100+ datasets found
  1. n

    Demographic data collection in STEM organizations

    • data.niaid.nih.gov
    • digitalcommons.chapman.edu
    • +1more
    zip
    Updated Mar 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman (2022). Demographic data collection in STEM organizations [Dataset]. http://doi.org/10.25338/B8N63K
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 9, 2022
    Dataset provided by
    Chapman University
    University of California, Davis
    University of California, Berkeley
    University of Montana
    Harvard University
    Authors
    Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)

    Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)

    Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.

  2. Demographic and Health Survey 2017 - 2018 - Albania

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Statistics (INSTAT) (2019). Demographic and Health Survey 2017 - 2018 - Albania [Dataset]. https://catalog.ihsn.org/catalog/7962
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Institute of Statisticshttps://www.instat.gov.al/
    Institute of Public Health (IPH)
    Time period covered
    2017 - 2018
    Area covered
    Albania
    Description

    Abstract

    The 2017-18 Albania Demographic and Health Survey (2017-18 ADHS) is a nationwide survey with a nationally representative sample of approximately 17,160 households. All women age 15-49 who are usual residents of the selected households or who slept in the households the night before the survey were eligible for the survey. Women 50-59 years old were interviewed with an abbreviated questionnaire that only covered background characteristics and questions related to noncommunicable diseases.

    The primary objective of the 2017-2018 ADHS was to provide estimates of basic sociodemographic and health indicators for the country as a whole and the twelve prefectures. Specifically, the survey collected information on basic characteristics of the respondents, fertility, family planning, nutrition, maternal and child health, knowledge of HIV behaviors, health-related lifestyle, and noncommunicable diseases (NCDs). The information collected in the ADHS will assist policymakers and program managers in evaluating and designing programs and in developing strategies for improving the health of the country’s population.

    The sample for the 2017-18 ADHS was designed to produce representative results for the country as a whole, for urban and rural areas separately, and for each of the twelve prefectures known as Berat, Diber, Durres, Elbasan, Fier, Gjirokaster, Korce, Kukes, Lezhe, Shkoder, Tirana, and Vlore.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-59 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The ADHS surveys were done on a nationally representative sample that was representative at the prefecture level as well by rural and urban areas. A total of 715 enumeration areas (EAs) were selected as sample clusters, with probability proportional to each prefecture's population size. The sample design called for 24 households to be randomly selected in every sampling cluster, regardless of its size, but some of the EAs contained fewer than 24 households. In these EAs, all households were included in the survey. The EAs are considered the sample's primary sampling unit (PSU). The team of interviewers updated and listed the households in the selected EAs. Upon arriving in the selected clusters, interviewers spent the first day of fieldwork carrying out an exhaustive enumeration of households, recording the name of each head of household and the location of the dwelling. The listing was done with tablet PCs, using a digital listing application. When interviewers completed their respective sections of the EA, they transferred their files into the supervisor's tablet PC, where the information was automatically compiled into a single file in which all households in the EA were entered. The software and field procedures were designed to ensure there were no duplications or omissions during the household listing process. The supervisor used the software in his tablet to randomly select 24 households for the survey from the complete list of households.

    All women age 15-49 who were usual residents of the selected households or who slept in the households the night before the survey were eligible for individual interviews with the full Woman's Questionnaire. Women age 50-59 were also interviewed, but with an abbreviated questionnaire that left out all questions related to reproductive health and mother and child health. A 50% subsample was selected for the survey of men. Every man age 15-59 who was a usual resident of or had slept in the household the night before the survey was eligible for an individual interview in these households.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four questionnaires were used in the ADHS, one for the household and others for women age 15-49, for women age 50-59, and for men age 15-59. In addition to these four questionnaires, a form was used to record the vaccination information for children born in the 5 years preceding the survey whose mothers had been successfully interviewed.

    Cleaning operations

    Supervisors sent the accumulated fieldwork data to INSTAT’s central office via internet every day, unless for some reason the teams did not have access to the internet at the time. The data received from the various teams were combined into a single file, which was used to produce quality control tables, known as field check tables. These tables reveal systematic errors in the data such as omission of potential respondents, age displacement, inaccurate recording of date of birth and age at death, inaccurate measurement of height and weight, and other key indicators of data quality. These tables were reviewed and evaluated by ADHS senior staff, which in turn provided feedback and advice to the teams in the field.

    Response rate

    A total of 16,955 households were selected for the sample, of which 16,634 were occupied. Of the occupied households, 15,823 were successfully interviewed, which represents a response rate of 95%. In the interviewed households, 11,680 women age 15-49 were identified for individual interviews. Interviews were completed for 10,860 of these women, yielding a response rate of 93%. In the same households, 4,289 women age 50-59 were identified, of which 4,140 were successfully interviewed, yielding a 97% response rate. In the 50% subsample of households selected for the male survey, 7,103 eligible men age 15-59 were identified, of which 6,142 were successfully interviewed, yielding a response rate of 87%.

    Response rates were higher in rural than in urban areas, which is a pattern commonly found in household surveys because in urban areas more people work and carry out activities outside the home.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Albania Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 ADHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    See details of the data quality tables in Appendix C of the survey final report.

  3. w

    Demographic and Health Survey 2002 - Viet Nam

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    General Statistical Office (GSO) (2023). Demographic and Health Survey 2002 - Viet Nam [Dataset]. https://microdata.worldbank.org/index.php/catalog/1518
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    General Statistical Office (GSO)
    Time period covered
    2002
    Area covered
    Vietnam
    Description

    Abstract

    The 2002 Vietnam Demographic and Health Survey (VNDHS 2002) is a nationally representative sample survey of 5,665 ever-married women age 15-49 selected from 205 sample points (clusters) throughout Vietnam. It provides information on levels of fertility, family planning knowledge and use, infant and child mortality, and indicators of maternal and child health. The survey included a Community/ Health Facility Questionnaire that was implemented in each of the sample clusters.

    The survey was designed to measure change in reproductive health indicators over the five years since the VNDHS 1997, especially in the 18 provinces that were targeted in the Population and Family Health Project of the Committee for Population, Family and Children. Consequently, all provinces were separated into “project” and “nonproject” groups to permit separate estimates for each. Data collection for the survey took place from 1 October to 21 December 2002.

    The Vietnam Demographic and Health Survey 2002 (VNDHS 2002) was the third DHS in Vietnam, with prior surveys implemented in 1988 and 1997. The VNDHS 2002 was carried out in the framework of the activities of the Population and Family Health Project of the Committee for Population, Family and Children (previously the National Committee for Population and Family Planning).

    The main objectives of the VNDHS 2002 were to collect up-to-date information on family planning, childhood mortality, and health issues such as breastfeeding practices, pregnancy care, vaccination of children, treatment of common childhood illnesses, and HIV/AIDS, as well as utilization of health and family planning services. The primary objectives of the survey were to estimate changes in family planning use in comparison with the results of the VNDHS 1997, especially on issues in the scope of the project of the Committee for Population, Family and Children.

    VNDHS 2002 data confirm the pattern of rapidly declining fertility that was observed in the VNDHS 1997. It also shows a sharp decline in child mortality, as well as a modest increase in contraceptive use. Differences between project and non-project provinces are generally small.

    Geographic coverage

    The 2002 Vietnam Demographic and Health Survey (VNDHS 2002) is a nationally representative sample survey. The VNDHS 1997 was designed to provide separate estimates for the whole country, urban and rural areas, for 18 project provinces and the remaining nonproject provinces as well. Project provinces refer to 18 focus provinces targeted for the strengthening of their primary health care systems by the Government's Population and Family Health Project to be implemented over a period of seven years, from 1996 to 2002 (At the outset of this project there were 15 focus provinces, which became 18 by the creation of 3 new provinces from the initial set of 15). These provinces were selected according to criteria based on relatively low health and family planning status, no substantial family planning donor presence, and regional spread. These criteria resulted in the selection of the country's poorer provinces. Nine of these provinces have significant proportions of ethnic minorities among their population.

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 2002 VNDHS is defined as the universe of all women age 15-49 in Vietnam.

    Kind of data

    Sample survey data

    Sampling procedure

    The sample for the VNDHS 2002 was based on that used in the VNDHS 1997, which in turn was a subsample of the 1996 Multi-Round Demographic Survey (MRS), a semi-annual survey of about 243,000 households undertaken regularly by GSO. The MRS sample consisted of 1,590 sample areas known as enumeration areas (EAs) spread throughout the 53 provinces/cities of Vietnam, with 30 EAs in each province. On average, an EA comprises about 150 households. For the VNDHS 1997, a subsample of 205 EAs was selected, with 26 households in each urban EA and 39 households for each rural EA. A total of 7,150 households was selected for the survey. The VNDHS 1997 was designed to provide separate estimates for the whole country, urban and rural areas, for 18 project provinces and the remaining nonproject provinces as well. Because the main objective of the VNDHS 2002 was to measure change in reproductive health indicators over the five years since the VNDHS 1997, the sample design for the VNDHS 2002 was as similar as possible to that of the VNDHS 1997.

    Although it would have been ideal to have returned to the same households or at least the same sample points as were selected for the VNDHS 1997, several factors made this undesirable. Revisiting the same households would have held the sample artificially rigid over time and would not allow for newly formed households. This would have conflicted with the other major survey objective, which was to provide up-to-date, representative data for the whole of Vietnam. Revisiting the same sample points that were covered in 1997 was complicated by the fact that the country had conducted a population census in 1999, which allowed for a more representative sample frame.

    In order to balance the two main objectives of measuring change and providing representative data, it was decided to select enumeration areas from the 1999 Population Census, but to cover the same communes that were sampled in the VNDHS 1997 and attempt to obtain a sample point as close as possible to that selected in 1997. Consequently, the VNDHS 2002 sample also consisted of 205 sample points and reflects the oversampling in the 20 provinces that fall in the World Bank-supported Population and Family Health Project. The sample was designed to produce about 7,000 completed household interviews and 5,600 completed interviews with ever-married women age 15-49.

    Mode of data collection

    Face-to-face

    Research instrument

    As in the VNDHS 1997, three types of questionnaires were used in the 2002 survey: the Household Questionnaire, the Individual Woman's Questionnaire, and the Community/Health Facility Questionnaire. The first two questionnaires were based on the DHS Model A Questionnaire, with additions and modifications made during an ORC Macro staff visit in July 2002. The questionnaires were pretested in two clusters in Hanoi (one in a rural area and another in an urban area). After the pretest and consultation with ORC Macro, the drafts were revised for use in the main survey.

    a) The Household Questionnaire was used to enumerate all usual members and visitors in selected households and to collect information on age, sex, education, marital status, and relationship to the head of household. The main purpose of the Household Questionnaire was to identify persons who were eligible for individual interview (i.e. ever-married women age 15-49). In addition, the Household Questionnaire collected information on characteristics of the household such as water source, type of toilet facilities, material used for the floor and roof, and ownership of various durable goods.

    b) The Individual Questionnaire was used to collect information on ever-married women aged 15-49 in surveyed households. These women were interviewed on the following topics:
    - Respondent's background characteristics (education, residential history, etc.); - Reproductive history; - Contraceptive knowledge and use;
    - Antenatal and delivery care; - Infant feeding practices; - Child immunization; - Fertility preferences and attitudes about family planning; - Husband's background characteristics; - Women's work information; and - Knowledge of AIDS.

    c) The Community/Health Facility Questionnaire was used to collect information on all communes in which the interviewed women lived and on services offered at the nearest health stations. The Community/Health Facility Questionnaire consisted of four sections. The first two sections collected information from community informants on some characteristics such as the major economic activities of residents, distance from people's residence to civic services and the location of the nearest sources of health care. The last two sections involved visiting the nearest commune health centers and intercommune health centers, if these centers were located within 30 kilometers from the surveyed cluster. For each visited health center, information was collected on the type of health services offered and the number of days services were offered per week; the number of assigned staff and their training; medical equipment and medicines available at the time of the visit.

    Cleaning operations

    The first stage of data editing was implemented by the field editors soon after each interview. Field editors and team leaders checked the completeness and consistency of all items in the questionnaires. The completed questionnaires were sent to the GSO headquarters in Hanoi by post for data processing. The editing staff of the GSO first checked the questionnaires for completeness. The data were then entered into microcomputers and edited using a software program specially developed for the DHS program, the Census and Survey Processing System, or CSPro. Data were verified on a 100 percent basis, i.e., the data were entered separately twice and the two results were compared and corrected. The data processing and editing staff of the GSO were trained and supervised for two weeks by a data processing specialist from ORC Macro. Office editing and processing activities were initiated immediately after the beginning of the fieldwork and were completed in late December 2002.

    Response rate

    The results of the household and individual

  4. Demographic and Health Survey 2013 - Turkiye

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Jun 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hacettepe University Institute of Population Studies (HUIPS) (2022). Demographic and Health Survey 2013 - Turkiye [Dataset]. https://catalog.ihsn.org/index.php/catalog/8472
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset provided by
    Hacettepe University Institute of Population Studies
    Authors
    Hacettepe University Institute of Population Studies (HUIPS)
    Time period covered
    2013 - 2014
    Area covered
    Türkiye
    Description

    Abstract

    The 2013 Turkey Demographic and Health Survey (TDHS-2013) is a nationally representative sample survey. The primary objective of the TDHS-2013 is to provide data on socioeconomic characteristics of households and women between ages 15-49, fertility, childhood mortality, marriage patterns, family planning, maternal and child health, nutritional status of women and children, and reproductive health. The survey obtained detailed information on these issues from a sample of women of reproductive age (15-49). The TDHS-2013 was designed to produce information in the field of demography and health that to a large extent cannot be obtained from other sources.

    Specifically, the objectives of the TDHS-2013 included: - Collecting data at the national level that allows the calculation of some demographic and health indicators, particularly fertility rates and childhood mortality rates, - Obtaining information on direct and indirect factors that determine levels and trends in fertility and childhood mortality, - Measuring the level of contraceptive knowledge and practice by contraceptive method and some background characteristics, i.e., region and urban-rural residence, - Collecting data relative to maternal and child health, including immunizations, antenatal care, and postnatal care, assistance at delivery, and breastfeeding, - Measuring the nutritional status of children under five and women in the reproductive ages, - Collecting data on reproductive-age women about marriage, employment status, and social status

    The TDHS-2013 information is intended to provide data to assist policy makers and administrators to evaluate existing programs and to design new strategies for improving demographic, social and health policies in Turkey. Another important purpose of the TDHS-2013 is to sustain the flow of information for the interested organizations in Turkey and abroad on the Turkish population structure in the absence of a reliable and sufficient vital registration system. Additionally, like the TDHS-2008, TDHS-2013 is accepted as a part of the Official Statistic Program.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49
    • Children under age of five

    Universe

    The survey covered all de jure household members (usual residents), children age 0-5 years and women age 15-49 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample design and sample size for the TDHS-2013 makes it possible to perform analyses for Turkey as a whole, for urban and rural areas, and for the five demographic regions of the country (West, South, Central, North, and East). The TDHS-2013 sample is of sufficient size to allow for analysis on some of the survey topics at the level of the 12 geographical regions (NUTS 1) which were adopted at the second half of the year 2002 within the context of Turkey’s move to join the European Union.

    In the selection of the TDHS-2013 sample, a weighted, multi-stage, stratified cluster sampling approach was used. Sample selection for the TDHS-2013 was undertaken in two stages. The first stage of selection included the selection of blocks as primary sampling units from each strata and this task was requested from the TURKSTAT. The frame for the block selection was prepared using information on the population sizes of settlements obtained from the 2012 Address Based Population Registration System. Settlements with a population of 10,000 and more were defined as “urban”, while settlements with populations less than 10,000 were considered “rural” for purposes of the TDHS-2013 sample design. Systematic selection was used for selecting the blocks; thus settlements were given selection probabilities proportional to their sizes. Therefore more blocks were sampled from larger settlements.

    The second stage of sample selection involved the systematic selection of a fixed number of households from each block, after block lists were obtained from TURKSTAT and were updated through a field operation; namely the listing and mapping fieldwork. Twentyfive households were selected as a cluster from urban blocks, and 18 were selected as a cluster from rural blocks. The total number of households selected in TDHS-2013 is 14,490.

    The total number of clusters in the TDHS-2013 was set at 642. Block level household lists, each including approximately 100 households, were provided by TURKSTAT, using the National Address Database prepared for municipalities. The block lists provided by TURKSTAT were updated during the listing and mapping activities.

    All women at ages 15-49 who usually live in the selected households and/or were present in the household the night before the interview were regarded as eligible for the Women’s Questionnaire and were interviewed. All analysis in this report is based on de facto women.

    Note: A more technical and detailed description of the TDHS-2013 sample design, selection and implementation is presented in Appendix B of the final report of the survey.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Two main types of questionnaires were used to collect the TDHS-2013 data: the Household Questionnaire and the Individual Questionnaire for all women of reproductive age. The contents of these questionnaires were based on the DHS core questionnaire. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the TDHS-2013 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2013 questionnaires, national and international population and health agencies were consulted for their comments.

    The questionnaires were developed in Turkish and translated into English.

    Cleaning operations

    TDHS-2013 questionnaires were returned to the Hacettepe University Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all selected households and eligible respondents were returned from the field. A total of 29 data entry staff were trained for data entry activities of the TDHS-2013. The data entry of the TDHS-2013 began in late September 2013 and was completed at the end of January 2014.

    The data were entered and edited on microcomputers using the Census and Survey Processing System (CSPro) software. CSPro is designed to fulfill the census and survey data processing needs of data-producing organizations worldwide. CSPro is developed by MEASURE partners, the U.S. Bureau of the Census, ICF International’s DHS Program, and SerPro S.A. CSPro allows range, skip, and consistency errors to be detected and corrected at the data entry stage. During the data entry process, 100% verification was performed by entering each questionnaire twice using different data entry operators and comparing the entered data.

    Response rate

    In all, 14,490 households were selected for the TDHS-2013. At the time of the listing phase of the survey, 12,640 households were considered occupied and, thus, eligible for interview. Of the eligible households, 93 percent (11,794) households were successfully interviewed. The main reasons the field teams were unable to interview some households were because some dwelling units that had been listed were found to be vacant at the time of the interview or the household was away for an extended period.

    In the interviewed 11,794 households, 10,840 women were identified as eligible for the individual interview, aged 15-49 and were present in the household on the night before the interview. Interviews were successfully completed with 9,746 of these women (90 percent). Among the eligible women not interviewed in the survey, the principal reason for nonresponse was the failure to find the women at home after repeated visits to the household.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TDHS-2013 to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TDHS-2013 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall

  5. u

    Population and Family Health Survey 2012 - Jordan

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +2more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2021). Population and Family Health Survey 2012 - Jordan [Dataset]. https://microdata.unhcr.org/index.php/catalog/405
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2012
    Area covered
    Jordan
    Description

    Abstract

    The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.

    The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).

    Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.

    Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.

    The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence

    In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.

    The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.

    Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.

    Cleaning operations

    Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.

    Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.

    Response rate

    In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.

    In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer

  6. w

    Demographic and Health Survey 2015-2016 - Armenia

    • microdata.worldbank.org
    • microdata.armstat.am
    • +2more
    Updated Jan 9, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health (MOH) (2019). Demographic and Health Survey 2015-2016 - Armenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/2893
    Explore at:
    Dataset updated
    Jan 9, 2019
    Dataset provided by
    Ministry of Health (MOH)
    National Statistical Service (NSSS)
    Time period covered
    2015 - 2016
    Area covered
    Armenia
    Description

    Abstract

    The 2015-16 Armenia Demographic and Health Survey (2015-16 ADHS) is the fourth in a series of nationally representative sample surveys designed to provide information on population and health issues. It is conducted in Armenia under the worldwide Demographic and Health Surveys program. Specifically, the objective of the 2015-16 ADHS is to provide current and reliable information on fertility and abortion levels, marriage, sexual activity, fertility preferences, awareness and use of family planning methods, breastfeeding practices, nutritional status of young children, childhood mortality, maternal and child health, domestic violence against women, child discipline, awareness and behavior regarding AIDS and other sexually transmitted infections (STIs), and other health-related issues such as smoking, tuberculosis, and anemia. The survey obtained detailed information on these issues from women of reproductive age and, for certain topics, from men as well.

    The 2015-16 ADHS results are intended to provide information needed to evaluate existing social programs and to design new strategies to improve the health of and health services for the people of Armenia. Data are presented by region (marz) wherever sample size permits. The information collected in the 2015-16 ADHS will provide updated estimates of basic demographic and health indicators covered in the 2000, 2005, and 2010 surveys.

    The long-term objective of the survey includes strengthening the technical capacity of major government institutions, including the NSS. The 2015-16 ADHS also provides comparable data for longterm trend analysis because the 2000, 2005, 2010, and 2015-16 surveys were implemented by the same organization and used similar data collection procedures. It also adds to the international database of demographic and health–related information for research purposes.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-49

    Universe

    The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-49 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample was designed to produce representative estimates of key indicators at the national level, for Yerevan, and for total urban and total rural areas separately. Many indicators can also be estimated at the regional (marz) level.

    The sampling frame used for the 2015-16 ADHS is the Armenia Population and Housing Census, which was conducted in Armenia in 2011 (APHC 2011). The sampling frame is a complete list of enumeration areas (EAs) covering the whole country, a total number of 11,571 EAs, provided by the National Statistical Service (NSS) of Armenia, the implementing agency for the 2015-16 ADHS. This EA frame was created from the census data base by summarizing the households down to EA level. A representative probability sample of 8,749 households was selected for the 2015-16 ADHS sample. The sample was selected in two stages. In the first stage, 313 clusters (192 in urban areas and 121 in rural areas) were selected from a list of EAs in the sampling frame. In the second stage, a complete listing of households was carried out in each selected cluster. Households were then systematically selected for participation in the survey. Appendix A provides additional information on the sample design of the 2015-16 Armenia DHS. Because of the approximately equal sample size in each marz, the sample is not self-weighting at the national level, and weighting factors have been calculated, added to the data file, and applied so that results are representative at the national level.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Five questionnaires were used for the 2015-16 ADHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Fieldworker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Armenia. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organizations, and international donors. After all questionnaires were finalized in English, they were translated into Armenian. They were pretested in September-October 2015.

    Cleaning operations

    The processing of the 2015-16 ADHS data began shortly after fieldwork commenced. All completed questionnaires were edited immediately by field editors while still in the field and checked by the supervisors before being dispatched to the data processing center at the NSS central office in Yerevan. These completed questionnaires were edited and entered by 15 data processing personnel specially trained for this task. All data were entered twice for 100 percent verification. Data were entered using the CSPro computer package. The concurrent processing of the data was an advantage because the senior ADHS technical staff were able to advise field teams of problems detected during the data entry. In particular, tables were generated to check various data quality parameters. Moreover, the double entry of data enabled easy comparison and identification of errors and inconsistencies. As a result, specific feedback was given to the teams to improve performance. The data entry and editing phase of the survey was completed in June 2016.

    Response rate

    A total of 8,749 households were selected in the sample, of which 8,205 were occupied at the time of the fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. The number of occupied households successfully interviewed was 7,893, yielding a household response rate of 96 percent. The household response rate in urban areas (96 percent) was nearly the same as in rural areas (97 percent).

    In these households, a total of 6,251 eligible women were identified; interviews were completed with 6,116 of these women, yielding a response rate of 98 percent. In one-half of the households, a total of 2,856 eligible men were identified, and interviews were completed with 2,755 of these men, yielding a response rate of 97 percent. Among men, response rates are slightly lower in urban areas (96 percent) than in rural areas (97 percent), whereas rates for women are the same in urban and in rural areas (98 percent).

    The 2015-16 ADHS achieved a slightly higher response rate for households than the 2010 ADHS (NSS 2012). The increase is only notable for urban households (96 percent in 2015-16 compared with 94 percent in 2010). Response rates in all other categories are very close to what they were in 2010.

    Sampling error estimates

    SAS computer software were used to calculate sampling errors for the 2015-16 ADHS. The programs used the Taylor linearization method of variance estimation for means or proportions and the Jackknife repeated replication method for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Nutritional status of children based on the NCHS/CDC/WHO International Reference Population - Vaccinations by background characteristics for children age 18-29 months

    See details of the data quality tables in Appendix C of the survey final report.

  7. i

    Demographic and Health Survey 1998 - Ghana

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jul 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2017). Demographic and Health Survey 1998 - Ghana [Dataset]. https://catalog.ihsn.org/catalog/50
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

    The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

    The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

    The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

    The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

    The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

    The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

    Response rate

    A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  8. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  9. Demographic and Health Survey 2017 - Indonesia

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jul 12, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Indonesia (BPS) (2019). Demographic and Health Survey 2017 - Indonesia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3477
    Explore at:
    Dataset updated
    Jul 12, 2019
    Dataset provided by
    Statistics Indonesiahttp://www.bps.go.id/
    National Population and Family Planning Board (BKKBN)
    Ministry of Health (Kemenkes)
    Time period covered
    2017
    Area covered
    Indonesia
    Description

    Abstract

    The primary objective of the 2017 Indonesia Dmographic and Health Survey (IDHS) is to provide up-to-date estimates of basic demographic and health indicators. The IDHS provides a comprehensive overview of population and maternal and child health issues in Indonesia. More specifically, the IDHS was designed to: - provide data on fertility, family planning, maternal and child health, and awareness of HIV/AIDS and sexually transmitted infections (STIs) to help program managers, policy makers, and researchers to evaluate and improve existing programs; - measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as residence, education, breastfeeding practices, and knowledge, use, and availability of contraceptive methods; - evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; - assess married men’s knowledge of utilization of health services for their family’s health and participation in the health care of their families; - participate in creating an international database to allow cross-country comparisons in the areas of fertility, family planning, and health.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-54

    Universe

    The survey covered all de jure household members (usual residents), all women age 15-49 years resident in the household, and all men age 15-54 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2017 IDHS sample covered 1,970 census blocks in urban and rural areas and was expected to obtain responses from 49,250 households. The sampled households were expected to identify about 59,100 women age 15-49 and 24,625 never-married men age 15-24 eligible for individual interview. Eight households were selected in each selected census block to yield 14,193 married men age 15-54 to be interviewed with the Married Man's Questionnaire. The sample frame of the 2017 IDHS is the Master Sample of Census Blocks from the 2010 Population Census. The frame for the household sample selection is the updated list of ordinary households in the selected census blocks. This list does not include institutional households, such as orphanages, police/military barracks, and prisons, or special households (boarding houses with a minimum of 10 people).

    The sampling design of the 2017 IDHS used two-stage stratified sampling: Stage 1: Several census blocks were selected with systematic sampling proportional to size, where size is the number of households listed in the 2010 Population Census. In the implicit stratification, the census blocks were stratified by urban and rural areas and ordered by wealth index category.

    Stage 2: In each selected census block, 25 ordinary households were selected with systematic sampling from the updated household listing. Eight households were selected systematically to obtain a sample of married men.

    For further details on sample design, see Appendix B of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2017 IDHS used four questionnaires: the Household Questionnaire, Woman’s Questionnaire, Married Man’s Questionnaire, and Never Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49, the Woman’s Questionnaire had questions added for never married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey Questionnaire. The Household Questionnaire and the Woman’s Questionnaire are largely based on standard DHS phase 7 questionnaires (2015 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were included in the IDHS. Response categories were modified to reflect the local situation.

    Cleaning operations

    All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computer-identified errors. Data processing activities were carried out by a team of 34 editors, 112 data entry operators, 33 compare officers, 19 secondary data editors, and 2 data entry supervisors. The questionnaires were entered twice and the entries were compared to detect and correct keying errors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2017 IDHS.

    Response rate

    Of the 49,261 eligible households, 48,216 households were found by the interviewer teams. Among these households, 47,963 households were successfully interviewed, a response rate of almost 100%.

    In the interviewed households, 50,730 women were identified as eligible for individual interview and, from these, completed interviews were conducted with 49,627 women, yielding a response rate of 98%. From the selected household sample of married men, 10,440 married men were identified as eligible for interview, of which 10,009 were successfully interviewed, yielding a response rate of 96%. The lower response rate for men was due to the more frequent and longer absence of men from the household. In general, response rates in rural areas were higher than those in urban areas.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors result from mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017 Indonesia Demographic and Health Survey (2017 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2017 IDHS is a STATA program. This program used the Taylor linearization method for variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix C of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months

    See details of the data quality tables in Appendix D of the survey final report.

  10. National Health and Nutrition Examination Survey (NHANES), Demographic and...

    • thearda.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Association of Religion Data Archives, National Health and Nutrition Examination Survey (NHANES), Demographic and Examination Data, 2005-2006 [Dataset]. http://doi.org/10.17605/OSF.IO/28YKA
    Explore at:
    Dataset provided by
    Association of Religion Data Archives
    Dataset funded by
    National Center for Health Statistics (NCHS)
    Description

    The National Health and Nutrition Examination Surveys (NHANES) is a program of studies designed to assess the health and nutritional status of adults and children in the United States. The NHANES combines personal interviews and physical examinations, which focus on different population groups or health topics. These surveys have been conducted by the National Center for Health Statistics (NCHS) on a periodic basis from 1971 to 1994. In 1999, the NHANES became a continuous program with a changing focus on a variety of health and nutrition measurements which were designed to meet current and emerging concerns. The sample for the survey is selected to represent the U.S. population of all ages. Many of the NHANES 2007-2008 questions also were asked in NHANES II 1976-1980, Hispanic HANES 1982-1984, NHANES III 1988-1994, and NHANES 1999-2006. New questions were added to the survey based on recommendations from survey collaborators, NCHS staff, and other interagency work groups. Estimates for previously undiagnosed conditions, as well as those known to and reported by survey respondents, are produced through the survey.

    In the 2005-2006 wave, the NHANES includes over 100 datasets. Most have been combined into three datasets for convenience. Each starts with the Demographic dataset and includes datasets of a specific type.

    1. National Health and Nutrition Examination Survey (NHANES), Demographic & Examination Data, 2005-2006 (The base of the Demographic dataset + all data from medical examinations).

    2. National Health and Nutrition Examination Survey (NHANES), Demographic & Laboratory Data, 2005-2006 (The base of the Demographic dataset + all data from medical laboratories).

    3. National Health and Nutrition Examination Survey (NHANES), Demographic & Questionnaire Data, 2005-2006 (The base of the Demographic dataset + all data from questionnaires)

    Not all files from the 2005-2006 wave are included. This is for two reasons, both of which related to the merging variable (SEQN). For a subset of the files, SEQN is not a unique identifier for cases (i.e., some respondents have multiple cases) or SEQN is not in the file at all. The following datasets from this wave of the NHANES are not included in these three files and can be found individually from the "https://www.cdc.gov/nchs/nhanes/index.html" Target="_blank">NHANES website at the CDC:

    Examination: Dietary Interview (Individual Foods -- First Day)
    Examination: Dietary Interview (Individual Foods -- Second Day)
    Examination: Food Frequency Questionnaire -- DietCalc Output
    Examination: Physical Activity Monitor
    Questionnaire: Dietary Supplement Use -- Ingredient Information
    Questionnaire: Dietary Supplement Use -- Supplement Blend
    Questionnaire: Dietary Supplement Use -- Supplement Information
    Questionnaire: Dietary Supplement Use -- Drug Information
    Questionnaire: Dietary Supplement Use -- Participants Use of Supplement
    Questionnaire: Physical Activity Individual Activity File
    Questionnaire: Prescription Medications

    Variable SEQN is included for merging files within the waves. All data files should be sorted by SEQN.

    Additional details of the design and content of each survey are available at the "https://www.cdc.gov/nchs/nhanes/index.html" Target="_blank">NHANES website.

  11. Data from: Survey: Open Science in Higher Education

    • zenodo.org
    • data.niaid.nih.gov
    Updated Aug 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel; Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel (2024). Survey: Open Science in Higher Education [Dataset]. http://doi.org/10.5281/zenodo.400518
    Explore at:
    Dataset updated
    Aug 3, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel; Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Open Science in (Higher) Education – data of the February 2017 survey

    This data set contains:

    • Full raw (anonymised) data set (completed responses) of Open Science in (Higher) Education February 2017 survey. Data are in xlsx and sav format.
    • Survey questionnaires with variables and settings (German original and English translation) in pdf. The English questionnaire was not used in the February 2017 survey, but only serves as translation.
    • Readme file (txt)

    Survey structure

    The survey includes 24 questions and its structure can be separated in five major themes: material used in courses (5), OER awareness, usage and development (6), collaborative tools used in courses (2), assessment and participation options (5), demographics (4). The last two questions include an open text questions about general issues on the topics and singular open education experiences, and a request on forwarding the respondent’s e-mail address for further questionings. The online survey was created with Limesurvey[1]. Several questions include filters, i.e. these questions were only shown if a participants did choose a specific answer beforehand ([n/a] in Excel file, [.] In SPSS).

    Demographic questions

    Demographic questions asked about the current position, the discipline, birth year and gender. The classification of research disciplines was adapted to general disciplines at German higher education institutions. As we wanted to have a broad classification, we summarised several disciplines and came up with the following list, including the option “other” for respondents who do not feel confident with the proposed classification:

    • Natural Sciences
    • Arts and Humanities or Social Sciences
    • Economics
    • Law
    • Medicine
    • Computer Sciences, Engineering, Technics
    • Other

    The current job position classification was also chosen according to common positions in Germany, including positions with a teaching responsibility at higher education institutions. Here, we also included the option “other” for respondents who do not feel confident with the proposed classification:

    • Professor
    • Special education teacher
    • Academic/scientific assistant or research fellow (research and teaching)
    • Academic staff (teaching)
    • Student assistant
    • Other

    We chose to have a free text (numerical) for asking about a respondent’s year of birth because we did not want to pre-classify respondents’ age intervals. It leaves us options to have different analysis on answers and possible correlations to the respondents’ age. Asking about the country was left out as the survey was designed for academics in Germany.

    Remark on OER question

    Data from earlier surveys revealed that academics suffer confusion about the proper definition of OER[2]. Some seem to understand OER as free resources, or only refer to open source software (Allen & Seaman, 2016, p. 11). Allen and Seaman (2016) decided to give a broad explanation of OER, avoiding details to not tempt the participant to claim “aware”. Thus, there is a danger of having a bias when giving an explanation. We decided not to give an explanation, but keep this question simple. We assume that either someone knows about OER or not. If they had not heard of the term before, they do not probably use OER (at least not consciously) or create them.

    Data collection

    The target group of the survey was academics at German institutions of higher education, mainly universities and universities of applied sciences. To reach them we sent the survey to diverse institutional-intern and extern mailing lists and via personal contacts. Included lists were discipline-based lists, lists deriving from higher education and higher education didactic communities as well as lists from open science and OER communities. Additionally, personal e-mails were sent to presidents and contact persons from those communities, and Twitter was used to spread the survey.

    The survey was online from Feb 6th to March 3rd 2017, e-mails were mainly sent at the beginning and around mid-term.

    Data clearance

    We got 360 responses, whereof Limesurvey counted 208 completes and 152 incompletes. Two responses were marked as incomplete, but after checking them turned out to be complete, and we added them to the complete responses dataset. Thus, this data set includes 210 complete responses. From those 150 incomplete responses, 58 respondents did not answer 1st question, 40 respondents discontinued after 1st question. Data shows a constant decline in response answers, we did not detect any striking survey question with a high dropout rate. We deleted incomplete responses and they are not in this data set.

    Due to data privacy reasons, we deleted seven variables automatically assigned by Limesurvey: submitdate, lastpage, startlanguage, startdate, datestamp, ipaddr, refurl. We also deleted answers to question No 24 (email address).

    References

    Allen, E., & Seaman, J. (2016). Opening the Textbook: Educational Resources in U.S. Higher Education, 2015-16.

    First results of the survey are presented in the poster:

    Heck, Tamara, Blümel, Ina, Heller, Lambert, Mazarakis, Athanasios, Peters, Isabella, Scherp, Ansgar, & Weisel, Luzian. (2017). Survey: Open Science in Higher Education. Zenodo. http://doi.org/10.5281/zenodo.400561

    Contact:

    Open Science in (Higher) Education working group, see http://www.leibniz-science20.de/forschung/projekte/laufende-projekte/open-science-in-higher-education/.

    [1] https://www.limesurvey.org

    [2] The survey question about the awareness of OER gave a broad explanation, avoiding details to not tempt the participant to claim “aware”.

  12. Data from: Current Population Survey, March/April 2008 Match Files: Child...

    • icpsr.umich.edu
    Updated Dec 6, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2010). Current Population Survey, March/April 2008 Match Files: Child Support Supplement [Dataset]. http://doi.org/10.3886/ICPSR29646.v1
    Explore at:
    Dataset updated
    Dec 6, 2010
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/29646/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/29646/terms

    Time period covered
    Mar 2007 - Apr 2008
    Area covered
    United States
    Description

    This data collection is comprised of responses from the March and April installments of the 2008 Current Population Survey (CPS). Both the March and April surveys used two sets of questions, the basic CPS and a separate supplement for each month.The CPS, administered monthly, is a labor force survey providing current estimates of the economic status and activities of the population of the United States. Specifically, the CPS provides estimates of total employment (both farm and nonfarm), nonfarm self-employed persons, domestics, and unpaid helpers in nonfarm family enterprises, wage and salaried employees, and estimates of total unemployment.In addition to the basic CPS questions, respondents were asked questions from the March supplement, known as the Annual Social and Economic (ASEC) supplement. The ASEC provides supplemental data on work experience, income, noncash benefits, and migration. Comprehensive work experience information was given on the employment status, occupation, and industry of persons 15 years old and older. Additional data for persons 15 years old and older are available concerning weeks worked and hours per week worked, reason not working full time, total income and income components, and place of residence on March 1, 2007. The March supplement also contains data covering nine noncash income sources: food stamps, school lunch program, employer-provided group health insurance plan, employer-provided pension plan, personal health insurance, Medicaid, Medicare, CHAMPUS or military health care, and energy assistance. Questions covering training and assistance received under welfare reform programs, such as job readiness training, child care services, or job skill training were also asked in the March supplement.The April supplement, sponsored by the Department of Health and Human Services, queried respondents on the economic situation of persons and families for the previous year. Moreover, all household members 15 years of age and older that are a biological parent of children in the household that have an absent parent were asked detailed questions about child support and alimony. Information regarding child support was collected to determine the size and distribution of the population with children affected by divorce or separation, or other relationship status change. Moreover, the data were collected to better understand the characteristics of persons requiring child support, and to help develop and maintain programs designed to assist in obtaining child support. These data highlight alimony and child support arrangements made at the time of separation or divorce, amount of payments actually received, and value and type of any property settlement.The April supplement data were matched to March supplement data for households that were in the sample in both March and April 2008. In March 2008, there were 4,522 household members eligible, of which 1,431 required imputation of child support data. When matching the March 2008 and April 2008 data sets, there were 170 eligible people on the March file that did not match to people on the April file. Child support data for these 170 people were imputed. The remaining 1,261 imputed cases were due to nonresponse to the child support questions. Demographic variables include age, sex, race, Hispanic origin, marital status, veteran status, educational attainment, occupation, and income. Data on employment and income refer to the preceding year, although other demographic data refer to the time at which the survey was administered.

  13. Table I – The questions list for questionnaire – Demographics and basic work...

    • figshare.com
    docx
    Updated Apr 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Citra Kusumasari (2023). Table I – The questions list for questionnaire – Demographics and basic work characteristics of survey respondents [Dataset]. http://doi.org/10.6084/m9.figshare.22673866.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Apr 21, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Citra Kusumasari
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The questions list for questionnaire – Demographics and basic work characteristics of survey respondents

  14. Demographic and Health Survey 2008 - Turkiye

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Jun 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hacettepe University Institute of Population Studies (2022). Demographic and Health Survey 2008 - Turkiye [Dataset]. https://catalog.ihsn.org/catalog/5517
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset authored and provided by
    Hacettepe University Institute of Population Studies
    Time period covered
    2008
    Area covered
    Türkiye
    Description

    Abstract

    The Turkey Demographic and Health Survey (DHS) 2008 has been conducted by the Haccettepe University Institute of Population Studies in collaboration with the Ministry of health General Directorate of Mother and Child Health and Family Planning and Undersecretary of State Planning Organization. The Turkey Demographic and Health Survey 2008 has been financed the scientific and Technological research Council of Turkey (TUBITAK) under the support program for Research Projects of Public Institutions.

    The primary objective of the Turkey DHS 2008 is to provide data on fertility, contraceptive methods, maternal and child health. Detailed information on these issues is obtained through questionnaires, filled by face-to face interviews with ever-married women in reproductive ages (15-49).

    Another important objective of the survey, with aims to contribute to the knowledge on population and health as well, is to maintain the flow of information for the related organizations in Turkey on the Turkish demographic structure and change in the absence of reliable vital registration system and ascertain the continuity of data on demographic and health necessary for sustainable development in the absence of a reliable vital registration system. In terms of survey methodology and content, the Turkey DHS 2008 is comparable with the previous demographic surveys in Turkey (MEASURE DHS+).

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49
    • Children under age of five

    Kind of data

    Sample survey data

    Mode of data collection

    Face-to-face

    Research instrument

    Two main types of questionnaires were used to collect the TDHS-2008 data: a) The Household Questionnaire; b) The Individual Questionnaire for Ever-Married Women of Reproductive Ages.

    The contents of these questionnaires were based on the DHS Model "A" Questionnaire, which was designed for the DHS program for use in countries with high contraceptive prevalence. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the DHS-2008 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2003 questionnaires, national and international population and health agencies were consulted for their comments.

    a) The Household Questionnaire was used to enumerate all usual members of and visitors to the selected households and to collect information relating to the socioeconomic position of the households. In the first part of the Household Questionnaire, basic information was collected on the age, sex, educational attainment, recent migration and residential mobility, employment, marital status, and relationship to the head of household of each person listed as a household member or visitor. The objective of the first part of the Household Questionnaire was to obtain the information needed to identify women who were eligible for the individual interview as well as to provide basic demographic data for Turkish households. The second part of the Household Questionnaire included questions on never married women age 15-49, with the objective of collecting information on basic background characteristics of women in this age group. The third section was used to collect information on the welfare of the elderly people. The final section of the Household Questionnaire was used to collect information on housing characteristics, such as the number of rooms, the flooring material, the source of water, and the type of toilet facilities, and on the household's ownership of a variety of consumer goods. This section also incorporated a module that was only administered in Istanbul metropolitan households, on house ownership, use of municipal facilities and the like, as well as a module that was used to collect information, from one-half of households, on salt iodization. In households where salt was present, test kits were used to test whether the salt used in the household was fortified with potassium iodine or potassium iodate, i.e. whether salt was iodized.

    b) The Individual Questionnaire for ever-married women obtained information on the following subjects: - Background characteristics - Reproduction - Marriage - Knowledge and use of family planning - Maternal care and breastfeeding - Immunization and health - Fertility preferences - Husband's background
    - Women's work and status - Sexually transmitted diseases and AIDS - Maternal and child anthropometry.

    Cleaning operations

    The questionnaires were returned to the Hacettepe Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all the selected households and eligible respondents were returned from the field.

  15. Demographic and Health Survey 2012 - Indonesia

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Jun 2, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Indonesia (BPS) (2017). Demographic and Health Survey 2012 - Indonesia [Dataset]. https://microdata.worldbank.org/index.php/catalog/1637
    Explore at:
    Dataset updated
    Jun 2, 2017
    Dataset provided by
    Statistics Indonesiahttp://www.bps.go.id/
    Authors
    Statistics Indonesia (BPS)
    Time period covered
    2012
    Area covered
    Indonesia
    Description

    Abstract

    The primary objective of the 2012 Indonesia Demographic and Health Survey (IDHS) is to provide policymakers and program managers with national- and provincial-level data on representative samples of all women age 15-49 and currently-married men age 15-54.

    The 2012 IDHS was specifically designed to meet the following objectives: • Provide data on fertility, family planning, maternal and child health, adult mortality (including maternal mortality), and awareness of AIDS/STIs to program managers, policymakers, and researchers to help them evaluate and improve existing programs; • Measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as marital status and patterns, residence, education, breastfeeding habits, and knowledge, use, and availability of contraception; • Evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; • Assess married men’s knowledge of utilization of health services for their family’s health, as well as participation in the health care of their families; • Participate in creating an international database that allows cross-country comparisons that can be used by the program managers, policymakers, and researchers in the areas of family planning, fertility, and health in general

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49
    • Ever married men age 15-54
    • Never married men age 15-24

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Indonesia is divided into 33 provinces. Each province is subdivided into districts (regency in areas mostly rural and municipality in urban areas). Districts are subdivided into subdistricts, and each subdistrict is divided into villages. The entire village is classified as urban or rural.

    The 2012 IDHS sample is aimed at providing reliable estimates of key characteristics for women age 15-49 and currently-married men age 15-54 in Indonesia as a whole, in urban and rural areas, and in each of the 33 provinces included in the survey. To achieve this objective, a total of 1,840 census blocks (CBs)-874 in urban areas and 966 in rural areas-were selected from the list of CBs in the selected primary sampling units formed during the 2010 population census.

    Because the sample was designed to provide reliable indicators for each province, the number of CBs in each province was not allocated in proportion to the population of the province or its urban-rural classification. Therefore, a final weighing adjustment procedure was done to obtain estimates for all domains. A minimum of 43 CBs per province was imposed in the 2012 IDHS design.

    Refer to Appendix B in the final report for details of sample design and implementation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2012 IDHS used four questionnaires: the Household Questionnaire, the Woman’s Questionnaire, the Currently Married Man’s Questionnaire, and the Never-Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49 in the 2012 IDHS, the Woman’s Questionnaire now has questions for never-married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey questionnaire.

    The Household and Woman’s Questionnaires are largely based on standard DHS phase VI questionnaires (March 2011 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were adopted in the IDHS. In addition, the response categories were modified to reflect the local situation.

    The Household Questionnaire was used to list all the usual members and visitors who spent the previous night in the selected households. Basic information collected on each person listed includes age, sex, education, marital status, education, and relationship to the head of the household. Information on characteristics of the housing unit, such as the source of drinking water, type of toilet facilities, construction materials used for the floor, roof, and outer walls of the house, and ownership of various durable goods were also recorded in the Household Questionnaire. These items reflect the household’s socioeconomic status and are used to calculate the household wealth index. The main purpose of the Household Questionnaire was to identify women and men who were eligible for an individual interview.

    The Woman’s Questionnaire was used to collect information from all women age 15-49. These women were asked questions on the following topics: • Background characteristics (marital status, education, media exposure, etc.) • Reproductive history and fertility preferences • Knowledge and use of family planning methods • Antenatal, delivery, and postnatal care • Breastfeeding and infant and young children feeding practices • Childhood mortality • Vaccinations and childhood illnesses • Marriage and sexual activity • Fertility preferences • Woman’s work and husband’s background characteristics • Awareness and behavior regarding HIV-AIDS and other sexually transmitted infections (STIs) • Sibling mortality, including maternal mortality • Other health issues

    Questions asked to never-married women age 15-24 addressed the following: • Additional background characteristics • Knowledge of the human reproduction system • Attitudes toward marriage and children • Role of family, school, the community, and exposure to mass media • Use of tobacco, alcohol, and drugs • Dating and sexual activity

    The Man’s Questionnaire was administered to all currently married men age 15-54 living in every third household in the 2012 IDHS sample. This questionnaire includes much of the same information included in the Woman’s Questionnaire, but is shorter because it did not contain questions on reproductive history or maternal and child health. Instead, men were asked about their knowledge of and participation in health-careseeking practices for their children.

    The questionnaire for never-married men age 15-24 includes the same questions asked to nevermarried women age 15-24.

    Cleaning operations

    All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computeridentified errors. Data processing activities were carried out by a team of 58 data entry operators, 42 data editors, 14 secondary data editors, and 14 data entry supervisors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2012 IDHS.

    Response rate

    The response rates for both the household and individual interviews in the 2012 IDHS are high. A total of 46,024 households were selected in the sample, of which 44,302 were occupied. Of these households, 43,852 were successfully interviewed, yielding a household response rate of 99 percent.

    Refer to Table 1.2 in the final report for more detailed summarized results of the of the 2012 IDHS fieldwork for both the household and individual interviews, by urban-rural residence.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Indonesia Demographic and Health Survey (2012 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 2012 IDHS is a SAS program. This program used the Taylor linearization method

  16. l

    The STAMINA study: questionnaire for survey 3

    • repository.lboro.ac.uk
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emily Rousham; Rebecca Pradeilles; Rossina Pareja; Hilary Creed Kanashiro (2025). The STAMINA study: questionnaire for survey 3 [Dataset]. http://doi.org/10.17028/rd.lboro.21740921.v1
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    Loughborough University
    Authors
    Emily Rousham; Rebecca Pradeilles; Rossina Pareja; Hilary Creed Kanashiro
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The STAMINA study examined the nutritional risks of low-income peri-urban mothers, infants and young children (IYC), and households in Peru during the COVID-19 pandemic. The study was designed to capture information through three, repeated cross-sectional surveys at approximately 6 month intervals over an 18 month period, starting in December 2020. The surveys were carried out by telephone in November-December 2020, July-August 2021 and in February-April 2022. The third survey took place over a longer period to allow for a household visit after the telephone interview.The study areas were Manchay (Lima) and Huánuco district in the Andean highlands (~ 1900m above sea level).In each study area, we purposively selected the principal health centre and one subsidiary health centre. Peri-urban communities under the jurisdiction of these health centres were then selected to participate. Systematic random sampling was employed with quotas for IYC age (6-11, 12-17 and 18-23 months) to recruit a target sample size of 250 mother-infant pairs for each survey.Data collected included: household socio-demographic characteristics; infant and young child feeding practices (IYCF), child and maternal qualitative 24-hour dietary recalls/7 day food frequency questionnaires, household food insecurity experience measured using the validated Food Insecurity Experience Scale (FIES) survey module (Cafiero, Viviani, & Nord, 2018), and maternal mental health.In addition, questions that assessed the impact of COVID-19 on households including changes in employment status, adaptations to finance, sources of financial support, household food insecurity experience as well as access to, and uptake of, well-child clinics and vaccination health services were included.This folder includes the questionnaire for survey 3 in both English and Spanish languages.The corresponding dataset and dictionary of variables for survey 3 are available at 10.17028/rd.lboro.21741014

  17. Gallup Poll Social Series (GPSS)

    • redivis.com
    application/jsonl +7
    Updated Oct 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford University Libraries (2025). Gallup Poll Social Series (GPSS) [Dataset]. http://doi.org/10.57761/2hvp-e040
    Explore at:
    csv, spss, sas, avro, stata, arrow, parquet, application/jsonlAvailable download formats
    Dataset updated
    Oct 28, 2025
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford University Libraries
    Description

    Abstract

    The Gallup Poll Social Series (GPSS) is a set of public opinion surveys designed to monitor U.S. adults' views on numerous social, economic, and political topics. The topics are arranged thematically across 12 surveys. Gallup administers these surveys during the same month every year and includes the survey's core trend questions in the same order each administration. Using this consistent standard allows for unprecedented analysis of changes in trend data that are not susceptible to question order bias and seasonal effects.

    Introduced in 2001, the GPSS is the primary method Gallup uses to update several hundred long-term Gallup trend questions, some dating back to the 1930s. The series also includes many newer questions added to address contemporary issues as they emerge.

    The dataset currently includes responses from up to and including 2025.

    Methodology

    Gallup conducts one GPSS survey per month, with each devoted to a different topic, as follows:

    January: Mood of the Nation

    February: World Affairs

    March: Environment

    April: Economy and Finance

    May: Values and Beliefs

    June: Minority Rights and Relations (discontinued after 2016)

    July: Consumption Habits

    August: Work and Education

    September: Governance

    October: Crime

    November: Health

    December: Lifestyle (conducted 2001-2008)

    The core questions of the surveys differ each month, but several questions assessing the state of the nation are standard on all 12: presidential job approval, congressional job approval, satisfaction with the direction of the U.S., assessment of the U.S. job market, and an open-ended measurement of the nation's "most important problem." Additionally, Gallup includes extensive demographic questions on each survey, allowing for in-depth analysis of trends.

    Interviews are conducted with U.S. adults aged 18 and older living in all 50 states and the District of Columbia using a dual-frame design, which includes both landline and cellphone numbers. Gallup samples landline and cellphone numbers using random-digit-dial methods. Gallup purchases samples for this study from Dynata. Gallup chooses landline respondents at random within each household based on which member had the next birthday. As of June 2023, each sample of national adults includes a minimum quota of 80% cellphone respondents and 20% landline respondents, with additional minimum quotas by time zone within region. Gallup conducts interviews in Spanish for respondents who are primarily Spanish-speaking.

    Gallup interviews a minimum of 1,000 U.S. adults aged 18 and older for each GPSS survey. Samples for the June Minority Rights and Relations survey (conducted periodically between 2001 and 2021) were significantly larger because Gallup oversampled Black and Hispanic adults to allow for reliable estimates among these key subgroups.

    Gallup weights samples to correct for unequal selection probability, nonresponse, and double coverage of landline and cellphone users in the two sampling frames. Gallup also weights its final samples to match the U.S. population according to gender, age, race, Hispanic ethnicity, education, region, population density, and phone status (cellphone only, landline only, both, and cellphone mostly).

    Demographic weighting targets are based on the most recent Current Population Survey figures for the aged 18 and older U.S. population. Phone status targets are based on the most recent National Health Interview Survey. Population density targets are based on the most recent U.S. Census.

    Usage

    The year appended to each table name represents when the data was last updated. For example, January: Mood of the Nation - 2025** **has survey data collected up to and including 2025.

    For more information about what survey questions were asked over time, see the Supporting Files.

    Bulk Data Access

    Data access is required to view this section.

  18. Demographic and Health Survey 1988 - Ghana

    • microdata.statsghana.gov.gh
    • catalog.ihsn.org
    • +1more
    Updated Dec 5, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2013). Demographic and Health Survey 1988 - Ghana [Dataset]. https://microdata.statsghana.gov.gh/index.php/catalog/38
    Explore at:
    Dataset updated
    Dec 5, 2013
    Dataset provided by
    Ghana Statistical Services
    Authors
    Ghana Statistical Service (GSS)
    Time period covered
    1988
    Area covered
    Ghana
    Description

    Abstract

    The Ghana Demographic and Health Survey (GDHS) is a national sample survey designed to provide information on fertility, family planning and health in Ghana. The survey, which was conducted by the Statistical Service of Ghana, is part of a worldwide programme coordinated by the Institute for Resource Development/Macro Systems, Inc., in more than 40 countries in Africa, Asia and Latin America.

    The short-term objectives of the Ghana Demographic and Health Survey (GDHS) are to provide policymakers and those implementing policy with current data on fertility levels, knowledge and use of contraception, reproductive intentions of women 15-49, and health indicators. The information will also serve as the basis for monitoring and evaluating programmes initiated by the government such as the extended programme on immunization, child nutrition, and the family planning programme. The long-term objectives are to enhance the country's ability to undertake surveys of excellent technical quality that seek to measure changes in fertility levels, health status (particularly of children), and the extent of contraceptive knowledge and use. Finally, the results of the survey will form part of an international data base for researchers investigating topics related to the above issues.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    The 150 clusters from which a representative sample of women aged 15-49 was selected from a subsample of the 200 clusters used for the Ghana Living Standards Survey (GLSS). All census Enumeration Areas (EAs) were first stratified by ecological zones into 3 strata, namely Coastal Savanna, Forest, and Northern Savanna. These were further stratified into urban, semi-urban, and rural EAs. The EAs (in some cases, segments of EAs) were then selected with probability proportional to the number of households. All households in the selected EAs were subsequently listed.

    Note: See detailed description of sample design in APPENDIX B of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three different types of questionnaires were used for the GDHS. These were the household, individual and the husband questionnaires. The household and the individual questionnaires were adapted from the Model "B" Questionnaire for the DHS program. The GDHS is one of the few surveys in which special effort was made to collect information from husbands of interviewed women on such topics as fertility preferences, knowledge and use of contraception, and environmental and health related issues.

    All usual members and visitors in the selected households were listed on the household questionnaire. Recorded in the household questionnaire were data on the age and sex of all listed persons in addition to information on fostering for children aged 0-14. Eligible women and eligible husbands were also identified in the household questionnaire.

    The individual questionnaire was used to collect data on eligible women. Eligible women were definedas those aged 15-49 years who spent the night prior to the household interview in the selected household, irrespective of whether they were usual members of the household or not. Items of information collected in this questionnaire are as follows: 1) Respondent's Background 2) Reproductive Behavior 3) Knowledge and Use of Contraception 4) Health and Breastfeeding 5) Marriage 6) Fertility Preferences 7) Husband's Background and Women's Work 8) Weight and Height of Children Aged 3-36 Months.

    In half of the selected clusters a husband's questionnaire was used to collect data on eligible husbands. Eligible husbands were defined as those who were co-resident with their wives and whose wives had been successfully interviewed. Data on the husband's background, contraceptive knowledge and use, as well as fertility preferences were collected.

    All three questionnaires were translated into seven local languages, namely, Twi, Fante, Nzema, Ga, Ewe, Hausa and Dagbani. All the GDHS interviewers were able to conduct interviews in English and at least one local language. The questionnaires were pretested from mid-October to early November 1987. Five teams were used for the pretest fieldwork. These included 19 persons who were trained for 11 days.

    Cleaning operations

    Completed questionnaires were collected weekly from the regions by the field coordinators. Coding, data entry and machine editing went on concurrently at the Ghana Statistical Service in Accra as the fieldwork progressed. Coding and data entry were started in March 1988 and were completed by the end of June 1988. Preliminary tabulations were produced by mid-July 1988, and by August 1988 preliminary results of the survey were published.

    Response rate

    Of the 4966 households selected, 4406 were successfully interviewed. Excluding 9 percent of households that were vacant, absent, etc., the household response rate is 98 percent.

    Out of 4574 eligible women in the household schedule, 4488 were interviewed successfully. The response rate at the individual level is 98 percent. Of the 997 eligible husbands, 943 were successfully interviewed, representing a response rate of 95 percent.

    Sampling error estimates

    The results from sample surveys are affected by two types of errors: non-sampling error and sampling error. The former is due to mistakes in implementing the field activities, such as failing to locate and interview the correct household, errors in asking questions, data entry errors, etc. While numerous steps were taken to minimize this sort of error in the GDHS, non-sampling errors are impossible to avoid entirely, and are difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of women selected in the GDHS is only one of many samples of the same size that could have been drawn from the population using the same design. Each sample would have yielded slightly different results from the sample actually selected. The variability observed among all possible samples constitutes sampling error, which can be estimated from survey results (though not measured exactly).

    Sampling error is usually measured in terms of the "standard error" (SE) of a particular statistic (mean, percentage, etc.), which is the square root of the variance of the statistic across all possible samples of equal size and design. The standard error can be used to calculate confidence intervals within which one can be reasonably sure the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples of identical size and design will fall within a range of plus or minus two times the standard error of that statistic.

    If simple random sampling had been used to select women for the GDHS, it would have been possible to use straightforward formulas for calculating sampling errors. However, the GDHS sample design used three stages and clusters of households, and it was necessary to use more complex formulas. Therefore, the computer package CLUSTERS, developed for the World Fertility Survey, and was used to compute sampling errors.

    Note: See detailed estimate of sampling error calculation in APPENDIX C of the survey report.

  19. p

    Demographic and Health Survey 2009 - Kiribati

    • microdata.pacificdata.org
    Updated May 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health (2019). Demographic and Health Survey 2009 - Kiribati [Dataset]. https://microdata.pacificdata.org/index.php/catalog/225
    Explore at:
    Dataset updated
    May 14, 2019
    Dataset provided by
    Kiribati National Statistics Office
    Ministry of Health
    Time period covered
    2009
    Area covered
    Kiribati
    Description

    Abstract

    The 2009 Kiribati Demographic and Health Survey was the first survey in phase two of Pacific DHS Project with funding support from ADB. The primary objective of this survey was to provide up-to-date information for policy-makers, planners, researchers and programme managers, for use in planning, implementing, monitoring and evaluating population and health programmes within the country. The survey was intended to provide key estimates of Kiribati’s demographic and health situation.

    The main objective of the 2009 Kiribati Demographic and Health Survey (2009 KDHS) is to provide current and reliable data on fertility and family planning behaviour, child mortality, adult and maternal mortality, children’s nutritional status, the use of maternal and child healthcare services, and knowledge of HIV and AIDS. Specific objectives are to:

    • collect data (at the national level) that will allow the calculation of key demographic rates;
    • analyse the direct and indirect factors that determine the level and trends of fertility;
    • measure the level of contraceptive knowledge and practice among women and men by method, urban–rural residence and region;
    • collect high-quality data on family health, including immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5 years, and maternity care indicators (including antenatal visits, assistance at delivery, and postnatal care);
    • collect data on infant and child mortality;
    • obtain data on child feeding practices, including breastfeeding, and collect ‘observation’ information to use in assessing the nutritional status of women and children;
    • collect data on knowledge and attitudes of women and men about sexually transmitted infections (STIs), HIV and AIDS, and evaluate patterns of recent behaviour regarding condom use; and
    • collect data on knowledge and attitudes of women and men about tuberculosis.

    Geographic coverage

    National coverage.

    Analysis unit

    • Household,
    • Individual.

    Universe

    The survey covered all de jure household members (usual residents), all women aged between 15-49 years, and all men aged between 15-49 years.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The primary focus of the 2009 Kiribati Demographic Health Survey (DHS) was to provide estimates of key population and health indicators, including fertility and mortality rates, for the country as a whole, for the urban area and rural areas (separately) - urban is South Tarawa and urban settlement on Kiritimati Island while the rest of Kiribati is defined as rural areas. The survey used the sampling frame provided by the list of census enumeration areas, with population and household information coming from the 2005 Kiribati Population and Housing Census.

    The survey was designed to obtain completed interviews of 2,193 women aged 15-49. In addition, males aged 15-59 in every second household were interviewed. To take non-response into account, 1,480 households countrywide were selected: 640 in the urban area and 840 in rural areas.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three questionnaires were administered during the 2009 Kiribati Demographic Health Survey (KDHS): a Household questionnaire, a Women’s questionnaire and a Men’s questionnaire. These were adapted to reflect population and health issues relevant to Kiribati, and were presented at a series of meetings with various stakeholders, including government ministries and agencies, NGOs and international donors. The final draft of each questionnaire was discussed at a questionnaire design workshop organised by Kiribati National Statistics Office (KNSO) in March 2009 in Tarawa. Survey questionnaires were then translated into the local language (I-Kiribati) and pretested from 7–19 August 2009.

    The Household questionnaire was used to list all the usual members and visitors in selected households, and to identify women and men who were eligible for the individual interview. Some basic information was collected on the characteristics of each person listed, including age, sex, education and relationship to the head of the household. For children under age 18 years, the survival status of their parents was ascertained. The Household questionnaire also collected information on characteristics of each household’s dwelling unit, such as source of drinking water, type of toilet facility, material used for the floor, and ownership of various durable goods.

    The Women’s questionnaire collected information from all women aged 15–49 about: - education, residential history and media exposure; - pregnancy history and childhood mortality; - knowledge and use of family planning methods; - fertility preferences; - antenatal, delivery and postnatal care; - breastfeeding and infant feeding practices; - immunisation and childhood illnesses; - marriage and sexual activity; - their own work and their husband’s background characteristics; and - awareness and behaviour regarding HIV and other STIs.

    The Men’s questionnaire was administered to all men aged 15–49 living in every second household. It collected much of the same information as the women’s questionnaire, but was shorter because it did not contain questions about reproductive history or maternal and child health or nutrition.

    Cleaning operations

    Processing the 2009 Kiribati Demographic Health Survey (KDHS) results began three weeks after the start of fieldwork. Completed questionnaires were returned periodically from the field to the Kiribati National Statistics Office (KNSO) data processing center in South Tarawa, where the data were entered and edited by seven data processing personnel specially trained for this task. Data processing personnel were supervised by KNSO staff. Data entry and editing of questionnaires was completed by 30 March 30 2010. CSPRo was used for data processing.

    Response rate

    In total, 1,477 households were selected for the sample, of which 1,451 were found to be occupied during data collection. Of these existing households, 1,422 were successfully interviewed, giving a household response rate of 98%.

    In households, 2,193 women were identified as being eligible for the individual interview. Interviews were completed with 1,978 women, yielding a response rate of 90%. Of the 1,337 eligible men identified in the selected sub-sample of households, 85% were successfully interviewed. Response rates were higher in rural areas than in the urban area, with the rural–urban difference in response rates being the greatest among eligible men.

    Sampling error estimates

    The sample of respondents selected in the 2009 Kiribati Demographic Health Survey (KDHS) is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling errors are the errors that result from taking a sample of the covered population through a particular sample design. Non-sampling errors are systematic errors that would be present even if the entire population was covered (e.g. response errors, coding and data entry errors, etc.).

    For the entire covered population and for large subgroups, the KDHS sample is generally sufficiently large to provide reliable estimates. For such populations the sampling error is small and less important than the non-sampling error. However, for small subgroups, sampling errors become very important in providing an objective measure of reliability of the data.

    Sampling errors will be displayed for total, urban and rural and each sample domain only. No other panels should be included in the sampling error table. The choice of variables for which sampling error computations will be done depends on the priority given to specific variables. However, it is recommended that sampling errors be calculated for at least the following variables, which was not case with Kiribati given the smallness of the sample compared to other countries in the Pacific.

    Sampling errors are usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2009 KDHS sample was the result of a multistage stratified design, and, consequently, it is necessary to use more complex formulae. The computer software used to calculate sampling errors for the 2009 KDHS is the Integrated Sample Survey Analysis (ISSA) Sampling Error Module. This module uses the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    In addition to the standard error, ISSA

  20. V

    Resident Survey 2024 Demographics

    • data.virginia.gov
    • data.norfolk.gov
    csv, json, rdf, xsl
    Updated Sep 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Norfolk (2024). Resident Survey 2024 Demographics [Dataset]. https://data.virginia.gov/dataset/resident-survey-2024-demographics
    Explore at:
    json, csv, xsl, rdfAvailable download formats
    Dataset updated
    Sep 24, 2024
    Dataset provided by
    data.norfolk.gov
    Authors
    City of Norfolk
    Description

    The City of Norfolk is committed to using data to inform decisions and allocate resources. An important source of data is input from residents about their priorities and satisfaction with the services we provide. Norfolk last conducted a citywide survey of residents in 2022.

    To provide up-to-date information regarding resident priorities and satisfaction, Norfolk contracted with ETC Institute to conduct a survey of residents. This survey was conducted in May and June 2024; surveys were sent via the U.S. Postal Service, and respondents were given the choice of responding by mail or online. This survey represents a random and statistically valid sample of residents from across the city, including each Ward. ETC Institute monitored responses and followed up to ensure all sections of the city were represented. Additionally, an opportunity was provided for residents not included in the random sample to take the survey and express their views. This dataset includes all random sample survey data including demographic information; it excludes free-form comments to protect privacy. It is grouped by Question Category, Question, Response, Demographic Question, and Demographic Question Response. This dataset will be updated every two years.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman (2022). Demographic data collection in STEM organizations [Dataset]. http://doi.org/10.25338/B8N63K

Demographic data collection in STEM organizations

Explore at:
zipAvailable download formats
Dataset updated
Mar 9, 2022
Dataset provided by
Chapman University
University of California, Davis
University of California, Berkeley
University of Montana
Harvard University
Authors
Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman
License

https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

Description

Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)

Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)

Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.

Search
Clear search
Close search
Google apps
Main menu