100+ datasets found
  1. Reduced Access to Care During COVID-19

    • catalog.data.gov
    • data.virginia.gov
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Reduced Access to Care During COVID-19 [Dataset]. https://catalog.data.gov/dataset/reduced-access-to-care-during-covid-19
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations

  2. Data collection methods for vital statistics.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eliana Jimenez-Soto; Andrew Hodge; Kim-Huong Nguyen; Zoe Dettrick; Alan D. Lopez (2023). Data collection methods for vital statistics. [Dataset]. http://doi.org/10.1371/journal.pone.0106234.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Eliana Jimenez-Soto; Andrew Hodge; Kim-Huong Nguyen; Zoe Dettrick; Alan D. Lopez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Notes: DMC, data collection method; MCOD, medical certification of death; VA, verbal autopsy; COD, cause-of-death.Data collection methods for vital statistics.

  3. i

    Population and Family Health Survey 2002 - Jordan

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DOS) (2019). Population and Family Health Survey 2002 - Jordan [Dataset]. http://catalog.ihsn.org/catalog/183
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Department of Statistics (DOS)
    Time period covered
    2002
    Area covered
    Jordan
    Description

    Abstract

    The JPFHS is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health. The primary objective of the Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, fertility preferences, as well as maternal and child health and nutrition that can be used by program managers and policy makers to evaluate and improve existing programs. In addition, the JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional or crossnational studies.

    The content of the 2002 JPFHS was significantly expanded from the 1997 survey to include additional questions on women’s status, reproductive health, and family planning. In addition, all women age 15-49 and children less than five years of age were tested for anemia.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    The estimates from a sample survey are affected by two types of errors: 1) nonsampling errors and 2) sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002 JPFHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2002 JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2002 JPFHS sample is the result of a multistage stratified design and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2002 JPFHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: See detailed description of sample design in APPENDIX B of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    The 2002 JPFHS used two questionnaires – namely, the Household Questionnaire and the Individual Questionnaire. Both questionnaires were developed in English and translated into Arabic. The Household Questionnaire was used to list all usual members of the sampled households and to obtain information on each member’s age, sex, educational attainment, relationship to the head of household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. The Household Questionnaire was also used to identify women who are eligible for the individual interview: ever-married women age 15-49. In addition, all women age 15-49 and children under five years living in the household were measured to determine nutritional status and tested for anemia.

    The household and women’s questionnaires were based on the DHS Model “A” Questionnaire, which is designed for use in countries with high contraceptive prevalence. Additions and modifications to the model questionnaire were made in order to provide detailed information specific to Jordan, using experience gained from the 1990 and 1997 Jordan Population and Family Health Surveys. For each evermarried woman age 15 to 49, information on the following topics was collected:

    1. Respondent’s background
    2. Birth history
    3. Knowledge and practice of family planning
    4. Maternal care, breastfeeding, immunization, and health of children under five years of age
    5. Marriage
    6. Fertility preferences
    7. Husband’s background and respondent’s employment
    8. Knowledge of AIDS and STIs

    In addition, information on births and pregnancies, contraceptive use and discontinuation, and marriage during the five years prior to the survey was collected using a monthly calendar.

    Cleaning operations

    Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding of the open-ended questions.

    Data entry and verification started after one week of office data processing. The process of data entry, including one hundred percent re-entry, editing and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by the end of October 2002. A data processing specialist from ORC Macro made a trip to Jordan in October and November 2002 to follow up data editing and cleaning and to work on the tabulation of results for the survey preliminary report. The tabulations for the present final report were completed in December 2002.

    Response rate

    A total of 7,968 households were selected for the survey from the sampling frame; among those selected households, 7,907 households were found. Of those households, 7,825 (99 percent) were successfully interviewed. In those households, 6,151 eligible women were identified, and complete interviews were obtained with 6,006 of them (98 percent of all eligible women). The overall response rate was 97 percent.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: 1) nonsampling errors and 2) sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002 JPFHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2002 JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2002 JPFHS sample is the result of a multistage stratified design and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2002 JPFHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: See detailed

  4. w

    Demographic and Health Survey 2013 - Namibia

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jun 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health and Social Services (MoHSS) (2017). Demographic and Health Survey 2013 - Namibia [Dataset]. https://microdata.worldbank.org/index.php/catalog/2210
    Explore at:
    Dataset updated
    Jun 5, 2017
    Dataset provided by
    Ministry of Health and Social Serviceshttp://www.mhss.gov.na/
    Authors
    Ministry of Health and Social Services (MoHSS)
    Time period covered
    2013
    Area covered
    Namibia
    Description

    Abstract

    The 2013 NDHS is part of the worldwide Demographic and Health Surveys (DHS) programme funded by the United States Agency for International Development (USAID). DHS surveys are designed to collect data on fertility, family planning, and maternal and child health; assist countries in monitoring changes in population, health, and nutrition; and provide an international database that can be used by researchers investigating topics related to population, health, and nutrition.

    The overall objective of the survey is to provide demographic, socioeconomic, and health data necessary for policymaking, planning, monitoring, and evaluation of national health and population programmes. In addition, the survey measured the prevalence of anaemia, HIV, high blood glucose, and high blood pressure among adult women and men; assessed the prevalence of anaemia among children age 6-59 months; and collected anthropometric measurements to assess the nutritional status of women, men, and children.

    A long-term objective of the survey is to strengthen the technical capacity of local organizations to plan, conduct, and process and analyse data from complex national population and health surveys. At the global level, the 2013 NDHS data are comparable with those from a number of DHS surveys conducted in other developing countries. The 2013 NDHS adds to the vast and growing international database on demographic and health-related variables.

    Geographic coverage

    National coverage

    Analysis unit

    • Households
    • Children aged 0-5
    • Women aged 15 to 49
    • Men aged 15 to 64

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The primary focus of the 2013 NDHS was to provide estimates of key population and health indicators, including fertility and mortality rates, for the country as a whole and for urban and rural areas. In addition, the sample was designed to provide estimates of most key variables for the 13 administrative regions.

    Each of the administrative regions is subdivided into a number of constituencies (with an overall total of 107 constituencies). Each constituency is further subdivided into lower level administrative units. An enumeration area (EA) is the smallest identifiable entity without administrative specification, numbered sequentially within each constituency. Each EA is classified as urban or rural. The sampling frame used for the 2013 NDHS was the preliminary frame of the 2011 Namibia Population and Housing Census (NSA, 2013a). The sampling frame was a complete list of all EAs covering the whole country. Each EA is a geographical area covering an adequate number of households to serve as a counting unit for the population census. In rural areas, an EA is a natural village, part of a large village, or a group of small villages; in urban areas, an EA is usually a city block. The 2011 population census also produced a digitised map for each of the EAs that served as the means of identifying these areas.

    The sample for the 2013 NDHS was a stratified sample selected in two stages. In the first stage, 554 EAs-269 in urban areas and 285 in rural areas-were selected with a stratified probability proportional to size selection from the sampling frame. The size of an EA is defined according to the number of households residing in the EA, as recorded in the 2011 Population and Housing Census. Stratification was achieved by separating every region into urban and rural areas. Therefore, the 13 regions were stratified into 26 sampling strata (13 rural strata and 13 urban strata). Samples were selected independently in every stratum, with a predetermined number of EAs selected. A complete household listing and mapping operation was carried out in all selected clusters. In the second stage, a fixed number of 20 households were selected in every urban and rural cluster according to equal probability systematic sampling.

    Due to the non-proportional allocation of the sample to the different regions and the possible differences in response rates, sampling weights are required for any analysis using the 2013 NDHS data to ensure the representativeness of the survey results at the national as well as the regional level. Since the 2013 NDHS sample was a two-stage stratified cluster sample, sampling probabilities were calculated separately for each sampling stage and for each cluster.

    See Appendix A in the final report for details

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three questionnaires were administered in the 2013 NDHS: the Household Questionnaire, the Woman’s Questionnaire, and the Man’s Questionnaire. These questionnaires were adapted from the standard DHS6 core questionnaires to reflect the population and health issues relevant to Namibia at a series of meetings with various stakeholders from government ministries and agencies, nongovernmental organisations, and international donors. The final draft of each questionnaire was discussed at a questionnaire design workshop organised by the MoHSS from September 25-28, 2012, in Windhoek. The questionnaires were then translated from English into the six main local languages—Afrikaans, Rukwangali, Oshiwambo, Damara/Nama, Otjiherero, and Silozi—and back translated into English. The questionnaires were finalised after the pretest, which took place from February 11-25, 2013.

    The Household Questionnaire was used to list all usual household members as well as visitors in the selected households. Basic information was collected on the characteristics of each person listed, including age, sex, education, and relationship to the head of the household. For children under age 18, parents’ survival status was determined. In addition, the Household Questionnaire included questions on knowledge of malaria and use of mosquito nets by household members, along with questions regarding health expenditures. The Household Questionnaire was used to identify women and men who were eligible for the individual interview and the interview on domestic violence. The questionnaire also collected information on characteristics of the household’s dwelling unit, such as source of water, type of toilet facilities, materials used for the floor of the house, and ownership of various durable goods. The results of tests assessing iodine levels were recorded as well.

    In half of the survey households (the same households selected for the male survey), the Household Questionnaire was also used to record information on anthropometry and biomarker data collected from eligible respondents, as follows: • All eligible women and men age 15-64 were measured, weighed, and tested for anaemia and HIV. • All eligible women and men age 35-64 had their blood pressure and blood glucose measured. • All children age 0 to 59 months were measured and weighed. • All children age 6 to 59 months were tested for anaemia.

    The Woman’s Questionnaire was also used to collect information from women age 50-64 living in half of the selected survey households on background characteristics, marriage and sexual activity, women’s work and husbands’ background characteristics, awareness and behaviour regarding AIDS and other STIs, and other health issues.

    The Man’s Questionnaire was administered to all men age 15-64 living in half of the selected survey households. The Man’s Questionnaire collected much of the same information as the Woman’s Questionnaire but was shorter because it did not contain a detailed reproductive history or questions on maternal and child health or nutrition.

    Cleaning operations

    CSPro—a Windows-based integrated census and survey processing system that combines and replaces the ISSA and IMPS packages—was used for entry, editing, and tabulation of the NDHS data. Prior to data entry, a practical training session was provided by ICF International to all data entry staff. A total of 28 data processing personnel, including 17 data entry operators, one questionnaire administrator, two office editors, three secondary editors, two network technicians, two data processing supervisors, and one coordinator, were recruited and trained on administration of questionnaires and coding, data entry and verification, correction of questionnaires and provision of feedback, and secondary editing. NDHS data processing was formally launched during the week of June 22, 2013, at the National Statistics Agency Data Processing Centre in Windhoek. The data entry and editing phase of the survey was completed in January 2014.

    Response rate

    A total of 11,004 households were selected for the sample, of which 10,165 were found to be occupied during data collection. Of the occupied households, 9,849 were successfully interviewed, yielding a household response rate of 97 percent.

    In these households, 9,940 women age 15-49 were identified as eligible for the individual interview. Interviews were completed with 9,176 women, yielding a response rate of 92 percent. In addition, in half of these households, 842 women age 50-64 were successfully interviewed; in this group of women, the response rate was 91 percent.

    Of the 5,271 eligible men identified in the selected subsample of households, 4,481 (85 percent) were successfully interviewed.

    Response rates were higher in rural than in urban areas, with the rural-urban difference more marked among men than among women.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview

  5. National Longitudinal Study of Adolescent to Adult Health (Add Health),...

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Aug 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harris, Kathleen Mullan; Udry, J. Richard (2022). National Longitudinal Study of Adolescent to Adult Health (Add Health), 1994-2018 [Public Use] [Dataset]. http://doi.org/10.3886/ICPSR21600.v25
    Explore at:
    sas, delimited, r, stata, spss, asciiAvailable download formats
    Dataset updated
    Aug 9, 2022
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Harris, Kathleen Mullan; Udry, J. Richard
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/21600/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/21600/terms

    Time period covered
    1994 - 2018
    Area covered
    United States
    Description

    Downloads of Add Health require submission of the following information, which is shared with the original producer of Add Health: supervisor name, supervisor email, and reason for download. A Data Guide for this study is available as a web page and for download. The National Longitudinal Study of Adolescent to Adult Health (Add Health), 1994-2018 [Public Use] is a longitudinal study of a nationally representative sample of U.S. adolescents in grades 7 through 12 during the 1994-1995 school year. The Add Health cohort was followed into young adulthood with four in-home interviews, the most recent conducted in 2008 when the sample was aged 24-32. Add Health combines longitudinal survey data on respondents' social, economic, psychological, and physical well-being with contextual data on the family, neighborhood, community, school, friendships, peer groups, and romantic relationships. Add Health Wave I data collection took place between September 1994 and December 1995, and included both an in-school questionnaire and in-home interview. The in-school questionnaire was administered to more than 90,000 students in grades 7 through 12, and gathered information on social and demographic characteristics of adolescent respondents, education and occupation of parents, household structure, expectations for the future, self-esteem, health status, risk behaviors, friendships, and school-year extracurricular activities. All students listed on a sample school's roster were eligible for selection into the core in-home interview sample. In-home interviews included topics such as health status, health-facility utilization, nutrition, peer networks, decision-making processes, family composition and dynamics, educational aspirations and expectations, employment experience, romantic and sexual partnerships, substance use, and criminal activities. A parent, preferably the resident mother, of each adolescent respondent interviewed in Wave I was also asked to complete an interviewer-assisted questionnaire covering topics such as inheritable health conditions, marriages and marriage-like relationships, neighborhood characteristics, involvement in volunteer, civic, and school activities, health-affecting behaviors, education and employment, household income and economic assistance, parent-adolescent communication and interaction, parent's familiarity with the adolescent's friends and friends' parents. Add Health data collection recommenced for Wave II from April to August 1996, and included almost 15,000 follow-up in-home interviews with adolescents from Wave I. Interview questions were generally similar to Wave I, but also included questions about sun exposure and more detailed nutrition questions. Respondents were asked to report their height and weight during the course of the interview, and were also weighed and measured by the interviewer. From August 2001 to April 2002, Wave III data were collected through in-home interviews with 15,170 Wave I respondents (now 18 to 26 years old), as well as interviews with their partners. Respondents were administered survey questions designed to obtain information about family, relationships, sexual experiences, childbearing, and educational histories, labor force involvement, civic participation, religion and spirituality, mental health, health insurance, illness, delinquency and violence, gambling, substance abuse, and involvement with the criminal justice system. High School Transcript Release Forms were also collected at Wave III, and these data comprise the Education Data component of the Add Health study. Wave IV in-home interviews were conducted in 2008 and 2009 when the original Wave I respondents were 24 to 32 years old. Longitudinal survey data were collected on the social, economic, psychological, and health circumstances of respondents, as well as longitudinal geographic data. Survey questions were expanded on educational transitions, economic status and financial resources and strains, sleep patterns and sleep quality, eating habits and nutrition, illnesses and medications, physical activities, emotional content and quality of current or most recent romantic/cohabiting/marriage relationships, and maltreatment during childhood by caregivers. Dates and circumstances of key life events occurring in young adulthood were also recorded, including a complete marriage and cohabitation history, full

  6. World Health Survey 2003 - Belgium

    • apps.who.int
    • catalog.ihsn.org
    • +2more
    Updated Jun 19, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Belgium [Dataset]. https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/118
    Explore at:
    Dataset updated
    Jun 19, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Belgium
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  7. VA Personal Health Record Sample Data

    • catalog.data.gov
    • datahub.va.gov
    • +4more
    Updated Aug 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Veterans Affairs (2025). VA Personal Health Record Sample Data [Dataset]. https://catalog.data.gov/dataset/va-personal-health-record-sample-data
    Explore at:
    Dataset updated
    Aug 2, 2025
    Dataset provided by
    United States Department of Veterans Affairshttp://va.gov/
    Description

    My HealtheVet (www.myhealth.va.gov) is a Personal Health Record portal designed to improve the delivery of health care services to Veterans, to promote health and wellness, and to engage Veterans as more active participants in their health care. The My HealtheVet portal enables Veterans to create and maintain a web-based PHR that provides access to patient health education information and resources, a comprehensive personal health journal, and electronic services such as online VA prescription refill requests and Secure Messaging. Veterans can visit the My HealtheVet website and self-register to create an account, although registration is not required to view the professionally-sponsored health education resources, including topics of special interest to the Veteran population. Once registered, Veterans can create a customized PHR that is accessible from any computer with Internet access.

  8. A Framework for the Economic Analysis of Data Collection Methods for Vital...

    • plos.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eliana Jimenez-Soto; Andrew Hodge; Kim-Huong Nguyen; Zoe Dettrick; Alan D. Lopez (2023). A Framework for the Economic Analysis of Data Collection Methods for Vital Statistics [Dataset]. http://doi.org/10.1371/journal.pone.0106234
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Eliana Jimenez-Soto; Andrew Hodge; Kim-Huong Nguyen; Zoe Dettrick; Alan D. Lopez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundOver recent years there has been a strong movement towards the improvement of vital statistics and other types of health data that inform evidence-based policies. Collecting such data is not cost free. To date there is no systematic framework to guide investment decisions on methods of data collection for vital statistics or health information in general. We developed a framework to systematically assess the comparative costs and outcomes/benefits of the various data methods for collecting vital statistics.MethodologyThe proposed framework is four-pronged and utilises two major economic approaches to systematically assess the available data collection methods: cost-effectiveness analysis and efficiency analysis. We built a stylised example of a hypothetical low-income country to perform a simulation exercise in order to illustrate an application of the framework.FindingsUsing simulated data, the results from the stylised example show that the rankings of the data collection methods are not affected by the use of either cost-effectiveness or efficiency analysis. However, the rankings are affected by how quantities are measured.ConclusionThere have been several calls for global improvements in collecting useable data, including vital statistics, from health information systems to inform public health policies. Ours is the first study that proposes a systematic framework to assist countries undertake an economic evaluation of DCMs. Despite numerous challenges, we demonstrate that a systematic assessment of outputs and costs of DCMs is not only necessary, but also feasible. The proposed framework is general enough to be easily extended to other areas of health information.

  9. World Health Survey 2003 - Pakistan

    • microdata.worldbank.org
    • apps.who.int
    • +2more
    Updated Oct 17, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Pakistan [Dataset]. https://microdata.worldbank.org/index.php/catalog/1742
    Explore at:
    Dataset updated
    Oct 17, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Pakistan
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  10. World Health Survey 2003 - Chad

    • apps.who.int
    • catalog.ihsn.org
    • +1more
    Updated Jun 19, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Chad [Dataset]. https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/77
    Explore at:
    Dataset updated
    Jun 19, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Chad
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  11. w

    Service Delivery Indicators Health Survey 2013 - Harmonized Public Use Data...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Waly Wane (2021). Service Delivery Indicators Health Survey 2013 - Harmonized Public Use Data - Uganda [Dataset]. https://microdata.worldbank.org/index.php/catalog/2750
    Explore at:
    Dataset updated
    Apr 1, 2021
    Dataset authored and provided by
    Waly Wane
    Time period covered
    2013
    Area covered
    Uganda
    Description

    Abstract

    The Service Delivery Indicators (SDI) are a set of health and education indicators that examine the effort and ability of staff and the availability of key inputs and resources that contribute to a functioning school or health facility. The indicators are standardized, allowing comparison between and within countries over time.

    The Health SDIs include healthcare provider effort, knowledge and ability, and the availability of key inputs (for example, basic equipment, medicines and infrastructure, such as toilets and electricity). The indicators provide a snapshot of the health facility and assess the availability of key resources for providing high quality care.

    The Uganda SDI Health survey team visited a sample of 394 health facilities across Uganda between June and October 2013. The survey team collected rosters covering 2,347 workers for absenteeism and assessed 733 health workers for competence using patient case simulations.

    Geographic coverage

    National

    Analysis unit

    Health facilities and healthcare providers

    Universe

    All health facilities providing primary-level care.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling strategy for SDI surveys is designed towards attaining indicators that are accurate and representative at the national level, as this allows for proper cross-country (i.e. international benchmarking) and across time comparisons, when applicable. In addition, other levels of representativeness are sought to allow for further disaggregation (rural/urban areas, public/private facilities, subregions, etc.) during the analysis stage.

    The sampling strategy for SDI surveys follows a multistage sampling approach. The main units of analysis are facilities (schools and health centers) and providers (health and education workers: teachers, doctors, nurses, facility managers, etc.). The multi-stage sampling approach makes sampling procedures more practical by dividing the selection of large populations of sampling units in a step-by-step fashion. After defining the sampling frame and categorizing it by stratum, a first stage selection of sampling units is carried out independently within each stratum. Often, the primary sampling units (PSU) for this stage are cluster locations (e.g. districts, communities, counties, neighborhoods, etc.) which are randomly drawn within each stratum with a probability proportional to the size (PPS) of the cluster (measured by the location’s number of facilities, providers or pupils). Once locations are selected, a second stage takes place by randomly selecting facilities within location (either with equal probability or with PPS) as secondary sampling units. At a third stage, a fixed number of health and education workers and pupils are randomly selected within facilities to provide information for the different questionnaire modules.

    Detailed information about the specific sampling process is available in the associated SDI Country Report included as part of the documentation that accompany these datasets.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The SDI Health Survey Questionnaire consists of four modules and weights:

    Module 1: General Information - Administered to the health facility manager to collect information on equipment, medicines, infrastructure and other facets of the health facility.

    Module 2: Provider Absence - A roster of healthcare providers is collected and absence measured.

    Module 3: Clinical Vignettes – A selection of providers are given clinical vignettes to measure knowledge of common medical conditions.

    Module 4: Facility finances – Information on facility revenue and expenditures is collected from the health facility manager.

    Weights: Weights for facilities, absentee-related analyses and clinical vignette analyses.

    Cleaning operations

    Quality control was performed in Stata.

  12. i

    Service Provision Assessment Survey 2014-2015 - Tanzania

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Chief Government Statistician, Zanzibar (OCGS) (2019). Service Provision Assessment Survey 2014-2015 - Tanzania [Dataset]. https://catalog.ihsn.org/catalog/6528
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Office of Chief Government Statistician, Zanzibar (OCGS)
    National Bureau of Statistics (NBS)
    Time period covered
    2014 - 2015
    Area covered
    Tanzania
    Description

    Abstract

    The 2014-15 Tanzania Service Provision Assessment (2014-15 TSPA) is an assessment of all formalsector health facilities in Tanzania. The survey was designed to provide information on the availability of basic and essential health care services and the readiness of health facilities to provide quality services to clients. The 2014-15 TSPA collected information from all facilities managed by the government, private sector, parastatal, and faith-based organisations to provide a comprehensive picture of the strengths and weaknesses of the service delivery environment for each assessed service.

    The 2014-15 TSPA provides national and regional-level information for all hospitals, health centres, clinics and dispensaries that offer child health, maternal, and newborn care, family planning, and services for sexually transmitted infections (STI), non-communicable diseases (NCDs) (diabetes, cardiovascular diseases and chronic respiratory diseases), and HIV/AIDS-related conditions. For each of these services, the 2014-15 TSPA assessed whether components considered essential for quality service delivery were present and functioning. The components assessed are those commonly considered important to various programmes supported by the government and development partners. The 2014-15 TSPA also assessed whether more sophisticated components were present, such as higher-level diagnostic and treatment modalities or support systems for health services that are usually introduced after basic-level services have been put in place.

    The main objectives of the 2014-15 TSPA were to: • Assess the availability of basic and essential health services, including maternal and newborn care and child health, family planning, reproductive health services, non-communicable diseases (NCDs), as well as services for certain infectious diseases (HIV/AIDS, STIs, malaria, and TB), in Tanzanian health facilities; • Assess the preparedness of health facilities in Tanzania to provide quality services; • Provide comprehensive information on the performance of different types of health facilities that provide these essential services; • Identify gaps in the support system, resources and processes used to provide health services that may limit the ability of facilities to provide quality services; • Describe the processes followed in the provision of essential health care services and the extent to which accepted standards for quality service provision are met; • Compare findings among regions, facility types, and managing authorities.

    Geographic coverage

    National coverage, the survey was also designed to provide representative results for each of the 25 regions in Tanzania Mainland and the 5 regions in Tanzania Zanzibar, for a total number of 30 survey regions.

    Analysis unit

    Health institutions, hospitals, and health centers

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2014-15 TSPA was designed to be a sample survey of all formal-sector health facilities in Tanzania. A master list of health facilities that consisted of 7,102 verified (active) health facilities in Tanzania was obtained from the Ministry of Health and Social Welfare (MoHSW) on the Tanzania Mainland and the Ministry of Health (MOH) in Zanzibar. The list included hospitals, health centres, dispensaries, and clinics. These facilities were managed by the government, private-for-profit, parastatal, and faith-based entities.

    A sample of 1,200 facilities was selected to participate in the survey. The sample was designed to provide nationally representative results by facility type and managing authority and regionally representative results for the 25 Tanzania Mainland regions and the 5 Zanzibar regions (a total of 30 survey regions).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four questionnaires were used to collect the survey data: • Facility Inventory questionnaire • Health Provider Interview questionnaire • Observation Protocols for antenatal care (ANC), family planning, services for sick children, and normal obstetric delivery and immediate newborn care • Exit Interview questionnaires for ANC and family planning clients and for caretakers of sick children whose consultations were observed.

    The Facility Inventory questionnaire was loaded onto tablet computers and administered as computerassisted personal interviews (CAPI). The other questionnaire types were administered as paper questionnaires but with data entry and data editing taking place immediately following data collection and while the team was still in the facility (computer-assisted field editing – CAFE).

    Cleaning operations

    After completing data collection in each facility, the interviewers reviewed the paper questionnaires (Health Provider Interview, Exit Interview and Observation) and the Inventory data that had been collected directly onto the tablet computer before handing the questionnaires and electronic data over to the team leader, who reviewed them a second time. The paper questionnaires were then entered into the second tablet computer. Once data collection and all data entry were completed in a facility, the team leader conducted consistency and structural checks on the data to identify any errors or missing information. When a team was satisfied that data collection and entry were complete for the facility, the team sent the data to the NBS headquarters in Dar es Salaam via the Internet, using ICF International’s Internet File Steaming System (IFSS). Each team was given a modem device that enabled the tablet computer to send the completed data files to the central office. Questionnaires completed during the 2014-15 TSPA fieldwork were periodically gathered up by quality control teams and taken from the field to be processed at the NBS headquarters in Dar es Salaam. Processing consisted of data entry and the editing of computer-identified errors. The data were processed by a team of 5 data entry clerks, 1 questionnaire administrator, and 2 data entry supervisors. The questionnaire administrator was responsible for receiving the questionnaires from the field. A program developed by ICF International using CSPro software was employed for data entry. At the central office, the data from the paper questionnaires were entered twice (100 percent verification). The concurrent processing of the data was a distinct advantage for data quality because 2014-15 TSPA staff were able to advise the field teams of errors detected during data entry. Data entry started in October 2014, two weeks after the beginning of fieldwork, and ended in March 2015, two weeks after fieldwork ended. All responses with “other” category were reviewed by NBS with assistance from the MoHSW staff and were recorded in categories relevant for data analysis.

    Response rate

    1,200 health facilities sampled in the 2014-15 TSPA. Seven sampled facilities refused to be surveyed, 4 had closed down, and one facility could not be reached. The remaining 1,188 facilities were successfully interviewed, with a response rate of 99 percent. Among the surveyed facilities, 256 were hospitals, 379 were health centres, 493 were dispensaries, and 60 were clinics.

  13. Demographic and Health Survey 1988 - Ghana

    • microdata.statsghana.gov.gh
    • catalog.ihsn.org
    • +1more
    Updated Dec 5, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2013). Demographic and Health Survey 1988 - Ghana [Dataset]. https://microdata.statsghana.gov.gh/index.php/catalog/38
    Explore at:
    Dataset updated
    Dec 5, 2013
    Dataset provided by
    Ghana Statistical Services
    Authors
    Ghana Statistical Service (GSS)
    Time period covered
    1988
    Area covered
    Ghana
    Description

    Abstract

    The Ghana Demographic and Health Survey (GDHS) is a national sample survey designed to provide information on fertility, family planning and health in Ghana. The survey, which was conducted by the Statistical Service of Ghana, is part of a worldwide programme coordinated by the Institute for Resource Development/Macro Systems, Inc., in more than 40 countries in Africa, Asia and Latin America.

    The short-term objectives of the Ghana Demographic and Health Survey (GDHS) are to provide policymakers and those implementing policy with current data on fertility levels, knowledge and use of contraception, reproductive intentions of women 15-49, and health indicators. The information will also serve as the basis for monitoring and evaluating programmes initiated by the government such as the extended programme on immunization, child nutrition, and the family planning programme. The long-term objectives are to enhance the country's ability to undertake surveys of excellent technical quality that seek to measure changes in fertility levels, health status (particularly of children), and the extent of contraceptive knowledge and use. Finally, the results of the survey will form part of an international data base for researchers investigating topics related to the above issues.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    The 150 clusters from which a representative sample of women aged 15-49 was selected from a subsample of the 200 clusters used for the Ghana Living Standards Survey (GLSS). All census Enumeration Areas (EAs) were first stratified by ecological zones into 3 strata, namely Coastal Savanna, Forest, and Northern Savanna. These were further stratified into urban, semi-urban, and rural EAs. The EAs (in some cases, segments of EAs) were then selected with probability proportional to the number of households. All households in the selected EAs were subsequently listed.

    Note: See detailed description of sample design in APPENDIX B of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three different types of questionnaires were used for the GDHS. These were the household, individual and the husband questionnaires. The household and the individual questionnaires were adapted from the Model "B" Questionnaire for the DHS program. The GDHS is one of the few surveys in which special effort was made to collect information from husbands of interviewed women on such topics as fertility preferences, knowledge and use of contraception, and environmental and health related issues.

    All usual members and visitors in the selected households were listed on the household questionnaire. Recorded in the household questionnaire were data on the age and sex of all listed persons in addition to information on fostering for children aged 0-14. Eligible women and eligible husbands were also identified in the household questionnaire.

    The individual questionnaire was used to collect data on eligible women. Eligible women were definedas those aged 15-49 years who spent the night prior to the household interview in the selected household, irrespective of whether they were usual members of the household or not. Items of information collected in this questionnaire are as follows: 1) Respondent's Background 2) Reproductive Behavior 3) Knowledge and Use of Contraception 4) Health and Breastfeeding 5) Marriage 6) Fertility Preferences 7) Husband's Background and Women's Work 8) Weight and Height of Children Aged 3-36 Months.

    In half of the selected clusters a husband's questionnaire was used to collect data on eligible husbands. Eligible husbands were defined as those who were co-resident with their wives and whose wives had been successfully interviewed. Data on the husband's background, contraceptive knowledge and use, as well as fertility preferences were collected.

    All three questionnaires were translated into seven local languages, namely, Twi, Fante, Nzema, Ga, Ewe, Hausa and Dagbani. All the GDHS interviewers were able to conduct interviews in English and at least one local language. The questionnaires were pretested from mid-October to early November 1987. Five teams were used for the pretest fieldwork. These included 19 persons who were trained for 11 days.

    Cleaning operations

    Completed questionnaires were collected weekly from the regions by the field coordinators. Coding, data entry and machine editing went on concurrently at the Ghana Statistical Service in Accra as the fieldwork progressed. Coding and data entry were started in March 1988 and were completed by the end of June 1988. Preliminary tabulations were produced by mid-July 1988, and by August 1988 preliminary results of the survey were published.

    Response rate

    Of the 4966 households selected, 4406 were successfully interviewed. Excluding 9 percent of households that were vacant, absent, etc., the household response rate is 98 percent.

    Out of 4574 eligible women in the household schedule, 4488 were interviewed successfully. The response rate at the individual level is 98 percent. Of the 997 eligible husbands, 943 were successfully interviewed, representing a response rate of 95 percent.

    Sampling error estimates

    The results from sample surveys are affected by two types of errors: non-sampling error and sampling error. The former is due to mistakes in implementing the field activities, such as failing to locate and interview the correct household, errors in asking questions, data entry errors, etc. While numerous steps were taken to minimize this sort of error in the GDHS, non-sampling errors are impossible to avoid entirely, and are difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of women selected in the GDHS is only one of many samples of the same size that could have been drawn from the population using the same design. Each sample would have yielded slightly different results from the sample actually selected. The variability observed among all possible samples constitutes sampling error, which can be estimated from survey results (though not measured exactly).

    Sampling error is usually measured in terms of the "standard error" (SE) of a particular statistic (mean, percentage, etc.), which is the square root of the variance of the statistic across all possible samples of equal size and design. The standard error can be used to calculate confidence intervals within which one can be reasonably sure the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples of identical size and design will fall within a range of plus or minus two times the standard error of that statistic.

    If simple random sampling had been used to select women for the GDHS, it would have been possible to use straightforward formulas for calculating sampling errors. However, the GDHS sample design used three stages and clusters of households, and it was necessary to use more complex formulas. Therefore, the computer package CLUSTERS, developed for the World Fertility Survey, and was used to compute sampling errors.

    Note: See detailed estimate of sampling error calculation in APPENDIX C of the survey report.

  14. Data from: Clinical Dataset

    • kaggle.com
    zip
    Updated Oct 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamadreza Momeni (2023). Clinical Dataset [Dataset]. https://www.kaggle.com/datasets/imtkaggleteam/clinical-dataset
    Explore at:
    zip(16220 bytes)Available download formats
    Dataset updated
    Oct 5, 2023
    Authors
    Mohamadreza Momeni
    Description

    The purest type of electronic clinical data which is obtained at the point of care at a medical facility, hospital, clinic or practice. Often referred to as the electronic medical record (EMR), the EMR is generally not available to outside researchers. The data collected includes administrative and demographic information, diagnosis, treatment, prescription drugs, laboratory tests, physiologic monitoring data, hospitalization, patient insurance, etc.

    Individual organizations such as hospitals or health systems may provide access to internal staff. Larger collaborations, such as the NIH Collaboratory Distributed Research Network provides mediated or collaborative access to clinical data repositories by eligible researchers. Additionally, the UW De-identified Clinical Data Repository (DCDR) and the Stanford Center for Clinical Informatics allow for initial cohort identification.

    About Dataset:

    333 scholarly articles cite this dataset.

    Unique identifier: DOI

    Dataset updated: 2023

    Authors: Haoyang Mi

    In this dataset, we have two dataset:

    1- Clinical Data_Discovery_Cohort: Name of columns: Patient ID Specimen date Dead or Alive Date of Death Date of last Follow Sex Race Stage Event Time

    2- Clinical_Data_Validation_Cohort Name of columns: Patient ID Survival time (days) Event Tumor size Grade Stage Age Sex Cigarette Pack per year Type Adjuvant Batch EGFR KRAS

    Feel free to put your thought and analysis in a notebook for this datasets. And you can create some interesting and valuable ML projects for this case. Thanks for your attention.

  15. Quantitative Service Delivery Survey in Health 2000 - Uganda

    • microdata.ubos.org
    • datacatalog.ihsn.org
    • +2more
    Updated Feb 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health, Uganda (2018). Quantitative Service Delivery Survey in Health 2000 - Uganda [Dataset]. https://microdata.ubos.org:7070/index.php/catalog/46
    Explore at:
    Dataset updated
    Feb 14, 2018
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Ministry of Health of Ugandahttp://www.health.go.ug/
    Ministry of Finance, Planning and Economic Development, Uganda
    Makerere Institute for Social Research, Uganda
    Time period covered
    2000
    Area covered
    Uganda
    Description

    Abstract

    This study examines various dimensions of primary health care delivery in Uganda, using a baseline survey of public and private dispensaries, the most common lower level health facilities in the country.

    The survey was designed and implemented by the World Bank in collaboration with the Makerere Institute for Social Research and the Ugandan Ministries of Health and of Finance, Planning and Economic Development. It was carried out in October - December 2000 and covered 155 local health facilities and seven district administrations in ten districts. In addition, 1617 patients exiting health facilities were interviewed. Three types of dispensaries (both with and without maternity units) were included: those run by the government, by private for-profit providers, and by private nonprofit providers, mainly religious.

    This research is a Quantitative Service Delivery Survey (QSDS). It collected microlevel data on service provision and analyzed health service delivery from a public expenditure perspective with a view to informing expenditure and budget decision-making, as well as sector policy.

    Objectives of the study included: 1) Measuring and explaining the variation in cost-efficiency across health units in Uganda, with a focus on the flow and use of resources at the facility level; 2) Diagnosing problems with facility performance, including the extent of drug leakage, as well as staff performance and availability;
    3) Providing information on pricing and user fee policies and assessing the types of service actually provided; 4) Shedding light on the quality of service across the three categories of service provider - government, for-profit, and nonprofit; 5) Examining the patterns of remuneration, pay structure, and oversight and monitoring and their effects on health unit performance; 6) Assessing the private-public partnership, particularly the program of financial aid to nonprofits.

    Geographic coverage

    The study districts were Mpigi, Mukono, and Masaka in the central region; Mbale, Iganga, and Soroti in the east; Arua and Apac in the north; and Mbarara and Bushenyi in the west.

    Analysis unit

    • local dispensary with or without maternity unit

    Universe

    The survey covered government, for-profit and nonprofit private dispensaries with or without maternity units in ten Ugandan districts.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The survey covered government, for-profit and nonprofit private dispensaries with or without maternity units in ten Ugandan districts.

    The sample design was governed by three principles. First, to ensure a degree of homogeneity across sampled facilities, attention was restricted to dispensaries, with and without maternity units (that is, to the health center III level). Second, subject to security constraints, the sample was intended to capture regional differences. Finally, the sample had to include facilities in the main ownership categories: government, private for-profit, and private nonprofit (religious organizations and NGOs). The sample of government and nonprofit facilities was based on the Ministry of Health facility register for 1999. Since no nationwide census of for-profit facilities was available, these facilities were chosen by asking sampled government facilities to identify the closest private dispensary.

    Of the 155 health facilities surveyed, 81 were government facilities, 30 were private for-profit facilities, and 44 were nonprofit facilities. An exit poll of clients covered 1,617 individuals.

    The final sample consisted of 155 primary health care facilities drawn from ten districts in the central, eastern, northern, and western regions of the country. It included government, private for-profit, and private nonprofit facilities. The nonprofit sector includes facilities owned and operated by religious organizations and NGOs. Approximately one third of the surveyed facilities were dispensaries without maternity units; the rest provided maternity care. The facilities varied considerably in size, from units run by a single individual to facilities with as many as 19 staff members.

    Ministry of Health facility register for 1999 was used to design the sampling frame. Ten districts were randomly selected. From the selected districts, a sample of government and private nonprofit facilities and a reserve list of replacement facilities were randomly drawn. Because of the unreliability of the register for private for-profit facilities, it was decided that for-profit facilities would be identified on the basis of information from the government facilities sampled. The administrative records for facilities in the original sample were first reviewed at the district headquarters, where some facilities that did not meet selection criteria and data collection requirements were dropped from the sample. These were replaced by facilities from the reserve list. Overall, 30 facilities were replaced.

    The sample was designed in such a way that the proportion of facilities drawn from different regions and ownership categories broadly mirrors that of the universe of facilities. Because no nationwide census of for-profit health facilities is available, it is difficult to assess the extent to which the sample is representative of this category. A census of health care facilities in selected districts, carried out in the context of the Delivery of Improved Services for Health (DISH) project supported by the U.S. Agency for International Development (USAID), suggests that about 63 percent of all facilities operate on a for-profit basis, while government and nonprofit providers run 26 and 11 percent of facilities, respectively. This would suggest an undersampling of private providers in the survey. It is not clear, however, whether the DISH districts are representative of other districts in Uganda in terms of the market for health care.

    For the exit poll, 10 interviews per facility were carried out in approximately 85 percent of the facilities. In the remaining facilities the target of 10 interviews was not met, as a result of low activity levels.

    Sampling deviation

    In the first stage in the sampling process, eight districts (out of 45) had to be dropped from the sample frame due to security concerns. These districts were Bundibugyo, Gulu, Kabarole, Kasese, Kibaale, Kitgum, Kotido, and Moroto.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments are available:

    • District Health Team Questionnaire;
    • District Facility Data Sheets;
    • Uganda Health Facility Survey Questionnaire;
    • Facility Data Sheets;
    • Facility Patient Exit Poll Questionnaire.

    The survey collected data at three levels: district administration, health facility, and client. In this way it was possible to capture central elements of the relationships between the provider organization, the frontline facility, and the user. In addition, comparison of data from different levels (triangulation) permitted cross-validation of information.

    At the district level, a District Health Team Questionnaire was administered to the district director of health services (DDHS), who was interviewed on the role of the DDHS office in health service delivery. Specifically, the questionnaire collected data on health infrastructure, staff training, support and supervision arrangements, and sources of financing.

    The District Facility Data Sheet was used at the district level to collect more detailed information on the sampled health units for fiscal 1999-2000, including data on staffing and the related salary structures, vaccine supplies and immunization activity, and basic and supplementary supplies of drugs to the facilities. In addition, patient data, including monthly returns from facilities on total numbers of outpatients, inpatients, immunizations, and deliveries, were reviewed for the period April-June 2000.

    At the facility level, the Uganda Health Facility Survey Questionnaire collected a broad range of information related to the facility and its activities. The questionnaire, which was administered to the in-charge, covered characteristics of the facility (location, type, level, ownership, catchment area, organization, and services); inputs (staff, drugs, vaccines, medical and nonmedical consumables, and capital inputs); outputs (facility utilization and referrals); financing (user charges, cost of services by category, expenditures, and financial and in-kind support); and institutional support (supervision, reporting, performance assessment, and procurement). Each health facility questionnaire was supplemented by a Facility Data Sheet (FDS). The FDS was designed to obtain data from the health unit records on staffing and the related salary structure; daily patient records for fiscal 1999-2000; the type of patients using the facility; vaccinations offered; and drug supply and use at the facility.

    Finally, at the facility level, an exit poll was used to interview about 10 patients per facility on the cost of treatment, drugs received, perceived quality of services, and reasons for using that unit instead of alternative sources of health care.

    Cleaning operations

    Detailed information about data editing procedures is available in "Data Cleaning Guide for PETS/QSDS Surveys" in external resources.

    STATA cleaning do-files and the data quality reports on the datasets can also be found in external resources.

  16. Access to Health Services Survey 2003 - West Bank and Gaza

    • catalog.ihsn.org
    Updated Oct 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2021). Access to Health Services Survey 2003 - West Bank and Gaza [Dataset]. http://catalog.ihsn.org/catalog/9816
    Explore at:
    Dataset updated
    Oct 14, 2021
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttps://pcbs.gov/
    Time period covered
    2003 - 2004
    Area covered
    Gaza Strip, West Bank, Gaza
    Description

    Abstract

    The aim of the survey is to collect data on the health and accessibility to health services of the Palestinian Population in the Palestinian Territory. The main objectives of the survey was to study the availability of health facilities in the Palestinian Territory, to study the satisfaction of beneficiaries and to provide a database on accessibility to health institutions.

    Geographic coverage

    All Palestinian households living in the Palestinian Territory (West Bank and Gaza Strip), excluding persons living in institutions such as prisons or shelters.

    Analysis unit

    Household

    Universe

    All Palestinian households living in the Palestinian Territory, excluding persons living in institutions such as prisons or shelters.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame consisted of a master sample of enumeration areas (EAs) selected from the Population Housing and Establishment Census 1997. The master sample consists of area units of relatively equal size (number of households), these units have been used as primary sampling units (PSUs).

    Sample Design The sample is a two-stage stratified cluster random sample.

    Stratification Four levels of stratification were made: Stratification by Governorates. 1. Stratification by type of locality which comprises: (a) Urban
    (b) Rural
    (c) Refugee Camps

    1. Stratification by classifying localities, excluding governorate centers, into three strata based on the ownership of households of durable goods within these localities.

    2. Stratification by size of locality (number of households).

    Sample Size The sample covered a total of 4,077 households of which 2,745 households were from the West Bank and 1,332 from Gaza Strip.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was developed by the Palestinian Central Bureau of Statistics according to the national needs of related indicators. Therefore, number of questionnaire was reviewed:

    1.Access to Health Care Services Survey questionnaire in Canada. 2.Health Survey-2000 questionnaire. 3.Nutritional Survey-2002 questionnaire

    Cleaning operations

    The data processing stage consisted of the following operations:

    Editing before data entry All questionnaires were then edited in the main office using the same instructions adopted for editing in the field.

    Data Entry In this stage data were entered into the computer, using a data entry template Microsoft Access. The data entry program was prepared in order to satisfy the following requirements:

    ·Duplication of the questionnaire on the computer screen. ·Logical and consistency checks of data entered. ·Possibility for internal editing of questionnaire answers. ·Maintaining a minimum of errors in digital data entry and fieldwork. ·User- friendly handling.

    Response rate

    The response rate for the survey is 98.2%.

    Sampling error estimates

    Since the data reported here are based on a sample survey and not on complete enumeration, they are subjected to two main types of errors: sampling errors and non-Sampling errors.

    Sampling errors are random outcomes of the sample design, and are, therefore, easily measurable.

    Non-sampling errors can occur at the various stages of the survey implementation in data collection and data processing, and are generally difficult to be evaluated statistically. They cover a wide range of errors, including errors resulting from non-response, sample frame coverage, data processing and response (both respondent and interviewer-related). The use of effective training and supervisions and the careful design of questions as measures have direct bearing on the magnitude of non-sampling errors, and hence the quality of the resulting data are of high quality.

  17. National Health Interview Survey, 2012

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Aug 5, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Health and Human Services. Centers for Disease Control and Prevention. National Center for Health Statistics (2016). National Health Interview Survey, 2012 [Dataset]. http://doi.org/10.3886/ICPSR36146.v1
    Explore at:
    r, ascii, stata, delimited, spss, sasAvailable download formats
    Dataset updated
    Aug 5, 2016
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Health and Human Services. Centers for Disease Control and Prevention. National Center for Health Statistics
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36146/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36146/terms

    Time period covered
    2012
    Area covered
    United States
    Description

    The National Health Interview Survey (NHIS) is conducted annually by the National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). The main objective of the NHIS is to monitor the health of the United States population through the collection and analysis of data on a broad range of health topics. The NHIS contains many similar questions every year. The repeated items are called "core questions." Beginning with a new NHIS design in 1997, these core questions were divided into three components -- Family, Sample Adult, and Sample Child. The 2012 NHIS data release consists of six core data files, a paradata file, the three Disability Questions Tests files, a Functioning and Disability file, and two Complementary and Alternative Medicine files. Users may see the Survey Description document for more details. The 2012 NHIS contains the core questions, as well as enhanced questions on health care access and utilization. Supplemental topics are covered in the following questionnaires: the Family questionnaire covers subjects of food security; the Sample Adult questionnaire covers subjects of immunization, complementary and alternative medicine, non-cigarette tobacco use, voice, speech, and language; and the Sample Child questionnaire covers subjects of mental health, mental health services, immunization, complementary and alternative medicine, balance, voice, speech, and language. Along with the 2012 NHIS core data files are the Disability Questions Tests 2012 files which contain person-level data collected via a field test of six disability questions. These supplemental questions appeared on the NHIS, at the end of the Family, Sample Adult, and Sample Child Cores. The Disability Questions Tests 2012 files are released as three separate files. A fourth disability supplement was also fielded in 2012 as part of the Sample Adult Core and is called "Adult Functioning and Disability Level." The Adult and Child Alternative Health Supplement files were intended to expand on knowledge of alternative medical services. Questions focus on how often various types of alternative therapies are used, the associated costs, and the reasons they are used. Lastly, the Paradata Level file contains information about the survey and data collection processes; included are data on response rates, keystrokes, interview times, and number of contact attempts.

  18. World Health Survey 2003 - Austria

    • apps.who.int
    • catalog.ihsn.org
    • +2more
    Updated Jun 19, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Austria [Dataset]. https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/117
    Explore at:
    Dataset updated
    Jun 19, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Austria
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  19. Multi Country Study Survey 2000-2001 - Canada

    • apps.who.int
    • datacatalog.ihsn.org
    • +1more
    Updated Jan 17, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2014). Multi Country Study Survey 2000-2001 - Canada [Dataset]. https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/181
    Explore at:
    Dataset updated
    Jan 17, 2014
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2000 - 2001
    Area covered
    Canada
    Description

    Abstract

    In order to develop various methods of comparable data collection on health and health system responsiveness WHO started a scientific survey study in 2000-2001. This study has used a common survey instrument in nationally representative populations with modular structure for assessing health of indviduals in various domains, health system responsiveness, household health care expenditures, and additional modules in other areas such as adult mortality and health state valuations.

    The health module of the survey instrument was based on selected domains of the International Classification of Functioning, Disability and Health (ICF) and was developed after a rigorous scientific review of various existing assessment instruments. The responsiveness module has been the result of ongoing work over the last 2 years that has involved international consultations with experts and key informants and has been informed by the scientific literature and pilot studies.

    Questions on household expenditure and proportionate expenditure on health have been borrowed from existing surveys. The survey instrument has been developed in multiple languages using cognitive interviews and cultural applicability tests, stringent psychometric tests for reliability (i.e. test-retest reliability to demonstrate the stability of application) and most importantly, utilizing novel psychometric techniques for cross-population comparability.

    The study was carried out in 61 countries completing 71 surveys because two different modes were intentionally used for comparison purposes in 10 countries. Surveys were conducted in different modes of in- person household 90 minute interviews in 14 countries; brief face-to-face interviews in 27 countries and computerized telephone interviews in 2 countries; and postal surveys in 28 countries. All samples were selected from nationally representative sampling frames with a known probability so as to make estimates based on general population parameters.

    The survey study tested novel techniques to control the reporting bias between different groups of people in different cultures or demographic groups ( i.e. differential item functioning) so as to produce comparable estimates across cultures and groups. To achieve comparability, the selfreports of individuals of their own health were calibrated against well-known performance tests (i.e. self-report vision was measured against standard Snellen's visual acuity test) or against short descriptions in vignettes that marked known anchor points of difficulty (e.g. people with different levels of mobility such as a paraplegic person or an athlete who runs 4 km each day) so as to adjust the responses for comparability . The same method was also used for self-reports of individuals assessing responsiveness of their health systems where vignettes on different responsiveness domains describing different levels of responsiveness were used to calibrate the individual responses.

    This data are useful in their own right to standardize indicators for different domains of health (such as cognition, mobility, self care, affect, usual activities, pain, social participation, etc.) but also provide a better measurement basis for assessing health of the populations in a comparable manner. The data from the surveys can be fed into composite measures such as "Healthy Life Expectancy" and improve the empirical data input for health information systems in different regions of the world. Data from the surveys were also useful to improve the measurement of the responsiveness of different health systems to the legitimate expectations of the population.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    POSTAL

    1,487 named individuals were selected from the Karom Group of Companies, Dialogue Canada household mail panel. This mail panel includes a cross-section of Canadians, with the exception of those living in the Yukon, Northwest Territories or Nunavut, from which a sample can be obtained to represent the Canadian population according to the most recent Statistics Canada data. The panel file was stratified by regions in Canada: city size, French Quebec and rest of Canada and ordered by postcode. The 1,487 named individuals were selected from the Dialogue Mail panel file, using a random method on the sample sorted by postcode.

    Individual members of each household who were asked to complete the survey were identified by birth date and gender with this identifying information.

    From the initial 1,487 mailed out, 816 questionnaires came back hence reaching a response rate of 55%.

    CATI

    The sample was drawn in such a way that it represented the Canadian population with the exception of the Canadians living in the Yukon, Northwest Territories or Nunavut.

    The sampling model relied on the stratification of the population by ten provinces and by six community sizes. Telephone numbers were selected from the most recently published telephone directories. These numbers acted as "seeds" from which the sample was actually generated. The original "seed" telephone numbers were not used in the sample. Both unlisted numbers and numbers listed after the directory publication are included in the sample.

    From within each household contacted, respondents 18 years of age and older were screened for random selection using the most recent birthday method.

    From the 12,350 total calls made, 778 calls completed the interview. Among the 12,350 calls, 8,466 were ineligibles and from the latter, 5,305 calls for which the respondent was unavailable. The net response rate is therefore 24.6%.

    Mode of data collection

    Mail Questionnaire [mail]

    Cleaning operations

    Data Coding At each site the data was coded by investigators to indicate the respondent status and the selection of the modules for each respondent within the survey design. After the interview was edited by the supervisor and considered adequate it was entered locally.

    Data Entry Program A data entry program was developed in WHO specifically for the survey study and provided to the sites. It was developed using a database program called the I-Shell (short for Interview Shell), a tool designed for easy development of computerized questionnaires and data entry (34). This program allows for easy data cleaning and processing.

    The data entry program checked for inconsistencies and validated the entries in each field by checking for valid response categories and range checks. For example, the program didn’t accept an age greater than 120. For almost all of the variables there existed a range or a list of possible values that the program checked for.

    In addition, the data was entered twice to capture other data entry errors. The data entry program was able to warn the user whenever a value that did not match the first entry was entered at the second data entry. In this case the program asked the user to resolve the conflict by choosing either the 1st or the 2nd data entry value to be able to continue. After the second data entry was completed successfully, the data entry program placed a mark in the database in order to enable the checking of whether this process had been completed for each and every case.

    Data Transfer The data entry program was capable of exporting the data that was entered into one compressed database file which could be easily sent to WHO using email attachments or a file transfer program onto a secure server no matter how many cases were in the file. The sites were allowed the use of as many computers and as many data entry personnel as they wanted. Each computer used for this purpose produced one file and they were merged once they were delivered to WHO with the help of other programs that were built for automating the process. The sites sent the data periodically as they collected it enabling the checking procedures and preliminary analyses in the early stages of the data collection.

    Data quality checks Once the data was received it was analyzed for missing information, invalid responses and representativeness. Inconsistencies were also noted and reported back to sites.

    Data Cleaning and Feedback After receipt of cleaned data from sites, another program was run to check for missing information, incorrect information (e.g. wrong use of center codes), duplicated data, etc. The output of this program was fed back to sites regularly. Mainly, this consisted of cases with duplicate IDs, duplicate cases (where the data for two respondents with different IDs were identical), wrong country codes, missing age, sex, education and some other important variables.

  20. d

    Healthcare Industry Leads Data | US Healthcare Professionals | Verified...

    • datarade.ai
    Updated Oct 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2021). Healthcare Industry Leads Data | US Healthcare Professionals | Verified Contact Data for Executives, Admins, DRs & More | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/healthcare-industry-leads-data-us-healthcare-professionals-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Oct 27, 2021
    Dataset provided by
    Success.ai
    Area covered
    United States
    Description

    Success.ai’s Healthcare Industry Leads Data and B2B Contact Data for US Healthcare Professionals offers an extensive and verified database tailored to connect businesses with key executives and administrators in the healthcare industry across the United States. With over 170M verified profiles, including work emails and direct phone numbers, this dataset enables precise targeting of decision-makers in hospitals, clinics, and healthcare organizations.

    Backed by AI-driven validation technology for unmatched accuracy and reliability, this contact data empowers your marketing, sales, and recruitment strategies. Designed for industry professionals, our continuously updated profiles provide the actionable insights you need to grow your business in the competitive healthcare sector.

    Key Features of Success.ai’s US Healthcare Contact Data:

    • Comprehensive Healthcare Sector Coverage Access detailed contact information for professionals across the healthcare spectrum:

    Hospital Executives: CEOs, CFOs, and COOs managing top-tier facilities. Healthcare Administrators: Decision-makers driving operational excellence. Medical Professionals: Physicians, specialists, and nurse practitioners. Clinic Managers: Leaders in small and mid-sized healthcare organizations.

    • AI-Validated Accuracy and Updates

      99% Verified Accuracy: Our advanced AI technology ensures data reliability for optimal engagement. Real-Time Updates: Profiles are continuously refreshed to maintain relevance and accuracy. Minimized Bounce Rates: Save time and resources by reaching verified contacts.

    • Customizable Delivery Options Choose how you access the data to match your business requirements:

    API Integration: Connect our data directly to your CRM or sales platform. Flat File Delivery: Receive customized datasets in formats suited to your needs.

    Why Choose Success.ai for Healthcare Data?

    • Best Price Guarantee We ensure competitive pricing for our verified contact data, offering the most comprehensive and cost-effective solution in the market.

    • Compliance-Driven and Ethical Data Our data collection adheres to strict global standards, including HIPAA, GDPR, and CCPA compliance, ensuring secure and ethical usage.

    • Strategic Benefits for Your Business Success.ai’s US healthcare professional data unlocks numerous business opportunities:

    Targeted Marketing: Develop tailored campaigns aimed at healthcare executives and decision-makers. Efficient Sales Outreach: Engage with key contacts to accelerate your sales process. Recruitment Optimization: Access verified profiles to identify and recruit top talent in the healthcare industry. Market Intelligence: Use detailed firmographic and demographic insights to guide strategic decisions. Partnership Development: Build valuable relationships within the healthcare ecosystem.

    • Data Highlights 170M+ Verified Profiles 50M Direct Phone Numbers 700M Global Professional Profiles 70M Verified Company Profiles

    Key APIs for Advanced Functionality

    • Enrichment API Enhance your existing contact data with real-time updates, ensuring accuracy and relevance for your outreach initiatives.

    • Lead Generation API Drive high-quality lead generation efforts by utilizing verified contact information, including work emails and direct phone numbers, for up to 860,000 API calls per day.

    • Use Cases

    1. Healthcare Marketing Campaigns Target verified executives and administrators to deliver personalized and impactful marketing campaigns.

    2. Sales Enablement Connect with key decision-makers in healthcare organizations, ensuring higher conversion rates and shorter sales cycles.

    3. Talent Acquisition Source and engage healthcare professionals and administrators with accurate, up-to-date contact information.

    4. Strategic Partnerships Foster collaborations with healthcare institutions and professionals to expand your business network.

    5. Industry Analysis Leverage enriched contact data to gain insights into the US healthcare market, helping you refine your strategies.

    • What Sets Success.ai Apart?

    Verified Accuracy: AI-driven technology ensures 99% reliability for all contact details. Comprehensive Reach: Covering healthcare professionals from large hospital systems to smaller clinics nationwide. Flexible Access: Customizable data delivery methods tailored to your business needs. Ethical Standards: Fully compliant with healthcare and data protection regulations.

    Success.ai’s B2B Contact Data for US Healthcare Professionals is the ultimate solution for connecting with industry leaders, driving impactful marketing campaigns, and optimizing your recruitment strategies. Our commitment to quality, accuracy, and affordability ensures you achieve exceptional results while adhering to ethical and legal standards.

    No one beats us on price. Period.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). Reduced Access to Care During COVID-19 [Dataset]. https://catalog.data.gov/dataset/reduced-access-to-care-during-covid-19
Organization logo

Reduced Access to Care During COVID-19

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 23, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations

Search
Clear search
Close search
Google apps
Main menu