11 datasets found
  1. Countries with the largest population 2025

    • statista.com
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth

  2. Countries with the highest fertility rates 2024

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Countries with the highest fertility rates 2024 [Dataset]. https://www.statista.com/statistics/262884/countries-with-the-highest-fertility-rates/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    In 2024, there are six countries, all in Sub-Saharan Africa, where the average woman of childbearing age can expect to have around six or more children throughout their lifetime. In fact, of the 20 countries in the world with the highest fertility rates, Afghanistan is the only country not found in Sub-Saharan Africa. High fertility rates in Africa With a fertility rate of almost 7 children per woman, Niger is the country with the highest fertility rate in the world. Population growth in Niger is among the highest in the world. Lack of healthcare access, as well as food instability, political instability, and climate change, are all exacerbating conditions that keep Niger's infant mortality rates high, which is generally the driver behind high fertility rates. This situation is common across much of the continent, and, although there has been considerable progress in recent decades, development in Sub-Saharan Africa is not moving as quickly as it did in other less-developed regions. Demographic transition While these countries have the highest fertility rates in the world, their rates are all on a generally downward trajectory due to a phenomenon known as the demographic transition. The third stage (of four or five) of this transition sees birth rates drop in response to decreased infant and child mortality, as families no longer feel the need to compensate for lost children. Eventually, fertility rates fall below replacement level (approximately 2.1 children per woman), which eventually leads to natural population decline once life expectancy plateaus. In some of the most developed countries today, low fertility rates are

  3. Countries with the highest population growth rate 2024

    • statista.com
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Countries with the highest population growth rate 2024 [Dataset]. https://www.statista.com/statistics/264687/countries-with-the-highest-population-growth-rate/
    Explore at:
    Dataset updated
    Sep 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.

  4. Global population by continent 2024

    • statista.com
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population by continent 2024 [Dataset]. https://www.statista.com/statistics/262881/global-population-by-continent/
    Explore at:
    Dataset updated
    Oct 1, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2024
    Area covered
    World
    Description

    There are approximately 8.16 billion people living in the world today, a figure that shows a dramatic increase since the beginning of the Common Era. Since the 1970s, the global population has also more than doubled in size. It is estimated that the world's population will reach and surpass 10 billion people by 2060 and plateau at around 10.3 billion in the 2080s, before it then begins to fall. Asia When it comes to number of inhabitants per continent, Asia is the most populous continent in the world by a significant margin, with roughly 60 percent of the world's population living there. Similar to other global regions, a quarter of inhabitants in Asia are under 15 years of age. The most populous nations in the world are India and China respectively; each inhabit more than three times the amount of people than the third-ranked United States. 10 of the 20 most populous countries in the world are found in Asia. Africa Interestingly, the top 20 countries with highest population growth rate are mainly countries in Africa. This is due to the present stage of Sub-Saharan Africa's demographic transition, where mortality rates are falling significantly, although fertility rates are yet to drop and match this. As much of Asia is nearing the end of its demographic transition, population growth is predicted to be much slower in this century than in the previous; in contrast, Africa's population is expected to reach almost four billion by the year 2100. Unlike demographic transitions in other continents, Africa's population development is being influenced by climate change on a scale unseen by most other global regions. Rising temperatures are exacerbating challenges such as poor sanitation, lack of infrastructure, and political instability, which have historically hindered societal progress. It remains to be seen how Africa and the world at large adapts to this crisis as it continues to cause drought, desertification, natural disasters, and climate migration across the region.

  5. Global population 1800-2100, by continent

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

  6. Demographic and Health Survey - 1993 - Sri Lanka

    • nada.statistics.gov.lk
    • datacatalog.ihsn.org
    Updated Jul 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Census and Statistics (DCS) (2023). Demographic and Health Survey - 1993 - Sri Lanka [Dataset]. https://nada.statistics.gov.lk/index.php/catalog/47
    Explore at:
    Dataset updated
    Jul 28, 2023
    Dataset provided by
    Department of Census and Statistics
    Authors
    Department of Census and Statistics (DCS)
    Time period covered
    1993
    Area covered
    Sri Lanka
    Description

    Abstract

    The major objective of this survey was to provide up-to-date and accurate information on fertility, contraception, child mortality, child nutrition and health status of children.

    This sample survey is further intended to serve as a source of demographic data for comparison with earlier surveys such as Sri Lanka Demographic and Health Survey 1987 (DHS87) and Sri Lanka Contraceptive Prevalence Survey 1982 (CPS82). Such comparisons help to understand the demographic changes over a period of time.

    Two types of questionnaires were used in the survey. ie (1) Household and (2) Individual.

    Source : Report on Sri Lanka Demographic and Health Survey 1993 published in 1995

    Geographic coverage

    The country has been stratified into nine zones on the basis of socio economic and ecological criteria for DHS87. The same zones were used without major changes. Although there are nine zones the survey was confined to seven excluding Northern and Eastern provinces; the few areas covered in Amparai district in the Eastern Province during DHS87 had to be excluded due to security reasons of the country.

    Analysis unit

    (1) Household (2) Eligible women (3) Children

    Universe

    The survey interviews were designed to obtain responses from all usual residents and any visitors who slept in the household the night before the interview. An eligible respondent was defined as an ever married woman aged 15 - 49 years who slept in the household the night before the interview.

    Source : Report on Sri Lanka Demographic and Health Survey 1993 published in 1995

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample size - 9230 households 7078 eligible women in 9007 housing units.

    Selection process : The sample is a multi-stage stratified probability sample representative of the entire country excluding Northern and Eastern Provinces. The country has been stratified into nine zones on the basis of socio-economic and ecological criteria for DHS87. The same zones were used without major changes. Although there are nine zones the survey was confined to seven, excluding Northern and Eastern Provinces. The seven zones are:

    Zone 1 - Colombo Metro consisting some urban areas in Colombo and Gampaha District Zone 2 - Colombo feeder areas Zone 3 - South Western coastal low lands Zone 4 - Lower South Central hill country excluding Districts with a concentration of estates Zone 5 - South Central hill country with a concentration of estates Zone 6 - Irrigated dry zone with major or minor irrigation schemes Zone 7 - Rain-fed Dry zone

    Each zone was further stratified into three strata - urban, rural and estate sectors. The number of stages of the design and the Primary Sampling Units (PSU) vary according to the sector.

    In urban areas PSU is the ward and generally two census blocks have been selected per ward as the second stage unit. The selections were carried out with probability proportional to size(PPS). The number of housing units was taken as the measure of size.

    The PSU's were mostly selected from a specially organized frame consisting of wards and Grama Niladhari divisions organized by zone, sector and within sector geographically. The organization provided a better basis for stratification as it is arranged on a geographical basis.

    The census blocks were selected from the only frame available from 1981 Census of Population and Housing. The ever married women aged 15-49 found in the selected housing units were interviewed.

    In rural areas, Grama Niladhari (GN) division was taken as PSU and generally a single village has been selected per sample GN division with PPS. As such in rural areas villages form effective PSU's. However special steps were taken to merge and divide the villages to deal with areas which are too small or too large.

    Unlike the GN divisions and wards, the selection in the estate sector has to take into account the fact that many estates are very small in size to form proper units for first stage of selection. To avoid the need to group estates in the whole frame special procedure was applied to select estates depending on the relative size of the estate compared to the nearby estates.

    Sampling deviation

    The target sample size was 6500 ever married women in the age group 15-49. This includes an over-sampling of around 500 women in five less developed areas in zones 6 and 7. The latter addition to the sample is needed to provide Policy relevant information and permit comparative analysis of these areas. In order to get that target sample, a total of 9007 housing units were selected for the survey.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Household Questionnaire - listed all usual residents any visitors who slept in the household the night before the interview and some basic information was collected on the characteristics of each person listed such as age, sex, marital status, relationship to head of household. The household questionnaire was used to identify women who were eligible for the individual questionnaire.

    Individual questionnaire - Administered to each eligible woman who was defined as one who is an ever married female aged between 15 - 49 who slept in the household the night before the interview. This questionnaire had eight sections such as Respondent's background, Reproduction, Contraception, Health of children, Marriage, Fertility, Husband's background, length and weight of infants.

    Source : Report on Sri Lanka Demographic and Health Survey 1993 published in 1995

    Cleaning operations

    Manual editing covered basic investigations such as checking of identification details, completeness of the questionnaire, coding, age and birth history, checking of certain internal consistencies, checking the information recorded in filter questions and coding of few items.

    Response rate

    Sample size - 9230 households 7078 eligible women in 9007 housing units. Completed - 8918 households 6983 eligible women

    Household response rate - 98.9% Eligible women response rate - 98.7% Overall response rate - 97.6%

    Household interviews

    Completed 96.6% other(vacant, incompetent responder, refused etc) 3.4% Un-weighted number 9230

    Eligible women interviews

    Completed 98.7% Other(not in, refused, partly complete etc) 1.3% Un-weighted number 7078

    Sampling error estimates

    The sample of women had been selected as a simple sample, it would have been possible to use straightforward formulas for calculating sampling errors. However the sample design for this survey depended on stratification, stages and clusters. The computer package CLUSTERS developed by the International Statistical Institute for the World Fertility Survey was used to assist in computing the sampling errors with the proper statistical methodology.

    In general, the sampling errors are small, which implies that the results are reliable.

    Data appraisal

    Pl refer to the Source : Report on Sri Lanka Demographic and Health Survey 1993 published in 1995

  7. Estimates of the population for the UK, England, Wales, Scotland, and...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Oct 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Estimates of the population for the UK, England, Wales, Scotland, and Northern Ireland [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 8, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England, Ireland, United Kingdom
    Description

    National and subnational mid-year population estimates for the UK and its constituent countries by administrative area, age and sex (including components of population change, median age and population density).

  8. Distribution of the global population by continent 2024

    • statista.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of the global population by continent 2024 [Dataset]. https://www.statista.com/statistics/237584/distribution-of-the-world-population-by-continent/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.

  9. w

    Family Life Survey 2007 - Indonesia

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Sep 26, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for Population and Policy Studies (CPPS) (2013). Family Life Survey 2007 - Indonesia [Dataset]. https://microdata.worldbank.org/index.php/catalog/1044
    Explore at:
    Dataset updated
    Sep 26, 2013
    Dataset provided by
    Center for Population and Policy Studies (CPPS)
    SurveyMETER
    RAND
    Time period covered
    2007 - 2008
    Area covered
    Indonesia
    Description

    Abstract

    By the middle of the 1990s, Indonesia had enjoyed over three decades of remarkable social, economic, and demographic change and was on the cusp of joining the middle-income countries. Per capita income had risen more than fifteenfold since the early 1960s, from around US$50 to more than US$800. Increases in educational attainment and decreases in fertility and infant mortality over the same period reflected impressive investments in infrastructure.

    In the late 1990s the economic outlook began to change as Indonesia was gripped by the economic crisis that affected much of Asia. In 1998 the rupiah collapsed, the economy went into a tailspin, and gross domestic product contracted by an estimated 12-15%-a decline rivaling the magnitude of the Great Depression.

    The general trend of several decades of economic progress followed by a few years of economic downturn masks considerable variation across the archipelago in the degree both of economic development and of economic setbacks related to the crisis. In part this heterogeneity reflects the great cultural and ethnic diversity of Indonesia, which in turn makes it a rich laboratory for research on a number of individual- and household-level behaviors and outcomes that interest social scientists.

    The Indonesia Family Life Survey is designed to provide data for studying behaviors and outcomes. The survey contains a wealth of information collected at the individual and household levels, including multiple indicators of economic and non-economic well-being: consumption, income, assets, education, migration, labor market outcomes, marriage, fertility, contraceptive use, health status, use of health care and health insurance, relationships among co-resident and non- resident family members, processes underlying household decision-making, transfers among family members and participation in community activities. In addition to individual- and household-level information, the IFLS provides detailed information from the communities in which IFLS households are located and from the facilities that serve residents of those communities. These data cover aspects of the physical and social environment, infrastructure, employment opportunities, food prices, access to health and educational facilities, and the quality and prices of services available at those facilities. By linking data from IFLS households to data from their communities, users can address many important questions regarding the impact of policies on the lives of the respondents, as well as document the effects of social, economic, and environmental change on the population.

    The Indonesia Family Life Survey complements and extends the existing survey data available for Indonesia, and for developing countries in general, in a number of ways.

    First, relatively few large-scale longitudinal surveys are available for developing countries. IFLS is the only large-scale longitudinal survey available for Indonesia. Because data are available for the same individuals from multiple points in time, IFLS affords an opportunity to understand the dynamics of behavior, at the individual, household and family and community levels. In IFLS1 7,224 households were interviewed, and detailed individual-level data were collected from over 22,000 individuals. In IFLS2, 94.4% of IFLS1 households were re-contacted (interviewed or died). In IFLS3 the re-contact rate was 95.3% of IFLS1 households. Indeed nearly 91% of IFLS1 households are complete panel households in that they were interviewed in all three waves, IFLS1, 2 and 3. These re-contact rates are as high as or higher than most longitudinal surveys in the United States and Europe. High re-interview rates were obtained in part because we were committed to tracking and interviewing individuals who had moved or split off from the origin IFLS1 households. High re-interview rates contribute significantly to data quality in a longitudinal survey because they lessen the risk of bias due to nonrandom attrition in studies using the data.

    Second, the multipurpose nature of IFLS instruments means that the data support analyses of interrelated issues not possible with single-purpose surveys. For example, the availability of data on household consumption together with detailed individual data on labor market outcomes, health outcomes and on health program availability and quality at the community level means that one can examine the impact of income on health outcomes, but also whether health in turn affects incomes.

    Third, IFLS collected both current and retrospective information on most topics. With data from multiple points of time on current status and an extensive array of retrospective information about the lives of respondents, analysts can relate dynamics to events that occurred in the past. For example, changes in labor outcomes in recent years can be explored as a function of earlier decisions about schooling and work.

    Fourth, IFLS collected extensive measures of health status, including self-reported measures of general health status, morbidity experience, and physical assessments conducted by a nurse (height, weight, head circumference, blood pressure, pulse, waist and hip circumference, hemoglobin level, lung capacity, and time required to repeatedly rise from a sitting position). These data provide a much richer picture of health status than is typically available in household surveys. For example, the data can be used to explore relationships between socioeconomic status and an array of health outcomes.

    Fifth, in all waves of the survey, detailed data were collected about respondents¹ communities and public and private facilities available for their health care and schooling. The facility data can be combined with household and individual data to examine the relationship between, for example, access to health services (or changes in access) and various aspects of health care use and health status.

    Sixth, because the waves of IFLS span the period from several years before the economic crisis hit Indonesia, to just prior to it hitting, to one year and then three years after, extensive research can be carried out regarding the living conditions of Indonesian households during this very tumultuous period. In sum, the breadth and depth of the longitudinal information on individuals, households, communities, and facilities make IFLS data a unique resource for scholars and policymakers interested in the processes of economic development.

    Geographic coverage

    National coverage

    Analysis unit

    • Communities
    • Facilities
    • Households
    • Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Because it is a longitudinal survey, the IFLS4 drew its sample from IFLS1, IFLS2, IFLS2+ and IFLS3. The IFLS1 sampling scheme stratified on provinces and urban/rural location, then randomly sampled within these strata (see Frankenberg and Karoly, 1995, for a detailed description). Provinces were selected to maximize representation of the population, capture the cultural and socioeconomic diversity of Indonesia, and be cost-effective to survey given the size and terrain of the country. For mainly costeffectiveness reasons, 14 of the then existing 27 provinces were excluded.3 The resulting sample included 13 of Indonesia's 27 provinces containing 83% of the population: four provinces on Sumatra (North Sumatra, West Sumatra, South Sumatra, and Lampung), all five of the Javanese provinces (DKI Jakarta, West Java, Central Java, DI Yogyakarta, and East Java), and four provinces covering the remaining major island groups (Bali, West Nusa Tenggara, South Kalimantan, and South Sulawesi).

    Within each of the 13 provinces, enumeration areas (EAs) were randomly chosen from a nationally representative sample frame used in the 1993 SUSENAS, a socioeconomic survey of about 60,000 households.4 The IFLS randomly selected 321 enumeration areas in the 13 provinces, over-sampling urban EAs and EAs in smaller provinces to facilitate urban-rural and Javanese-non-Javanese comparisons.

    Within a selected EA, households were randomly selected based upon 1993 SUSENAS listings obtained from regional BPS office. A household was defined as a group of people whose members reside in the same dwelling and share food from the same cooking pot (the standard BPS definition). Twenty households were selected from each urban EA, and 30 households were selected from each rural EA.This strategy minimized expensive travel between rural EAs while balancing the costs of correlations among households. For IFLS1 a total of 7,730 households were sampled to obtain a final sample size goal of 7,000 completed households. This strategy was based on BPS experience of about 90%completion rates. In fact, IFLS1 exceeded that target and interviews were conducted with 7,224 households in late 1993 and early 1994.

    IFLS4 Re-Contact Protocols The target households for IFLS4 were the original IFLS1 households, minus those all of whose members had died by 2000, plus all of the splitoff households from 1997, 1998 and 2000 (minus those whose members had died). Main fieldwork went on from late November 2008 through May 2009. In total, 13,995 households were contacted, including those that died between waves, those that relocated into other IFLS households and new splitoff households. Of these, 13,535 households were actually interviewed. Of the 10,994 target households, we re-contacted 90.6%: 6,596 original IFLS1 households and 3,366 old splitoff households. An additional 4,033 new splitoff households were contacted in IFLS4. Of IFLS1 dynastic households, we contacted 6,761, or 93.6%. Lower dynasty re-contact rates were achieved in Jakarta (80.3%), south Sumatra (88%) and north Sumatra (88.6%). Jakarta is of course the major urban center in Indonesia, and Medan,

  10. i

    Life in Transition Survey 2006 - Albania, Armenia, Azerbaijan...and 25 more

    • datacatalog.ihsn.org
    • dev.ihsn.org
    • +2more
    Updated Jun 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Synovate (2022). Life in Transition Survey 2006 - Albania, Armenia, Azerbaijan...and 25 more [Dataset]. https://datacatalog.ihsn.org/catalog/2957
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset authored and provided by
    Synovate
    Time period covered
    2006
    Area covered
    Azerbaijan, Albania, Armenia
    Description

    Abstract

    The transition from socialism to a market economy has transformed the lives of many people. What are people's perceptions and attitudes to transition? What are the current attitudes to market reforms and political institutions?

    To analyze these issues, the EBRD and the World Bank have jointly conducted the comprehensive, region-wide "Life in Transition Survey" (LiTS), which combines traditional household survey features with questions about respondents' attitudes and is carried out through two-stage sampling with a random selection of households and respondents.

    The LiTS assesses the impact of transition on people through their personal and professional experiences during the first 15 years of transition. LiTS attempts to understand how these personal experiences of transition relate to people’s attitudes toward market and political reforms, as well as their priorities for the future.

    The main objective of the LiTS was to build on existing studies to provide a comprehensive assessment of relationships among life satisfaction and living standards, poverty and inequality, trust in state institutions, satisfaction with public services, attitudes to a market economy and democracy and to provide valuable insights into how transition has affected the lives of people across a region comprising 16 countries in Central and Eastern Europe (“CEE”) and 11 in the Commonwealth of Independent State (“CIS”). Turkey and Mongolia were also included in the survey.

    Geographic coverage

    The LITS was to be implemented in the following 29 countries: Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Former Yugoslav Republic of Macedonia (FYROM), Georgia, Hungary, Kazakhstan, Kyrgyz Republic, Latvia, Lithuania, Moldova, Mongolia, Poland, Romania, Russia, Serbia and Montenegro, Slovak Republic, Slovenia, Tajikistan, Turkey, Turkmenistan, Ukraine and Uzbekistan.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A total of 1,000 face-to-face household interviews per country were to be conducted, with adult (18 years and over) occupants and with no upper limit for age. The sample was to be nationally representative. The EBRD’s preferred procedure was a two stage sampling method, with census enumeration areas (CEA) as primary sampling units and households as secondary sampling units. To the extent possible, the EBRD wished the sampling procedure to apply no more than 2 stages.

    The first stage of selection was to use as a sampling frame the list of CEA's generated by the most recent census. Ideally, 50 primary sampling units (PSU's) were to be selected from that sample frame, with probability proportional to size (PPS), using as a measure of size either the population, or the number of households.

    The second sampling stage was to select households within each of the primary sampling units, using as a sampling frame a specially developed list of all households in each of the selected PSU's defined above. Households to be interviewed were to be selected from that list by systematic, equal probability sampling. Twenty households were to be selected in each of the 50 PSU's.

    The individuals to be interviewed in each household were to be selected at random, within each of the selected households, with no substitution if possible.

    ESTABLISHMENT OF THE SAMPLE FRAME OF PSU’s

    In each country we established the most recent sample frame of PSU’s which would best serve the purposes of the LITS sampling methodology. Details of the PSU sample frames in each country are shown in table 1 (page 10) of the survey report.

    In the cases of Armenia, Azerbaijan, Kazakhstan, Serbia and Uzbekistan, CEA’s were used. In Croatia we also used CEA’s but in this case, because the CEA’s were very small and we would not have been able to complete the targeted number of interviews within each PSU, we merged together adjoining CEA’s and constructed a sample of 1,732 Merged Enumeration Areas. The same was the case in Montenegro.

    In Estonia, Hungary, Lithuania, Poland and the Slovak Republic we used Eurostat’s NUTS area classification system.

    [NOTE: The NUTS (from the French "Nomenclature des territoriales statistiques" or in English ("Nomenclature of territorial units for statistics"), is a uniform and consistent system that runs on five different NUTS levels and is widely used for EU surveys including the Eurobarometer (a comparable survey to the Life in Transition). As a hierarchical system, NUTS subdivides the territory of the country into a defined number of regions on NUTS 1 level (population 3-7 million), NUTS 2 level (800,000-3 million) and NUTS 3 level (150,000-800,000). At a more detailed level NUTS 3 is subdivided into smaller units (districts and municipalities). These are called "Local Administrative Units" (LAU). The LAU is further divided into upper LAU (LAU1 - formerly NUTS 4) and LAU 2 (formerly NUTS 5).]

    Albania, Bulgaria, the Czech Republic, Georgia, Moldova and Romania used the electoral register as the basis for the PSU sample frame. In the other cases, the PSU sample frame was chosen using either local geographical or administrative and territorial classification systems. The total number of PSU sample frames per country varied from 182 in the case of Mongolia to over 48,000 in the case of Turkey. To ensure the safety of our fieldworkers, we excluded from the sample frame PSU’s territories (in countries such as Georgia, Azerbaijan, Moldova, Russia, etc) in which there was conflict and political instability. We have also excluded areas which were not easily accessible due to their terrain or were sparsely populated.

    In the majority of cases, the source for this information was the national statistical body for the country in question, or the relevant central electoral committee. In establishing the sample frames and to the extent possible, we tried to maintain a uniform measure of size namely, the population aged 18 years and over which was of more pertinence to the LITS methodology. Where the PSU was based on CEA’s, the measure was usually the total population, whereas the electoral register provided data on the population aged 18 years old and above, the normal voting age in all sampled countries. Although the NUTS classification provided data on the total population, we filtered, where possible, the information and used as a measure of size the population aged 18 and above. The other classification systems used usually measure the total population of a country. However, in the case of Azerbaijan, which used CEA’s, and Slovenia, where a classification system based on administrative and territorial areas was employed, the measure of size was the number of households in each PSU.

    The accuracy of the PSU information was dependent, to a large extent, on how recently the data has been collected. Where the data were collected recently then the information could be considered as relatively accurate. However, in some countries we believed that more recent information was available, but because the relevant authorities were not prepared to share this with us citing secrecy reasons, we had no alternative than to use less up to date data. In some countries the age of the data available makes the figures less certain. An obvious case in point is Bosnia and Herzegovina, where the latest available figures date back to 1991, before the Balkan wars. The population figures available take no account of the casualties suffered among the civilian population, resulting displacement and subsequent migration of people.

    Equally there have been cases where countries have experienced economic migration in recent years, as in the case of those countries that acceded to the European Union in May, 2004, such as Hungary, Poland and the Baltic states, or to other countries within the region e.g. Armenians to Russia, Albanians to Greece and Italy; the available figures may not accurately reflect this. And, as most economic migrants tend to be men, the actual proportion of females in a population was, in many cases, higher than the available statistics would suggest. People migration in recent years has also occurred from rural to urban areas in Albania and the majority of the Asian Republics, as well as in Mongolia on a continuous basis but in this case, because of the nomadic population of the country.

    SAMPLING METHODOLOGY

    Brief Overview

    In broad terms the following sampling methodology was employed: · From the sample frame of PSU’s we selected 50 units · Within each selected PSU, we sampled 20 households, resulting in 1,000 interviews per country · Within each household we sampled 1 and sometimes 2 respondents The sampling procedures were designed to leave no free choice to the interviewers. Details on each of the above steps as well as country specific procedures adapted to suit the availability, depth and quality of the PSU information and local operational issues are described in the following sections.

    Selection of PSU’s

    The PSU’s of each country (all in electronic format) were sorted first into metropolitan, urban and rural areas (in that order), and within each of these categories by region/oblast/province in alphabetical order. This ensured a consistent sorting methodology across all countries and also that the randomness of the selection process could be supervised.

    To select the 50 PSU’s from the sample frame of PSU’s, we employed implicit stratification and sampling was done with PPS. Implicit stratification ensured that the sample of PSU’s was spread across the primary categories of explicit variables and a better representation of the population, without actually stratifying the PSU’s thus, avoiding difficulties in calculating the sampling errors at a later stage. In brief, the PPS involved the

  11. i

    National Contraceptive Prevalence Survey 1987 - Indonesia

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Bureau of Statistics (2017). National Contraceptive Prevalence Survey 1987 - Indonesia [Dataset]. https://datacatalog.ihsn.org/catalog/2483
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset provided by
    National Family Planning Coordinating Board (NFPCB)
    Central Bureau of Statistics
    Time period covered
    1987
    Area covered
    Indonesia
    Description

    Abstract

    The DHS is intended to serve as a primary source for international population and health information for policymakers and for the research community. In general, DHS has four objectives: - To provide participating countries with a database and analysis useful for informed choices, - To expand the international population and health database, - To advance survey methodology, and - To help develop in participating countries technical skills and resources necessary to conduct demographic and health surveys.

    Apart from estimating fertility and contraceptive prevalence rates, DHS also covers the topic of child health, which has become the focus of many development programs aimed at improving the quality of life in general. The Indonesian DHS survey did not include health-related questions because this information was collected in the 1987 SUSENAS in more detail and with wider geographic coverage. Hence, the Indonesian DHS was named the "National Indonesian Contraceptive Prevalence Survey" (NICPS).

    The National Indonesia Contraceptive Prevalence Survey (NICPS) was a collaborative effort between the Indonesian National Family Planning Coordinating Board (NFPCB), the Institute for Resource Development of Westinghouse and the Central Bureau of Statistics (CBS). The survey was part of an international program in which similar surveys are being implemented in developing countries in Asia, Africa, and Latin America.

    The 1987 NICPS was specifically designed to meet the following objectives: - To provide data on the family planning and fertility behavior of the Indonesian population necessary for program organizers and policymakers in evaluating and enhancing the national family planning program, and - To measure changes in fertility and contraceptive prevalence rates and at the same time study factors which affect the change, such as marriage patterns, urban/rural residence, education, breastfeeding habits, and availability of contraception.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    The 1987 NICPS sample was drawn from the annual National Socioeconomic Survey (popularly called SUSENAS) which was conducted in January and February 1987. Each year the SUSENAS consists of one set of core questions and several modules which are rotated every three years. The 1987 SUSENAS main modules covered household income, expenditure, and consumption. In addition, in collaboration with the Ministry of Health, information pertaining to children under 5 years of age was collected, including food supplement patterns, and measurement of height, weight, and arm circumference. In this module, information on prenatal care, type of birth attendant, and immunization was also asked.

    This national survey covered over 60,000 households which were scattered in almost all of the districts. The data were collected by the "Mantri Statistik", a CBS officer in charge of data collection at the sub-district level. All households covered in the selected census blocks were listed on the SSN 87-LI form. This form was then used in selecting samples for each of the modules included in the SUSENAS. This particular form was also used to select the sample households in the 1987 NICPS.

    Sample selection in the 1987 SUSENAS utilized a multistage sampling procedure. The first stage consisted of selecting a number of census blocks with probability proportional to the number of households in the block. Census blocks are statistical areas formed before the 1980 Population Census and contain approximately 100 households. At the second stage, households were selected systematically from each sampled census block.

    Selection of the 1987 NICPS sample was also done in two stages. The first stage was to select census blocks from the those selected in the 1987 SUSENAS. At the second stage a number of households was selected systematically from the selected census block.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The household questionnaire was used to record all members of the selected households who usually live in the household. The questionnaire was utilized to identify the eligible respondents in the household, and to provide the numerator for the computation of demographic measurements such as fertility and contraceptive use rates.

    The individual questionnaire was used for all ever-married women aged 15-49, and consisted of the following eight sections:

    Section 1 Respondent's Background

    This part collected information related to the respondent and the household, such as current and past mobility, age, education, literacy, religion, and media exposure. Information related to the household includes source of water for drinking, for bathing and washing, type of toilet, ownership of durable goods, and type of floor.

    Section 2 Reproduction

    This part gathered information on all children ever born, sex of the child, month and year of birth, survival status of the child, age when the child died, and whether the child lived with the respondent. Using the information collected in this section, one can compute measures of fertility and mortality, especially infant and child mortality rates. With the birth history data collected in this section, it is possible to calculate trends in fertility over time. This section also included a question about whether the respondent was pregnant at the time of interview, and her knowledge regarding women's fertile period in the monthly menstrual cycle.

    Section 3 Knowledge and Practice of Family Planning

    This section is one of the most important parts of the 1987 NICPS survey. Here the respondent was asked whether she had ever heard of or used any of the family planning methods listed. If the respondent had used a contraceptive method, she was asked detailed questions about the method. For women who gave birth to a child since January 1982, questions on family planning methods used in the intervals between births were also asked. The section also included questions on source of methods, quality of use, reasons for nonuse, and intentions for future use. These data are expected to answer questions on the effectiveness of family planning use. Finally, the section also included questions about whether the respondent had been visited by a family planning field worker, which community-level people she felt were most appropriate to give family planning information, and whether she had ever heard of the condom, DuaLima, the brand being promoted by a social marketing program.

    Section 4 Breastfeeding

    The objective of this part was to collect information on maternal and child health, primarily that concerning place of birth, type of assistance at birth, breastfeeding practices, and supplementary food. Information was collected for children born since January 1982.

    Section 5 Marriage

    This section gathered information regarding the respondent's age at first marriage, number of times married, and whether the respondent and her husband ever lived with any of their parents. Several questions in this section were related to the frequency of sexual intercourse to determine the respondent's risk of pregnancy. Not all of the data collected in this section are presented in this report; some require more extensive analysis than is feasible at this stage.

    Section 6 Fertility Preferences

    Intentions about having another child, preferred birth interval, and ideal number of children were covered in this section.

    Section 7 Husband's Background and Respondent's Work

    Education, literacy and occupation of the respondent's husband made up this section of the questionnaire. It also collected information on the respondent's work pattern before and after marriage, and whether she was working at the time of interview.

    Section 8 Interview Particulars

    This section was used to record the language used in the interview and information about whether the interviewer was assisted by an interpreter. The individual questionnaire also included information regarding the duration of interview and presence of other persons at particular points during the interview. In addition to the questionnaires, two manuals were developed. The manual for interviewers contained explanations of how to conduct an interview, how to carry out the field activity, and how to fill out the questionnaires. Since information regarding age was vital in this survey, a table to convert months from Javanese, Sundanese and Islamic calendar systems to the Gregorian calendar was attached to the 1987 NICPS manual for the interviewers.

    Response rate

    The NICPS covered a sample of nearly 15,000 households to interview 11,884 respondents. Respondents for the individual interview were ever-married women aged 15-49. During the data collection, 14,141 out of the 14,227 existing households and 11,884 out of 12,065 eligible women were successfully interviewed. In general, few problems were encountered during interviewing, and the response rate was high--99 percent for households and 99 percent for individual respondents.

    Note: See APPENDIX A in the report for more information.

    Sampling error estimates

    The results from sample surveys are affected by two types of errors: (1) non-sampling error and (2) sampling error. Non-sampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way questions are asked, misunderstanding of the questions on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
Organization logo

Countries with the largest population 2025

Explore at:
37 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 21, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
World
Description

In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth

Search
Clear search
Close search
Google apps
Main menu