83 datasets found
  1. G

    Human development by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jun 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2025). Human development by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/human_development/
    Explore at:
    excel, csv, xmlAvailable download formats
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1980 - Dec 31, 2023
    Area covered
    World, World
    Description

    The average for 2023 based on 184 countries was 0.744 points. The highest value was in Iceland: 0.972 points and the lowest value was in South Africa: 0.388 points. The indicator is available from 1980 to 2023. Below is a chart for all countries where data are available.

  2. 12 - The human development index - Esri GeoInquiries™ collection for Human...

    • hub.arcgis.com
    Updated Dec 8, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2015). 12 - The human development index - Esri GeoInquiries™ collection for Human Geography [Dataset]. https://hub.arcgis.com/documents/18298df948a549e2a4e61a5be990a22e
    Explore at:
    Dataset updated
    Dec 8, 2015
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Description

    Students will explore the spatial patterns of the Human Development Index (HDI) to identifyregional patterns and causal factors in the data. The activity uses a web-based map and is tied to the AP Human Geography benchmarks. Learning outcomes: Students will be able to analyze development statistics and see how development correlates with other APHG topics (for example, fertility and mortality).Find more advanced human geography geoinquiries and explore all geoinquiries at http://www.esri.com/geoinquiries

  3. n

    12 - The human development index - Esri GeoInquiries collection for Human...

    • library.ncge.org
    Updated Jun 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). 12 - The human development index - Esri GeoInquiries collection for Human Geography [Dataset]. https://library.ncge.org/documents/fe09e40486c44911a7a6dcec8fd6f88f
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset authored and provided by
    NCGE
    Description

    Students will explore the spatial patterns of the Human Development Index (HDI) to identifyregional patterns and causal factors in the data. The activity uses a web-based map and is tied to the AP Human Geography benchmarks. Learning outcomes: Students will be able to analyze development statistics and see how development correlates with other APHG topics (for example, fertility and mortality).Find more advanced human geography geoinquiries and explore all geoinquiries at http://www.esri.com/geoinquiries

  4. Leading 20 smart cities worldwide 2023, by HDI score

    • statista.com
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Leading 20 smart cities worldwide 2023, by HDI score [Dataset]. https://www.statista.com/statistics/1410416/hdi-smart-city-index-worldwide/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    In 2023 Zurich was both the leading smart city based on the IMD smart city index as well as the city with the highest human development index score, making it one of the premier places on earth to live in. Notable exceptions to the HDI to IMD index score were Beijing, Dubai, and Abu Dhabi. Beijing is a notable outlier because although it ranked 12th on the digital smart cities ranking it was nearly 90 points lower than Zurich on the HDI score. This is compared to Munich, Germany, which was the 20th digital city but had a HDI score of 950.

    Smart tech is watching.

    CCTV cameras powered by artificial intelligence have become a significant growing market in the modern city. These are predominantly residential, with half the market catering to residential applications of CCTV cameras. However, commercial and business-related CCTV cameras have also seen significant growth, with the market reaching over 800 million U.S. dollars in 2023.

    Digital cities need data and data needs infrastructure.

    The leading issue with AI infrastructure is data management. AI is a strong influence on how digital cities work and requires a considerable amount of infrastructure to be effective. Storage of AI software is a minor concern, accounting for less than ten percent of challenges globally in 2023.

  5. f

    Early Childhood Developmental Status in Low- and Middle-Income Countries:...

    • plos.figshare.com
    jpeg
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dana Charles McCoy; Evan D. Peet; Majid Ezzati; Goodarz Danaei; Maureen M. Black; Christopher R. Sudfeld; Wafaie Fawzi; Günther Fink (2023). Early Childhood Developmental Status in Low- and Middle-Income Countries: National, Regional, and Global Prevalence Estimates Using Predictive Modeling [Dataset]. http://doi.org/10.1371/journal.pmed.1002034
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS Medicine
    Authors
    Dana Charles McCoy; Evan D. Peet; Majid Ezzati; Goodarz Danaei; Maureen M. Black; Christopher R. Sudfeld; Wafaie Fawzi; Günther Fink
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe development of cognitive and socioemotional skills early in life influences later health and well-being. Existing estimates of unmet developmental potential in low- and middle-income countries (LMICs) are based on either measures of physical growth or proxy measures such as poverty. In this paper we aim to directly estimate the number of children in LMICs who would be reported by their caregivers to show low cognitive and/or socioemotional development.Methods and FindingsThe present paper uses Early Childhood Development Index (ECDI) data collected between 2005 and 2015 from 99,222 3- and 4-y-old children living in 35 LMICs as part of the Multiple Indicator Cluster Survey (MICS) and Demographic and Health Surveys (DHS) programs. First, we estimate the prevalence of low cognitive and/or socioemotional ECDI scores within our MICS/DHS sample. Next, we test a series of ordinary least squares regression models predicting low ECDI scores across our MICS/DHS sample countries based on country-level data from the Human Development Index (HDI) and the Nutrition Impact Model Study. We use cross-validation to select the model with the best predictive validity. We then apply this model to all LMICs to generate country-level estimates of the prevalence of low ECDI scores globally, as well as confidence intervals around these estimates.In the pooled MICS and DHS sample, 14.6% of children had low ECDI scores in the cognitive domain, 26.2% had low socioemotional scores, and 36.8% performed poorly in either or both domains. Country-level prevalence of low cognitive and/or socioemotional scores on the ECDI was best represented by a model using the HDI as a predictor. Applying this model to all LMICs, we estimate that 80.8 million children ages 3 and 4 y (95% CI 48.1 million, 113.6 million) in LMICs experienced low cognitive and/or socioemotional development in 2010, with the largest number of affected children in sub-Saharan Africa (29.4.1 million; 43.8% of children ages 3 and 4 y), followed by South Asia (27.7 million; 37.7%) and the East Asia and Pacific region (15.1 million; 25.9%). Positive associations were found between low development scores and stunting, poverty, male sex, rural residence, and lack of cognitive stimulation. Additional research using more detailed developmental assessments across a larger number of LMICs is needed to address the limitations of the present study.ConclusionsThe number of children globally failing to reach their developmental potential remains large. Additional research is needed to identify the specific causes of poor developmental outcomes in diverse settings, as well as potential context-specific interventions that might promote children’s early cognitive and socioemotional well-being.

  6. Estimated number of 3- and 4-y-olds with low development according to the...

    • plos.figshare.com
    • figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dana Charles McCoy; Evan D. Peet; Majid Ezzati; Goodarz Danaei; Maureen M. Black; Christopher R. Sudfeld; Wafaie Fawzi; Günther Fink (2023). Estimated number of 3- and 4-y-olds with low development according to the ECDI by region. [Dataset]. http://doi.org/10.1371/journal.pmed.1002034.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Dana Charles McCoy; Evan D. Peet; Majid Ezzati; Goodarz Danaei; Maureen M. Black; Christopher R. Sudfeld; Wafaie Fawzi; Günther Fink
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Estimated number of 3- and 4-y-olds with low development according to the ECDI by region.

  7. a

    The human development index (Human Geography GeoInquiry)

    • geoinquiries-education.hub.arcgis.com
    Updated Jun 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2021). The human development index (Human Geography GeoInquiry) [Dataset]. https://geoinquiries-education.hub.arcgis.com/documents/d53c59fe89f441b7b7b4a604570809cb
    Explore at:
    Dataset updated
    Jun 1, 2021
    Dataset authored and provided by
    Esri GIS Education
    Description

    This activity will no longer be maintained after June 16, 2025. Current lessons are available in the K-12 Classroom Activities Gallery.

    This activity uses Map Viewer and is designed for intermediate users. We recommend MapMaker when getting started with maps in the classroom - see this StoryMap for the same activity in MapMaker.ResourcesMapTeacher guideStudent worksheetVocabulary and puzzlesSelf-check questionsGet startedOpen the map.Use the teacher guide to explore the map with your class or have students work through it on their own with the worksheet.New to GeoInquiriesTM? See Getting to Know GeoInquiries.AP skills & objectives (CED)Skill 2.E: Explain the degree to which a geographic concept, process, model or theory effectively explains geographic effects in different contexts and regions of the world.SPS-7.C: Describe social and economic measures of development.SPS-7.D: Explain how and to what extent changes in economic development have contributed to gender parity.Learning outcomesStudents will analyze and use development statistics to identify and explain correlations between development and other APHG topics (for example, fertility and mortality).More activitiesAll Human Geography GeoInquiriesAll GeoInquiries

  8. f

    Early Childhood Development Index items.

    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dana Charles McCoy; Evan D. Peet; Majid Ezzati; Goodarz Danaei; Maureen M. Black; Christopher R. Sudfeld; Wafaie Fawzi; Günther Fink (2023). Early Childhood Development Index items. [Dataset]. http://doi.org/10.1371/journal.pmed.1002034.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS Medicine
    Authors
    Dana Charles McCoy; Evan D. Peet; Majid Ezzati; Goodarz Danaei; Maureen M. Black; Christopher R. Sudfeld; Wafaie Fawzi; Günther Fink
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Early Childhood Development Index items.

  9. w

    Human Resource Development Survey 1993 - Tanzania

    • microdata.worldbank.org
    • dev.ihsn.org
    • +2more
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Dar es Salaam (2020). Human Resource Development Survey 1993 - Tanzania [Dataset]. https://microdata.worldbank.org/index.php/catalog/403
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset authored and provided by
    University of Dar es Salaam
    Time period covered
    1993 - 1994
    Area covered
    Tanzania
    Description

    Abstract

    The objectives of the survey were to provide information regarding the following: a. Household use of, and expenditure patterns for, social services; b. Reasons for low levels of household investment in education and health services for children; c. The distribution of the benefits of public spending for social services and how to improve targeting; d. Households' evaluation of the social services available to them; e. The potential for demand-side interventions to increase human capital investment directly (especially for girls and the poor); and f. The feasibility of repeated national monitoring surveys to assess the impact of future Bank and government projects in the social sectors, and to increase Tanzania's capacity to perform household survey work.

    Geographic coverage

    National coverage

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample size is 5,184 households

    The HRDS is national in scope and uses all the 222 clusters of the National Master Sample (NMS) maintained by the Bureau of Statistics as its sampling frame.4 Two NMS clusters were not surveyed because of weather conditions. For example, Nyamburi village in the Mara region was inaccessible. Heavy rains had washed away a bridge 8 kms (14 miles) from the village. All household surveys conducted by the Bureau of Statistics (e.g. Agricultural Sample Survey since 1986/87, Labor Force Survey in 1990/91) have used the framework of the NMS. This permits obtaining estimates at the national level and by area: rural, Dar es Salaam (DSM), and other urban towns. The current NMS covers 222 clusters: 100 rural villages representing the rural areas, and 122 Enumeration Areas (EAs) representing the urban areas. Fifty-two EAs are from the capital city, itself, 40 EAs are from the nine municipalities (Arusha, Dodoma, Moshi, Tanga, Morogoro, Iringa, Mbeya, Tabora, and Mwanza), and 10 EAs are from the remaining regional headquarters.

    Selection of households and non-response.

    Household selection was done in the field. In each cluster the team supervisor would first obtain the list of ten-cell leaders from the local authorities, and then, from each ten cell-leader, the list of households belonging to his/her cell. Each household was assigned a unique number, and then, using a table of random numbers, randomly selected. In each cluster, a list of about 30 households was then obtained, the last households in the list being alternates. With the collaboration of local authorities, the field workers were able to have an almost 100 percent reponse rate, except for the cases in which no member of the household was present for intervieing, and returning to the household was not feasible. Refusals to cooperate were rare. In those cases--absent households or refusals--, new households were drawn from the list of alternates.

    The survey covered a total of 4,953 households in the 20 regions of Mainland Tanzania: 2,135 rural and 2,818 urban (see Table 1). In a second stage, the survey was extended to Zanzibar, where 230 households, in 24 clusters, were interviewed.

    Region / Rural / Urban / Total Dodoma / 100 / 80 / 180 Arusha / 118 / 121 / 239 Kilimanjaro / 124 / 154 / 278 Tanga / 132 / 167 / 299 Morogoro / 88 / 120 / 208 Coast / 79 / 88 / 167 Dar es Salaam / 0 / 1127 / 1127 Lindi / 84 / 50 / 134 Mtwara / 114 / 44 / 158 Ruvuma / 69 / 49 / 118 Iringa / 124 / 128 / 252 Mbeya / 174 / 153 / 327 Singida / 82 / 41 / 123 Tabora / 99 / 72 / 171 Rukwa / 59 / 56 / 115 Kigoma / 83 / 35 / 118 Shinyanga / 153 / 54 / 207 Kagera / 193 / 24 / 217 Mwanza / 163 / 192 / 355 Mara / 97 / 63 / 160 Mainland Tanzania / 2135 / 2818 / 4953 Zanzibar / 127 / 104 / 231

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Development of Survey Instrument.

    The first draft of the household survey was developed in English in July, 1993. Training of enumerators, based on this draft, began on August 2, 1993. The month of August was devoted to training the enumerators and pre-testing the questionnaire. The first pre-test of the questionnaire took place in mid-August. The household questionnaire was almost completely precoded to eliminate coding errors and time delays. A category labeled "other: specify" was added to several questions. For those questions for which answers were not mutually exclusive, we precoded them with letters, rather than numbers, to allow for unambiguously coding of multiple answers. To minimize nonsampling errors, the questionnaire was in a form that reduced to a minimum the number of decisions required of interviewers while in the field. In anticipation of pages becoming detached from the questionnaire, every page contained a space for the household number and the last digit of the cluster code. Despite the fact that questions were written exactly as they were supposed to be asked by the interviewer, interviewers were granted some flexibility to give the interview greater semblance to a conversation, rather than an inquisition.

    Pre-Test of Questionnaire.

    The "pre-pre-test" of the questionnaire (August 16, 1993) was done only to discern whether the questions were understood, how long the administration of the survey required, whether all responses had been anticipated, which sections needed to be stressed during the training, etc. In this pre-pre-test, each questionnaire required an average of 4 hours to complete, far longer than the planned 1.5 hour maximum. The survey was consequently shortened and streamlined.

    The true pre-test was conducted in two different types of clusters: Ubungo ward in DSM (urban) and Kibaha in the Coast Region (rural) over a period of two days. We chose these clusters because they are representative of two distinct groups, so a broader spectrum of answers and problems with the instrument could be anticipated. In the pre-test each questionnaire required an average of 2.5 hours. After a couple weeks of interviewing, the enumerators became more familiar with the instrument, resulting in their spending an average of 1.5 to 2 hours per questionnaire.

    During the pre-test, each supervisor was asked to comment on each interview. The supervisor was asked to pay special attention to questions that seemed to make the respondent uncomfortable, that the respondent had difficulty understanding, or that the respondent seemed to dislike. The supervisor also evaluated which sections seemed to go slowly, had the most difficult questions, or provided insufficient opportunity for a complete response.

    Revision of questionnaire.

    Given the results of the two pre-tests, several areas for improvement in the questionnaire were identified. Perhaps most importantly, the willingness-to-pay amounts were adjusted. The sample distributions of the maximum willingness-to-pay questions were analyzed, and, based on that analysis, we decided to change some of the values. For example, in the child spacing question, the "pay Tsh 1,000" responses unexpectedly accounted for a large share of the bids. Thus, we provided the option of paying more by introducing "pay Tsh 50,000" and "pay Tsh 25,000" as answer choices. For the other contigent valuation sections--health and education--the first pre-test determined that there was also a large lumping of responses at the high end of the scale. We adjusted the ranges accordingly, although there remains some lumping at the high end in the final data.

    We also changed the order of the sections. Based on the pre-test and judgment of the field workers, we decided to first ask the questions in the individual section, then the contigent valuation questions, then the household questions. Because the respondents enjoyed the contigent valuation questions so much, this decision helped increase interest in the questionnaire and re-energized the respondent before proceeding with the household questions--the last part of the questionnaire. The final survey instrument, incorporating all of the changes dictated by the pre-tests and other expert advice, was completed on September 12, 1993.

    Translation.

    Translation of the survey instrument was a joint effort of the enumerators and supervisors. Given the specific characteristics of the Kswahili language, this was a much better approach than asking one translator to translate from English to Kswahili, and another one to translate from Kswahili to English. The "group" translation, involving those who would ask the questions, was intended to avoid different interpretations of the same question and achieve uniformity. In this way the enumerators were able to better convey the message/objective of each question.

    The majority of the interviews were conducted in swahili. In very few cases, because no one in the selected household could speak swahili, the need arose to use interpreters.

    Our initial plan called for the field work to start no later than August 29. However, unforeseen circumstances, including both financial and logistical problems, delayed the first field trip. Both the money and the materials were available by September 6, and five of the six teams left for Tanga region on that day. Initially we had planned to have the sixth team based full-time in Dar es Salaam; however, tighter time constraints imposed by the above and subsequent delays eventually made it necessary to send the sixth team into the field as well, as detailed below.

    Description of questionnaires

    The main objective of the survey was to obtain data on the use of, and spending on, the social sectors. The primary emphasis was on education and health--the areas in which the major gaps in availability of data were identified. The survey was divided into five major components, each of which was further subdivided, as described below:

    I. Individual Questionnaire A. Household Roster; B. Information on

  10. Global Development Indicators (2000-2020)

    • kaggle.com
    Updated May 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Matta (2025). Global Development Indicators (2000-2020) [Dataset]. https://www.kaggle.com/datasets/michaelmatta0/global-development-indicators-2000-2020/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 11, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Michael Matta
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Global Economic, Environmental, Health, and Social indicators Ready for Analysis

    📝 Description

    This comprehensive dataset merges global economic, environmental, technological, and human development indicators from 2000 to 2020. Sourced and transformed from multiple public datasets via Google BigQuery, it is designed for advanced exploratory data analysis, machine learning, policy modeling, and sustainability research.

    Curated by combining and transforming data from the Google BigQuery Public Data program, this dataset offers a harmonized view of global development across more than 40 key indicators spanning over two decades (2000–2020). It supports research across multiple domains such as:

    • Economic Growth
    • Climate Sustainability
    • Digital Transformation
    • Public Health
    • Human Development
    • Resilience and Governance

    📅 Temporal Coverage

    • Years: 2000–2020
    • Includes calculated features:

      • years_since_2000
      • years_since_century
      • is_pandemic_period (binary indicator for pandemic periods)

    🌍 Geographic Scope

    • Countries: Global (identified by ISO country codes)
    • Regions and Income Groups included for aggregated analysis

    📊 Key Feature Groups

    • Economic Indicators:

      • GDP (USD), GDP per capita
      • FDI, inflation, unemployment, economic growth index
    • Environmental Indicators:

      • CO₂ emissions, renewable energy use
      • Forest area, green transition score, CO₂ intensity
    • Technology & Connectivity:

      • Internet usage, mobile subscriptions
      • Digital readiness score, digital connectivity index
    • Health & Education:

      • Life expectancy, child mortality
      • School enrollment, healthcare capacity, health development ratio
    • Governance & Resilience:

      • Governance quality, global resilience
      • Human development composite, ecological preservation

    🔍 Use Cases

    • Trend analysis over time
    • Country-level comparisons
    • Modeling development outcomes
    • Predictive analytics on sustainability or human development
    • Correlation and clustering across multiple indicators

    ⚠️ Note on Missing Region and Income Group Data

    Approximately 18% of the entries in the region and income_group columns are null. This is primarily due to the inclusion of aggregate regions (e.g., Arab World, East Asia & Pacific, Africa Eastern and Southern) and non-country classifications (e.g., Early-demographic dividend, Central Europe and the Baltics). These entries represent groups of countries with diverse income levels and geographic characteristics, making it inappropriate or misleading to assign a single region or income classification. In some cases, the data source may have intentionally left these fields blank to avoid oversimplification or due to a lack of standardized classification.

    📋 Column Descriptions

    • year: Year of the recorded data, representing a time series for each country.
    • country_code: Unique code assigned to each country (ISO-3166 standard).
    • country_name: Name of the country corresponding to the data.
    • region: Geographical region of the country (e.g., Africa, Asia, Europe).
    • income_group: Income classification based on Gross National Income (GNI) per capita (low, lower-middle, upper-middle, high income).
    • currency_unit: Currency used in the country (e.g., USD, EUR).
    • gdp_usd: Gross Domestic Product (GDP) in USD (millions or billions).
    • population: Total population of the country for the given year.
    • gdp_per_capita: GDP divided by population (economic output per person).
    • inflation_rate: Annual rate of inflation (price level rise).
    • unemployment_rate: Percentage of the labor force unemployed but seeking employment.
    • fdi_pct_gdp: Foreign Direct Investment (FDI) as a percentage of GDP.
    • co2_emissions_kt: Total CO₂ emissions in kilotons (kt).
    • energy_use_per_capita: Energy consumption per person (kWh).
    • renewable_energy_pct: Percentage of energy consumption from renewable sources.
    • forest_area_pct: Percentage of total land area covered by forests.
    • electricity_access_pct: Percentage of the population with access to electricity.
    • life_expectancy: Average life expectancy at birth.
    • child_mortality: Deaths of children under 5 per 1,000 live births.
    • school_enrollment_secondary: Percentage of population enrolled in secondary education.
    • health_expenditure_pct_gdp: Percentage of GDP spent on healthcare.
    • hospital_beds_per_1000: Hospital beds per 1,000 people.
    • physicians_per_1000: Physicians (doctors) per 1,000 people.
    • internet_usage_pct: Percentage of population with internet access.
    • **mobile_subscriptions_per_10...
  11. D

    Effect of various dimensions of economic freedom on human development based...

    • dataverse.nl
    • test.dataverse.nl
    Updated Jan 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johan Graafland; Harmen Verbruggen; Bjorn Lous; Johan Graafland; Harmen Verbruggen; Bjorn Lous (2022). Effect of various dimensions of economic freedom on human development based on data of UN, Fraser Institute, World Bank, OECD, and Freedom House, 1990-2018 [Dataset]. http://doi.org/10.34894/C7C5OU
    Explore at:
    application/x-stata-14(1847631), pdf(73734), pdf(89730)Available download formats
    Dataset updated
    Jan 18, 2022
    Dataset provided by
    DataverseNL
    Authors
    Johan Graafland; Harmen Verbruggen; Bjorn Lous; Johan Graafland; Harmen Verbruggen; Bjorn Lous
    License

    https://dataverse.nl/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.34894/C7C5OUhttps://dataverse.nl/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.34894/C7C5OU

    Time period covered
    1990 - 2018
    Area covered
    United Nations
    Description

    This study explores the relationship between human development and market institutions and tests the performance of three alternative economic perspectives that each assign a different role to governments. Based on a sample of 34 OECD countries plus Russia across a time frame spanning 1990 to 2018, the results demonstrate that economic freedom and small size of government do not significantly affect human development as measured by the Human Development Index. Hence, we find no support for the free-market ideal. Conversely, it is found that human development is positively related to governmental interventions that aim to reduce externalities (public expenditure on education and environmental regulation). These results support the perfect-market perspective. With respect to the welfare-state perspective, the findings are mixed. On the one hand, we found that (some) labor market regulations (particularly hiring and firing regulations, hours regulations and mandated cost of worker dismissal) have a negative impact upon human development. On the other hand, human development is shown to be positively affected by governmental intervention seeking to reduce gender stratification in the labor market.

  12. f

    Linear regression (multivariable) of total cases per million and predictor...

    • plos.figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iddrisu Amadu; Bright Opoku Ahinkorah; Abdul-Rahaman Afitiri; Abdul-Aziz Seidu; Edward Kwabena Ameyaw; John Elvis Hagan Jr; Eric Duku; Simon Appah Aram (2023). Linear regression (multivariable) of total cases per million and predictor variables. [Dataset]. http://doi.org/10.1371/journal.pone.0247274.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Iddrisu Amadu; Bright Opoku Ahinkorah; Abdul-Rahaman Afitiri; Abdul-Aziz Seidu; Edward Kwabena Ameyaw; John Elvis Hagan Jr; Eric Duku; Simon Appah Aram
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Linear regression (multivariable) of total cases per million and predictor variables.

  13. The Human Mobility Index Project - Data

    • zenodo.org
    tiff
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ömer Özak; Ömer Özak (2024). The Human Mobility Index Project - Data [Dataset]. http://doi.org/10.5281/zenodo.14285746
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ömer Özak; Ömer Özak
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    The Human Mobility Index

    The distance among villages, cities, regions, countries, and other socio-economic and political entities has long been considered important in explaining their comparative political and economic development. While theories abound about how geographical isolation and distances affect trade, warfare, epidemics, and colonization among many others, there is a lack of systematic historical data on communication and transportation costs, as well as geographical distances. This has led many scholars to use great circle distances as a proxy. This measure, however, is rather crude as it does not capture the large variation in the geographical and technological conditions underlying similar great circle distances in different periods.

    In Özak (2018) I rectify this deficiency by introducing a novel set of measures of historical mobility: "The Human Mobility Index (HMI)" which estimates the potential minimum travel time across the globe (measured in hours) accounting for human biological constraints, as well as geographical and technological factors that determined travel time before the widespread use of steam power. In particular, the HMI indices provide a distinct measure of human mobility potential in different eras:

    1. Human Mobility Index (HMI): This index measures mobility on land without seafaring technology. It shows mobility potential on land before the widespread use of steam power.
    2. Human Mobility Index with Seafaring: HMI expanded to allow mobility on a select set of seas for which historical data was available. It shows potential mobility on land and seas before the introduction of ocean-faring ships.
    3. Human Mobility Index with Ocean: HMI expanded to allow mobility on all seas based on CLIWOC (interpolated). It shows potential mobility on land and seas after the introduction of ocean-faring ships but before the widespread use of steamships.

    Based on these cost surfaces, researchers can find the minimum travel times between locations or construct more sophisticated statistics based on these. For example, Ashraf, Galor, and Özak (2010) construct measures of pre-historic geographical isolation to study the effect of isolation on development. Similarly, Özak (2010), Depetris-Chauvin and Özak (2016, 2018), and Michalopoulus and Özak (2019) construct potential trade and information flow networks among countries, ethnic groups, cities, and artificial geographical units, to study the origins of the division of labor, and the effect of technological change on isolation and development. Likewise, Depetris-Chauvin and Özak (2019) use these measures to construct artificial states based on Voronoi partitions.

    This strategy overcomes the potential mismeasurement of distances generated by using geodesic distances (Özak 2010), for a period when travel time was the most important determinant of transportation costs. Additionally, it removes the potential concern that travel time to the frontier reflects a country's stage of development, mitigating further possible endogeneity concerns. The research validates these measures by (i) analyzing their association with actual historical travel time; (ii) examining their explanatory power for the location of historical trade routes in the Old World; and (iii) analyzing their association with genetic and cultural distances.

    The project's main page is https://human-mobility-index.github.io/. This repository holds the data files, which researchers can download and use with GIS software. It will also provide the data for the Python package to compute distances based on them.

  14. Countries with the largest gross domestic product (GDP) per capita 2025

    • ai-chatbox.pro
    • statista.com
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron O'Neill (2025). Countries with the largest gross domestic product (GDP) per capita 2025 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F772%2Fgdp%2F%23XgboDwS6a1rKoGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Feb 10, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Aaron O'Neill
    Description

    In 2025, Luxembourg was the country with the highest gross domestic product per capita in the world. Of the 20 listed countries, 13 are in Europe and five are in Asia, alongside the U.S. and Australia. There are no African or Latin American countries among the top 20. Correlation with high living standards While GDP is a useful indicator for measuring the size or strength of an economy, GDP per capita is much more reflective of living standards. For example, when compared to life expectancy or indices such as the Human Development Index or the World Happiness Report, there is a strong overlap - 14 of the 20 countries on this list are also ranked among the 20 happiest countries in 2024, and all 20 have "very high" HDIs. Misleading metrics? GDP per capita figures, however, can be misleading, and to paint a fuller picture of a country's living standards then one must look at multiple metrics. GDP per capita figures can be skewed by inequalities in wealth distribution, and in countries such as those in the Middle East, a relatively large share of the population lives in poverty while a smaller number live affluent lifestyles.

  15. f

    Linear regression (multivariable) of total recoveries per million and...

    • plos.figshare.com
    xls
    Updated Jun 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iddrisu Amadu; Bright Opoku Ahinkorah; Abdul-Rahaman Afitiri; Abdul-Aziz Seidu; Edward Kwabena Ameyaw; John Elvis Hagan Jr; Eric Duku; Simon Appah Aram (2023). Linear regression (multivariable) of total recoveries per million and predictor variables. [Dataset]. http://doi.org/10.1371/journal.pone.0247274.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 12, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Iddrisu Amadu; Bright Opoku Ahinkorah; Abdul-Rahaman Afitiri; Abdul-Aziz Seidu; Edward Kwabena Ameyaw; John Elvis Hagan Jr; Eric Duku; Simon Appah Aram
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Linear regression (multivariable) of total recoveries per million and predictor variables.

  16. H

    European Panel Data: Quality of Life, Governance, Economy, Education, and...

    • dataverse.harvard.edu
    Updated Mar 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jalal Hafeth Ahmad Abu-alrop (2025). European Panel Data: Quality of Life, Governance, Economy, Education, and Health (2012–2017) [Dataset]. http://doi.org/10.7910/DVN/MTTFJR
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 28, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Jalal Hafeth Ahmad Abu-alrop
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Data Description: The sample panel data consists of 181 observations, covering the period from 2012 to 2017, with annual data for 32 European countries. The countries were selected based on data availability, resulting in a varying number of countries for each year: 30 countries in 2012, 29 countries in 2013, 31 countries in 2014, 32 countries in 2015, 30 countries in 2016, and 29 countries in 2017. The dataset was compiled from four reliable sources: - Our World in Data - World Data - The Legatum Institute - Eurostat The countries included in this study are: - Austria - Belgium - Bulgaria - Croatia - Cyprus - Czechia - Denmark - Estonia - Finland - France - Germany - Greece - Hungary - Ireland - Italy - Latvia - Lithuania - Luxembourg - Malta - Netherlands - North Macedonia - Norway - Poland - Portugal - Romania - Serbia - Slovakia - Slovenia - Spain - Sweden - Switzerland - Turkey Variables: The Legatum Prosperity Index, Human Development Index, Life Expectancy at Birth, Gross domestic product at market prices, euro per capita, Median income Euro, equal rights, elect free, fair individual liberities and equality before the law, freedom of expression, Judicial restrictions on executive power, Accountability Transparency, Gross domestic product at market prices euro per capita, Median income Euro, Employment and activity Percentage of total population, Population Growth Rate, Research and Development Expenditure Percentage of GDP, Mortality rate, depression rate, Smoking mortality rate, Governance Quality (GOVQ), Economy Quality (ECOQ), Education Quality (EDUQ), Health Quality (HEAQ)

  17. i

    Multiple Indicator Cluster Survey 2005-2006 - Jamaica

    • dev.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistical Institute (2019). Multiple Indicator Cluster Survey 2005-2006 - Jamaica [Dataset]. https://dev.ihsn.org/nada/catalog/72537
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Statistical Institute
    Time period covered
    2005 - 2006
    Area covered
    Jamaica
    Description

    Abstract

    The Multiple Indicator Cluster Survey (MICS) is a household survey programme developed by UNICEF to assist countries in filling data gaps for monitoring human development in general and the situation of children and women in particular. MICS is capable of producing statistically sound, internationally comparable estimates of social indicators. The current round of MICS is focused on providing a monitoring tool for the Millennium Development Goals (MDGs), the World Fit for Children (WFFC), as well as for other major international commitments.

    Survey Objectives The 2005 Jamaica Multiple Indicator Cluster Survey has as its primary objectives: - To provide up-to-date information for assessing the situation of children and women in Jamaica. - To furnish data needed for monitoring progress toward goals established by the Millennium Development Goals, the goals of A World Fit For Children (WFFC), and other internationally agreed upon goals, as a basis for future action; - To contribute to the improvement of data and monitoring systems in Jamaica and to strengthen technical expertise in the design, implementation, and analysis of such systems.

    Survey Content MICS questionnaires are designed in a modular fashion that can be easily customized to the needs of a country. They consist of a household questionnaire, a questionnaire for women aged 15-49 and a questionnaire for children under the age of five (to be administered to the mother or caretaker). Other than a set of core modules, countries can select which modules they want to include in each questionnaire.

    Survey Implementation The survey was carried out by STATIN with the support and assistance of UNICEF and other partners. Technical assistance and training for the surveys is provided through a series of regional workshops, covering questionnaire content, sampling and survey implementation; data processing; data quality and data analysis; report writing and dissemination.

    Geographic coverage

    The survey is nationally representative and covers the whole of Jamaica.

    Analysis unit

    Households (defined as a group of persons who usually live and eat together)

    De jure household members (defined as members of the household who usually live in the household, which may include people who did not sleep in the household the previous night, but does not include visitors who slept in the household the previous night but do not usually live in the household)

    Women aged 15-49

    Children aged 0-4

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-4 years (under age 5) resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the Jamaica Multiple Indicator Cluster Survey (MICS) was designed to provide estimates on a large number of indicators on the situation of children and women at the national level, as well as urban and rural areas. Parishes were identified as the main sampling domains and were divided into sampling regions of equal sizes. The sample was selected in two stages. Within each sampling region, two census enumeration areas/Primary Sampling Units (PSUs) were selected with probability proportional to size. Using the household listing from the selected PSUs a systematic sample of 6,276 dwellings was drawn.

    The sampling procedures are more fully described in the the sampling appendix (appendix A) of the final report.

    Sampling deviation

    Five of the selected enumeration areas were not visited because they were inaccessible due to flooding during the fieldwork period. Sample weights were used in the calculation of national level results.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaires for the Jamaica MICS were structured questionnaires based on the MICS3 Model Questionnaire with some modifications and additions. A household questionnaire was administered in each household, which collected various information on household members including sex, age, relationship, and orphanhood status. The household questionnaire includes support to orphaned and vulnerable children, education, child labour, water and sanitation, and salt iodization, with optional modules for child discipline, child disability and security of tenure and durability of housing. In addition to a household questionnaire, questionnaires were administered in each household for women age 15-49 and children under age five. For children, the questionnaire was administered to the mother or caretaker of the child. The women's questionnaire include women's characteristics, child mortality, tetanus toxoid, maternal and newborn health, marriage, contraception, and HIV/AIDS knowledge, with optional modules for unmet need, domestic violence, and sexual behavior. The children's questionnaire includes children's characteristics, birth registration and early learning, vitamin A, breastfeeding, care of illness, malaria, immunization, and an optional module for child development. All questionnaires and modules are provided as external resources.

    Cleaning operations

    Data were processed in clusters, with each cluster being processed as a complete unit through each stage of data processing. Each cluster goes through the following steps: 1) Questionnaire reception 2) Office editing and coding 3) Data entry 4) Structure and completeness checking 5) Verification entry 6) Comparison of verification data 7) Back up of raw data 8) Secondary editing 9) Edited data back up

    After all clusters are processed, all data is concatenated together and then the following steps are completed for all data files: 10) Export to SPSS in 4 files (hh - household, hl - household members, wm - women, ch - children under 5) 11) Recoding of variables needed for analysis 12) Adding of sample weights 13) Calculation of wealth quintiles and merging into data 14) Structural checking of SPSS files 15) Data quality tabulations 16) Production of analysis tabulations

    Details of each of these steps can be found in the data processing documentation, data editing guidelines, data processing programs in CSPro and SPSS, and tabulation guidelines.

    Data entry was conducted by 12 data entry operators in tow shifts, supervised by 2 data entry supervisors, using a total of 7 computers (6 data entry computers plus one supervisors computer). All data entry was conducted at the GenCenStat head office using manual data entry. For data entry, CSPro version 2.6.007 was used with a highly structured data entry program, using system controlled approach, that controlled entry of each variable. All range checks and skips were controlled by the program and operators could not override these. A limited set of consistency checks were also included inthe data entry program. In addition, the calculation of anthropometric Z-scores was also included in the data entry programs for use during analysis. Open-ended responses ("Other" answers) were not entered or coded, except in rare circumstances where the response matched an existing code in the questionnaire.

    Structure and completeness checking ensured that all questionnaires for the cluster had been entered, were structurally sound, and that women's and children's questionnaires existed for each eligible woman and child.

    100% verification of all variables was performed using independent verification, i.e. double entry of data, with separate comparison of data followed by modification of one or both datasets to correct keying errors by original operators who first keyed the files.

    After completion of all processing in CSPro, all individual cluster files were backed up before concatenating data together using the CSPro file concatenate utility.

    Data editing took place at a number of stages throughout the processing (see Other processing), including: a) Office editing and coding b) During data entry c) Structure checking and completeness d) Secondary editing e) Structural checking of SPSS data files

    Detailed documentation of the editing of data can be found in the data processing guidelines.

    Response rate

    In the 6,276 dwellings selected for the sample, 5,604 households were found to be occupied (Table HH.1). Of these, 4,767 were successfully interviewed for a household response rate of 85.1 percent. The reason for this lower response rate is given in the previous section. In the interviewed households, 3,777 women (age 15-49) were identified. Of these, 3,647 were successfully interviewed, yielding a response rate of 96.6 percent. In addition, 1,444 children under age five were listed in the household questionnaire. Of these, questionnaires were completed for 1,427 which correspond to a response rate of 98.8 percent.

    Overall response rates of 82.1 and 84.1 percent were calculated for the women's and under-5's interviews respectively. Note that the response rates for the Kingston Metropolitan Area (KMA) were lower than in other urban areas and in the rural area. Two factors contributed to this - more dwellings were vacant, often as a result of urban violence, and in the upper income areas access to dwellings was more difficult. In the rural areas, the rains prevented access to some households as some roads were inundated.

    Sampling error estimates

    Estimates from a sample survey are affected by two types of errors: 1) non-sampling errors and 2) sampling errors. Non-sampling errors are the results of mistakes made in the implementation of data collection and data processing. Numerous efforts were made during implementation

  18. w

    Multiple Indicator Cluster Survey 2006 - Viet Nam

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social and Environmental Statistics Department (2023). Multiple Indicator Cluster Survey 2006 - Viet Nam [Dataset]. https://microdata.worldbank.org/index.php/catalog/31
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Social and Environmental Statistics Department
    Time period covered
    2006
    Area covered
    Vietnam
    Description

    Abstract

    The Multiple Indicator Cluster Survey (MICS) is a household survey programme developed by UNICEF to assist countries in filling data gaps for monitoring human development in general and the situation of children and women in particular. MICS is capable of producing statistically sound, internationally comparable estimates of social indicators. The Viet Nam Multiple Indicator Cluster Survey provides valuable information on the situation of children and women in Viet Nam, and was based, in large part, on the needs to monitor progress towards goals and targets emanating from recent international agreements: the Millennium Declaration, adopted by all 191 United Nations Member States in September 2000, and the Plan of Action of A World Fit For Children, adopted by 189 Member States at the United Nations Special Session on Children in May 2002. Both of these commitments build upon promises made by the international community at the 1990 World Summit for Children.

    Survey Objectives: The 2006 Viet Nam Multiple Indicator Cluster Survey has as its primary objectives: - To provide up-to-date information for assessing the situation of children and women in Viet Nam; - To furnish data needed for monitoring progress toward goals established by the Millennium Development Goals, the goals of A World Fit For Children (WFFC), and other internationally agreed upon goals, as a basis for future action; - To provide valuable information for the 3rd and 4th National Report of Vietnam's implementation of the Convention on the child rights in the period 2002-2007 as well as for monitoring the National Plan of Action for Children 2001-2010.
    - To contribute to the improvement of data and monitoring systems in Viet Nam and to strengthen technical expertise in the design, implementation, and analysis of such systems.

    Survey Content Following the MICS global questionnaire templates, the questionnaires were designed in a modular fashion customized to the needs of Viet Nam. The questionnaires consist of a household questionnaire, a questionnaire for women aged 15-49 and a questionnaire for children under the age of five (to be administered to the mother or caretaker).

    Survey Implementation The Viet Nam Multiple Indicator Cluster Survey (MICS) was carried by General Statistics Office of Viet Nam (GSO) in collaboration with Viet Nam Committee for Population, Family and Children (VCPFC). Financial and technical support was provided by the United Nations Children's Fund (UNICEF). Technical assistance and training for the survey was provided through a series of regional workshops organised by UNICEF covering questionnaire content, sampling and survey implementation; data processing; data quality and data analysis; report writing and dissemination.

    Geographic coverage

    The survey is nationally representative and covers the whole of Viet Nam.

    Analysis unit

    Households (defined as a group of persons who usually live and eat together)

    Household members (defined as members of the household who usually live in the household, which may include people who did not sleep in the household the previous night, but does not include visitors who slept in the household the previous night but do not usually live in the household)

    Women aged 15-49

    Children aged 0-4

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-4 years (under age 5) resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the Viet Nam Multiple Indicator Cluster Survey (MICS) was designed to provide reliable estimates on a large number of indicators on the situation of children and women at the national level, for urban and rural areas, and for 8 regions: Red River Delta, North West, North East, North Central Coast, South Central Coast, Central Highlands, South East, and Mekong River Delta. Regions were identified as the main sampling domains and the sample was selected in two stages. At the first stage 250 census enumeration areas (EA) were selected, of which all 240 EAs of MICS2 with systematic method were reselected and 10 new EAs were added. The addition of 10 more EAs (together with the increase in the sample size) was to increase the reliability level for regional estimates. Consequently, within each region, 30-33 EAs were selected for MICS3. After a household listing was carried out within the selected enumeration areas, a systematic sample of 1/3 of households in each EA was drawn. The survey managed to visit all of 250 selected EAs during the fieldwork period. The sample was stratified by region and is not self-weighting. For reporting national level results, sample weights are used. A more detailed description of the sample design can be found in the technical documents and in Appendix A of the final report.

    Sampling deviation

    No major deviations from the original sample design were made. All sample enumeration areas were accessed and successfully interviewed with good response rates.

    Mode of data collection

    Face-to-face

    Research instrument

    The questionnaires are based on the MICS3 model questionnaire. From the MICS3 model English version, the questionnaires were translated in to Vietnamese and were pretested in one province (Bac Giang) during July 2006. Based on the results of this pre-test, modifications were made to the wording and translation of the questionnaires.

    Cleaning operations

    Data editing took place at a number of stages throughout the processing (see Other processing), including: a) Office editing and coding b) During data entry c) Structure checking and completeness d) Secondary editing e) Structural checking of SPSS data files

    Detailed documentation of the editing of data can be found in the data processing guidelines in the MICS manual http://www.childinfo.org/mics/mics3/manual.php.

    Response rate

    8356 households were selected for the sample. Of these all were found to be occupied households and 8355 were successfully interviewed for a response rate of 100%. Within these households, 10063 eligible women aged 15-49 were identified for interview, of which 9473 were successfully interviewed (response rate 94.1%), and 2707 children aged 0-4 were identified for whom the mother or caretaker was successfully interviewed for 2680 children (response rate 99%).

    Sampling error estimates

    Estimates from a sample survey are affected by two types of errors: 1) non-sampling errors and 2) sampling errors. Non-sampling errors are the results of mistakes made in the implementation of data collection and data processing. Numerous efforts were made during implementation of the MICS - 3 to minimize this type of error, however, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors can be evaluated statistically. The sample of respondents to the MICS - 3 is only one of many possible samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that different somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability in the results of the survey between all possible samples, and, although, the degree of variability is not known exactly, it can be estimated from the survey results. The sampling errors are measured in terms of the standard error for a particular statistic (mean or percentage), which is the square root of the variance. Confidence intervals are calculated for each statistic within which the true value for the population can be assumed to fall. Plus or minus two standard errors of the statistic is used for key statistics presented in MICS, equivalent to a 95 percent confidence interval.

    If the sample of respondents had been a simple random sample, it would have been possible to use straightforward formulae for calculating sampling errors. However, the MICS - 3 sample is the result of a two-stage stratified design, and consequently needs to use more complex formulae. The SPSS complex samples module has been used to calculate sampling errors for the MICS - 3. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. This method is documented in the SPSS file CSDescriptives.pdf found under the Help, Algorithms options in SPSS.

    Sampling errors have been calculated for a select set of statistics (all of which are proportions due to the limitations of the Taylor linearization method) for the national sample, urban and rural areas, and for each of the five regions. For each statistic, the estimate, its standard error, the coefficient of variation (or relative error -- the ratio between the standard error and the estimate), the design effect, and the square root design effect (DEFT -- the ratio between the standard error using the given sample design and the standard error that would result if a simple random sample had been used), as well as the 95 percent confidence intervals (+/-2 standard errors).

    Data appraisal

    A series of data quality tables and graphs are available to review the quality of the data and include the following:

    Age distribution of the household population Age distribution of eligible women and interviewed women Age distribution of eligible children and children for whom the mother or caretaker was interviewed Age distribution of children under age 5 by 3 month groups Age and period ratios at

  19. i

    Integrated Household Income and Expenditure Survey with Living Standards...

    • catalog.ihsn.org
    • dev.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Office (2019). Integrated Household Income and Expenditure Survey with Living Standards Measurement Survey 2002-2003 - Mongolia [Dataset]. https://catalog.ihsn.org/index.php/catalog/3652
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    National Statistical Office
    Time period covered
    2002 - 2003
    Area covered
    Mongolia
    Description

    Abstract

    The Integrated Household Income and Expenditure Survey with Living Standards Measurement Survey 2002-2003 is one of the biggest national surveys carried out in accordance with an international methodology with technical and financial support from the World Bank and United Nations Development Programme.

    Background This survey was developed in response to provide the picture of the current situation of poverty in Mongolia in relation to social and economic indicators and contribute toward implementation and progress on National Millennium Development Goals articulated in the National Millennium Development Report and monitoring of the Economic Growth Support and Poverty Reduction Strategy, as well as toward developing and designing future policies and actions. Also, the survey enriched the national database on poverty and contributed in improving the professional capacity of experts and professionals of the National Statistical Office of Mongolia.

    Purpose Since the onset of the transition to a market economy of Mongolia our country the need to study changes in people's living standards in relation to household members' demographic situation, their education, health, employment and household engagement in private enterprises has become extremely important. With that purpose and with the support of the World Bank and the United Nations Development Programme, the National Statistical Office of Mongolia conducted the Integrated Household Income and Expenditure Survey with Living Standards Measurement Survey-like features between 2002 and 2003. In conjunction with LSMS household interviews the NSO also collected a price and a community questionnaire in each selected soum. The latter collected information on the quality of infrastructure, and basic education and health services.

    Main importance of the survey is to provide policy makers and decision makers with realistic information about poverty and will become a resource for experts and researchers who are interested in studying poverty as well as social and economic issues of Mongolia.

    In July 2003 the Government of Mongolia completed the Economic Growth and Poverty Reduction Strategy Paper in which the Government gave high priority to the fight against poverty. As part of that commitment this paper is a study that intends to monitor poverty and understand its main causes in order to provide policy-makers with useful information to improve pro-poor policies.

    Content The Integrated HIES with LSMS design has the peculiarity of being a sub-sample of a larger survey, namely the Household Income and Expenditure Survey 2002. Instead of administering an independent consumption module, the Integrated HIES with LSMS 2002-2003 depends on the HIES 2002 information on household consumption expenditure. This is why the survey is referred as Integrated HIES with LSMS 2002-2003. This survey is the only source of information of income-poverty, and the questionnaire is designed to provide poverty estimates and a set of useful social indicators that can monitor more in general human development, as well as more specific issues on key sectors, such as health, education, and energy. And, the price and social survey, in conjunction with LSMS household interviews, collected information on the quality of infrastructure, and basic education and health services of each selected soum.

    HIES - food expenditure and consumption, non-food expenditure, other expense, income LSMS - general information, household roster, housing, education, employment, health, fertility, migration, agriculture, livestock, non-farm enterprises, other souces of income, savings and loans, remittances, durable goods, energy PRICE SURVEY - prices of household consumer goods and services SOCIAL SURVEY - population and households, economy and infrastructure, education, health, agriculture and livestock, and non-agricultural business

    Survey results The final report of this survey has main results on key poverty indicators, used internationally, as they relate to various social sectors. Its annexes contain information regarding the consumption structure, poverty lines along with the methodology used, as well as some statistical indicators.

    The main contributions of this survey report are: - new poverty estimates based on the latest available household survey, the Integrated HIES with LSMS 2002-2003 - the implementation of appropriate, and internationally accepted, methodologies in the calculation of poverty and its analysis (these methodologies may constitute a reference for the analysis of future surveys) - a 'poverty profile' that describes the main characteristics of poverty

    The first section of the report provides information on the Mongolian economic background, and presents the basic poverty measures that are linked to the economic performance to offer an indication of what happened to poverty and inequality in recent years. A second section goes in much more detail in generating and describing the poverty profile, in particular looking at the geographical distribution of poverty, poverty and its correlation with household demographic characteristics, characteristics of the household head, employment, and assets. A final section looks at poverty and social sectors and investigates various aspects of education, health and safety nets. The report contains also a number of useful, but more technical appendixes with information about the HIES-LSMS 2002-2003 (sample design and data quality), on the methodology used to construct the basic welfare indicator, and set the poverty line, some sensitivity analysis, and additional statistical information.

    Geographic coverage

    The survey is nationally representative and covers the whole of Mongolia.

    Analysis unit

    • Household (defined as a group of persons who usually live and eat together)
    • Household member (defined as members of the household who usually live in the household, which may include people who did not sleep in the household the previous night, but does not include visitors who slept in the household the previous night but do not usually live in the household)
    • Selected soums (for collecting prices of household consumer goods and services and information on quality of infrastructure, basic education, health services and so on)

    Universe

    The survey covered selected households and all members of the households (usual residents). And the price and social surveys covered all selected soums.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Integrated HIES with LSMS 2002-2003 households are a subset of the household interviewed for the HIES 2002. One third of the HIES 2002 households were contacted again and interviewed on the LSMS topics. The subset was equally distributed among the four quarters.

    The HIES 2002, and consequently the Integrated HIES with LSMS 2002-2003, used the 2000 Census as sample frame. 1,248 enumerations areas were part of the sample, which is a two-stage stratified random sample. The strata, or domains of estimation, are four: Ulaanbaatar, Aimag capitals and small towns, Soum centres, and Countryside. At a first stage a number of Primary Sampling Units (PSUs) were selected from each stratum. In the selected PSUs enumerators listed all the households residing in the area, and in a second stage households were randomly selected from the list of households identified in that PSU (10 households were selected in urban areas and 8 households in rural areas).

    It should be noted that non-response case of households once selected for the survey exerts unfavorable influence on the representativeness of the survey. Therefore an enumerator should take every step to avoid that. To obtain true and timely survey results a proper agreement should be reached with a selected household before a survey starts. One of the main reasons of non-response is that an enumerator doesn't meet with the household members who are able to give the required information. An enumerator should visit a household at least 3 times within the given period to take the questionnaire.

    Another common reason is that a household refuses to participate in the survey. In this case an enumerator should explain the purpose of the survey again, explain that the private data will be kept strictly confidential according to the corresponding law. If necessary an enumerator can ask local statistical division or local administration for the help. However this practice is very seldom.

    If there is no possibility to take the questionnaires from the selected households due to weather conditions or disasters, reserved households with numbers 11, 12, 13 respectively from the list provided by the NSO should replace the omitted ones. However the reasons of replacements are to be declared in detail on the form.

    Sampling deviation

    At the planning stage the time lag between the HIES and LSMS interviews was expected to be relatively short. However, for various reasons it is on average of about 9 months, and for some households more than one year. Households interviewed in the first and second quarter of 2002 were generally re-interviewed in March and April 2003, while households of the third and fourth quarter of 2002 were re-interviewed in May, June and July of 2003. The considerable time lag between HIES and LSMS interviews was the main responsible for a considerable loss of households in the LSMS sample, households that could not be easily relocated and therefore re-interviewed. Due also to some incomplete questionnaires, the number of households that were used for the final poverty analysis is 3,308.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    A

  20. d

    KwaZulu-Natal [South Africa] Development Indicators Household Survey, 1996...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KwaZulu-Natal Provincial Government; Human Sciences Research Council (HSRC) (2023). KwaZulu-Natal [South Africa] Development Indicators Household Survey, 1996 (M1066V1) [Dataset]. http://doi.org/10.7910/DVN/BJZEAK
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    KwaZulu-Natal Provincial Government; Human Sciences Research Council (HSRC)
    Time period covered
    Jan 1, 1996
    Area covered
    South Africa, KwaZulu-Natal
    Description

    This project commissioned by the KwaZulu-Natal Provincial Government was designed to obtain baseline data on subjective and objective development indicators. The project comprised a household survey conducted during November and December 1996. The complete survey covered at least 6 500 households across the province of KwaZulu-Natal. It followed a pilot study of perceptions of development conducted among 678 adults in October 1995. As one of the most comprehensive contributions on development indicators in the history of South Africa, it is the first large survey covering the usual “hard” indicators – such as service delivery levels – and peoples’ comments and perceptions of these services and of their governments’ development programmes and priorities. The study/project was motivated by the need to establish an information database for the preparation and monitoring of the province’s RDP business and development plans, to synthesise subjectively articulated (bottom-up) and objectively defined (top-down) approaches to the determination of needs, to modify and improve on the usefulness of the Human Development Index (HDI), to provide an opportunity for research capacity building among civil servants and thereby providing a means to effect good governance practices and, to provide a basis for the development of objective matrices, objectives-by-time-scales and, a semi-rational budgeting and planning tool. 1 data file with 6,606 cases.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Globalen LLC (2025). Human development by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/human_development/

Human development by country, around the world | TheGlobalEconomy.com

Explore at:
27 scholarly articles cite this dataset (View in Google Scholar)
excel, csv, xmlAvailable download formats
Dataset updated
Jun 3, 2025
Dataset authored and provided by
Globalen LLC
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 31, 1980 - Dec 31, 2023
Area covered
World, World
Description

The average for 2023 based on 184 countries was 0.744 points. The highest value was in Iceland: 0.972 points and the lowest value was in South Africa: 0.388 points. The indicator is available from 1980 to 2023. Below is a chart for all countries where data are available.

Search
Clear search
Close search
Google apps
Main menu