Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by SOURAV S V
Released under CC0: Public Domain
Facebook
Twitterhttps://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
A csv file containing the tidal frequencies used for statistical analyses in the paper "Estimating Freshwater Flows From Tidally-Affected Hydrographic Data" by Dan Pagendam and Don Percival.
Facebook
Twitter[doc] formats - csv - 1
This dataset contains one csv file at the root:
data.csv
kind,sound dog,woof cat,meow pokemon,pika human,hello
size_categories:
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains >800K CSV files behind the GitTables 1M corpus.
For more information about the GitTables corpus, visit:
- our website for GitTables, or
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The event logs in CSV format. The dataset contains both correlated and uncorrelated logs
Facebook
Twitter[doc] formats - csv - 2
This dataset contains one csv file at the root:
data.csv
kind,sound dog,woof cat,meow pokemon,pika human,hello
configs: - config_name: default data_files: "*.csv" sep: "," size_categories:
Facebook
TwitterThis dataset was created by Владимир Терентьев
Facebook
TwitterExample of a csv file exported from the database.
Facebook
TwitterThis dataset was created by Md Faisal Ahmed Arman
Facebook
TwitterThis dataset was created by Naman Kumar
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential School Locations Dataset [IRS_Locations.csv] contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Indian Residential School Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by Hilman Jihadi
Released under MIT
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ransomware is considered as a significant threat for most enterprises since past few years. In scenarios wherein users can access all files on a shared server, one infected host is capable of locking the access to all shared files. In the article related to this repository, we detect ransomware infection based on file-sharing traffic analysis, even in the case of encrypted traffic. We compare three machine learning models and choose the best for validation. We train and test the detection model using more than 70 ransomware binaries from 26 different families and more than 2500 h of ‘not infected’ traffic from real users. The results reveal that the proposed tool can detect all ransomware binaries, including those not used in the training phase (zero-days). This paper provides a validation of the algorithm by studying the false positive rate and the amount of information from user files that the ransomware could encrypt before being detected.
This dataset directory contains the 'infected' and 'not infected' samples and the models used for each T configuration, each one in a separated folder.
The folders are named NxSy where x is the number of 1-second interval per sample and y the sliding step in seconds.
Each folder (for example N10S10/) contains: - tree.py -> Python script with the Tree model. - ensemble.json -> JSON file with the information about the Ensemble model. - NN_XhiddenLayer.json -> JSON file with the information about the NN model with X hidden layers (1, 2 or 3). - N10S10.csv -> All samples used for training each model in this folder. It is in csv format for using in bigML application. - zeroDays.csv -> All zero-day samples used for testing each model in this folder. It is in csv format for using in bigML application. - userSamples_test -> All samples used for validating each model in this folder. It is in csv format for using in bigML application. - userSamples_train -> User samples used for training the models. - ransomware_train -> Ransomware samples used for training the models - scaler.scaler -> Standard Scaler from python library used for scale the samples. - zeroDays_notFiltered -> Folder with the zeroDay samples.
In the case of N30S30 folder, there is an additional folder (SMBv2SMBv3NFS) with the samples extracted from the SMBv2, SMBv3 and NFS traffic traces. There are more binaries than the ones presented in the article, but it is because some of them are not "unseen" binaries (the families are present in the training set).
The files containing samples (NxSy.csv, zeroDays.csv and userSamples_test.csv) are structured as follows: - Each line is one sample. - Each sample has 3*T features and the label (1 if it is 'infected' sample and 0 if it is not). - The features are separated by ',' because it is a csv file. - The last column is the label of the sample.
Additionally we have placed two pcap files in root directory. There are the traces used for compare both versions of SMB.
Facebook
Twitterhttp://researchdatafinder.qut.edu.au/display/n9373http://researchdatafinder.qut.edu.au/display/n9373
QUT Research Data Respository Dataset Resource available for download
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
can-csvThis dataset contains controller area network (CAN) traffic for the 2017 Subaru Forester, the 2016 Chevrolet Silverado, the 2011 Chevrolet Traverse, and the 2011 Chevrolet Impala.For each vehicle, there are samples of attack-free traffic--that is, normal traffic--as well as samples of various types of attacks. The spoofing attacks, such as RPM spoofing, speed spoofing, etc., have an observable effect on the vehicle under test.This repository contains only .csv files. It is a subset of the can-dataset repository.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets contain pixel-level hyperspectral data of six snow and glacier classes. They have been extracted from a Hyperspectral image. The dataset "data.csv" has 5417 * 142 samples belonging to the classes: Clean snow, Dirty ice, Firn, Glacial ice, Ice mixed debris, and Water body. The dataset "_labels1.csv" has corresponding labels of the "data.csv" file. The dataset "RGB.csv" has only 5417 * 3 samples. There are only three band values in this file while "data.csv" has 142 band values.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is a set of network traffic traces in pcap/csv format captured from a single user. The traffic is classified in 5 different activities (Video, Bulk, Idle, Web, and Interactive) and the label is shown in the filename. There is also a file (mapping.csv) with the mapping of the host's IP address, the csv/pcap filename and the activity label.
Activities:
Interactive: applications that perform real-time interactions in order to provide a suitable user experience, such as editing a file in google docs and remote CLI's sessions by SSH. Bulk data transfer: applications that perform a transfer of large data volume files over the network. Some examples are SCP/FTP applications and direct downloads of large files from web servers like Mediafire, Dropbox or the university repository among others. Web browsing: contains all the generated traffic while searching and consuming different web pages. Examples of those pages are several blogs and new sites and the moodle of the university. Vídeo playback: contains traffic from applications that consume video in streaming or pseudo-streaming. The most known server used are Twitch and Youtube but the university online classroom has also been used. Idle behaviour: is composed by the background traffic generated by the user computer when the user is idle. This traffic has been captured with every application closed and with some opened pages like google docs, YouTube and several web pages, but always without user interaction.
The capture is performed in a network probe, attached to the router that forwards the user network traffic, using a SPAN port. The traffic is stored in pcap format with all the packet payload. In the csv file, every non TCP/UDP packet is filtered out, as well as every packet with no payload. The fields in the csv files are the following (one line per packet): Timestamp, protocol, payload size, IP address source and destination, UDP/TCP port source and destination. The fields are also included as a header in every csv file.
The amount of data is stated as follows:
Bulk : 19 traces, 3599 s of total duration, 8704 MBytes of pcap files Video : 23 traces, 4496 s, 1405 MBytes Web : 23 traces, 4203 s, 148 MBytes Interactive : 42 traces, 8934 s, 30.5 MBytes Idle : 52 traces, 6341 s, 0.69 MBytes
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
SAE sample data (CSV)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These four labeled data sets are targeted at ordinal quantification. The goal of quantification is not to predict the label of each individual instance, but the distribution of labels in unlabeled sets of data.
With the scripts provided, you can extract CSV files from the UCI machine learning repository and from OpenML. The ordinal class labels stem from a binning of a continuous regression label.
We complement this data set with the indices of data items that appear in each sample of our evaluation. Hence, you can precisely replicate our samples by drawing the specified data items. The indices stem from two evaluation protocols that are well suited for ordinal quantification. To this end, each row in the files app_val_indices.csv, app_tst_indices.csv, app-oq_val_indices.csv, and app-oq_tst_indices.csv represents one sample.
Our first protocol is the artificial prevalence protocol (APP), where all possible distributions of labels are drawn with an equal probability. The second protocol, APP-OQ, is a variant thereof, where only the smoothest 20% of all APP samples are considered. This variant is targeted at ordinal quantification tasks, where classes are ordered and a similarity of neighboring classes can be assumed.
Usage
You can extract four CSV files through the provided script extract-oq.jl, which is conveniently wrapped in a Makefile. The Project.toml and Manifest.toml specify the Julia package dependencies, similar to a requirements file in Python.
Preliminaries: You have to have a working Julia installation. We have used Julia v1.6.5 in our experiments.
Data Extraction: In your terminal, you can call either
make
(recommended), or
julia --project="." --eval "using Pkg; Pkg.instantiate()"
julia --project="." extract-oq.jl
Outcome: The first row in each CSV file is the header. The first column, named "class_label", is the ordinal class.
Further Reading
Implementation of our experiments: https://github.com/mirkobunse/regularized-oq
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by SOURAV S V
Released under CC0: Public Domain