European Heritage Label, funded by Creative Europe, the EU programme that supports the cultural and creative sectors. The website also contains links to the digital collections of Europeana – the EU digital platform for cultural heritage. This platform allows users to explore more than 50 million artworks, artefacts, books, videos and sounds from more than 3500 museums, galleries, libraries and archives across Europe. These maps will be updated and developed, for example taking into account tips from young people exploring Europe's cultural heritage through the new DiscoverEU initiative.

Search
Clear search
Close search
Google apps
Main menu