Summary File 4 is repeated or iterated for the total population and 335 additional population groups: 132 race groups,78 American Indian and Alaska Native tribe categories, 39 Hispanic or Latino groups, and 86 ancestry groups.Tables for any population group excluded from SF 2 because the group's total population in a specific geographic area did not meet the SF 2 threshold of 100 people are excluded from SF 4. Tables in SF 4 shown for any of the above population groups will only be shown if there are at least 50 unweighted sample cases in a specific geographic area. The same 50 unweighted sample cases also applied to ancestry iterations. In an iterated file such as SF 4, the universes households, families, and occupied housing units are classified by the race or ethnic group of the householder. The universe subfamilies is classified by the race or ethnic group of the reference person for the subfamily. In a husband/wife subfamily, the reference person is the husband; in a parent/child subfamily, the reference person is always the parent. The universes population in households, population in families, and population in subfamilies are classified by the race or ethnic group of the inidviduals within the household, family, or subfamily without regard to the race or ethnicity of the householder. Notes follow selected tables to make the classification of the universe clear. In any population table where there is no note, the universe classification is always based on the race or ethnicity of the person. In all housing tables, the universe classification is based on the race or ethnicity of the householder.
The dataset provides information about the demographics and characteristics of COVID-19 cases by racial/ethnic groups among Santa Clara County residents. Source: California Reportable Disease Information Exchange. Data notes: The Other category for the race/ethnicity graph includes American Indian/Alaska Native and people who identify as multi-racial.
This table is updated every Thursday.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
The statistic shows the share of U.S. population, by race and Hispanic origin, in 2016 and a projection for 2060. As of 2016, about 17.79 percent of the U.S. population was of Hispanic origin. Race and ethnicity in the U.S. For decades, America was a melting pot of the racial and ethnical diversity of its population. The number of people of different ethnic groups in the United States has been growing steadily over the last decade, as has the population in total. For example, 35.81 million Black or African Americans were counted in the U.S. in 2000, while 43.5 million Black or African Americans were counted in 2017.
The median annual family income in the United States in 2017 earned by Black families was about 50,870 U.S. dollars, while the average family income earned by the Asian population was about 92,784 U.S. dollars. This is more than 15,000 U.S. dollars higher than the U.S. average family income, which was 75,938 U.S. dollars.
The unemployment rate varies by ethnicity as well. In 2018, about 6.5 percent of the Black or African American population in the United States were unemployed. In contrast to that, only three percent of the population with Asian origin was unemployed.
Information about the ethnic affiliation(s) and characteristics of a human population. Includes, for example, information about: the ethnic groups located within a geographic region, their community social structures, their mutual associations and conflicts with other groups, their historic roles and influence, and the physical distribution of their members. Ethnic groups are human populations whose members identify with each other, usually on the basis of having a common cultural traditions and heritage (for example: as distinguished by customs, language, religious practices, or common history) or a presumed common genealogy or ancestry.
This report summarizes data on COVID-19 cases and COVID-19 associated deaths by race/ethnicity for the state of Connecticut and the 10 largest Connecticut towns. Data on race/ethnicity are missing on almost half (47%) of reported COVID-19 cases. CT DPH has urged healthcare providers and laboratories to complete information on race/ethnicity for all COVID-19 cases. All data in this report are preliminary; data will be updated as new COVID-19 case reports are received and data errors are corrected. Data on COVID-19 cases and COVID-19-associated deaths were last updated on April 20, 2020 at 3 PM. Information about race and ethnicity are collected on the Connecticut Department of Public Health (DPH) COVID-19 case report form, which is completed by healthcare providers for laboratory-confirmed COVID-19 cases. Information about the race/ethnicity of COVID-19-associated deaths also are collected by the Connecticut Office of the Chief Medical Examiner and shared with DPH. Race/ethnicity categories used in this report are mutually exclusive. People answering ‘yes’ to more than one race category are counted as ‘other’.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 Cases and Deaths by Race/Ethnicity’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/3fdc6593-c708-4a6a-8073-5ca862caa279 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.
The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf
Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More infor
--- Original source retains full ownership of the source dataset ---
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The EEO Tabulation is sponsored by four Federal agencies consisting of the Equal Employment Opportunity Commission (EEOC), the Employment Litigation Section of the Civil Rights Division at the Department of Justice (DOJ), the Office of Federal Contract Compliance Programs (OFCCP), and the Office of Personnel Management (OPM), and developed in conjunction with the U.S. Census Bureau..Supporting documentation on code lists and subject definitions can be found on the Equal Employment Opportunity Tabulation website. https://www.census.gov/topics/employment/equal-employment-opportunity-tabulation.html.Source: U.S. Census Bureau, 2014-2018 American Community Survey.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see https://www.census.gov/programs-surveys/acs/technical-documentation.html The effect of nonsampling error is not represented in these tables)..The U.S. Census Bureau collects race data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB). Except for the total, all race and ethnicity categories are mutually exclusive. "Black" refers to Black or African American; "AIAN" refers to American Indian and Alaska Native; and "NHPI" refers to Native Hawaiian and Other Pacific Islander. "Balance of Not Hispanic or Latino" includes the balance of non-Hispanic individuals who reported multiple races or reported Some Other Race alone. For more information on race and Hispanic origin, see the Subject Definitions at https://www.census.gov/programs-surveys/acs/technical-documentation.html..Race and Hispanic origin are separate concepts on the American Community Survey. "White alone Hispanic or Latino" includes respondents who reported Hispanic or Latino origin and reported race as "White" and no other race. "All other Hispanic or Latino" includes respondents who reported Hispanic or Latino origin and reported a race other than "White," either alone or in combination..Occupation titles and their 4-digit codes are based on the 2018 Standard Occupational Classification..The 2014-2018 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Explanation of Symbols:An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself.An "(X)" means that the estimate is not applicable or not available.An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.
Summary File 4 is repeated or iterated for the total population and 335 additional population groups: 132 race groups,78 American Indian and Alaska Native tribe categories, 39 Hispanic or Latino groups, and 86 ancestry groups.Tables for any population group excluded from SF 2 because the group's total population in a specific geographic area did not meet the SF 2 threshold of 100 people are excluded from SF 4. Tables in SF 4 shown for any of the above population groups will only be shown if there are at least 50 unweighted sample cases in a specific geographic area. The same 50 unweighted sample cases also applied to ancestry iterations. In an iterated file such as SF 4, the universes households, families, and occupied housing units are classified by the race or ethnic group of the householder. The universe subfamilies is classified by the race or ethnic group of the reference person for the subfamily. In a husband/wife subfamily, the reference person is the husband; in a parent/child subfamily, the reference person is always the parent. The universes population in households, population in families, and population in subfamilies are classified by the race or ethnic group of the inidviduals within the household, family, or subfamily without regard to the race or ethnicity of the householder. Notes follow selected tables to make the classification of the universe clear. In any population table where there is no note, the universe classification is always based on the race or ethnicity of the person. In all housing tables, the universe classification is based on the race or ethnicity of the householder.
Table from the American Community Survey (ACS) B01001A-I sex by age by race - data is grouped into three age group categories for each race, under 18, 18-64 and 65 and older. These are multiple, nonoverlapping vintages of the 5-year ACS estimates of population and housing attributes starting in 2010 shown by the corresponding census tract vintage. Also includes the most recent release annually.Data on total number of people by each race alone and in combination by each census tract has been transposed to support dashboard visualizations.King County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010. Vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2010, 2015, 2020, 2021, 2022, 2023ACS Table(s): B01001Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”. B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases are from: * Case interviews * Laboratories * Medical providers These multiple streams of data are merged, deduplicated, and undergo data verification processes. Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups. Gender * The City collects information on gender identity using these guidelines. Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives. * This dataset includes data for COVID-19 cases reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’. Sexual orientation * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to the California Department of Public Health, Virtual Assistant information gathering beginning December 2021. The Virtual Assistant is only sent to adults who are 18+ years old. Learn more about our data collection guidelines pertaining to sexual orientation. Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death. Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the _location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions. Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews. Transmission Type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown. C. UPDATE PROCESS This dataset has been archived and will no longer update as of 9/11/2023. D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco po
In 2022, the child abuse rate for children of Hispanic origin was at 7, indicating 7 out of every 1,000 Hispanic children in the United States suffered from some sort of abuse. This rate was highest among American Indian or Alaska Native children, with 14.3 children out of every 1,000 experiencing some form of abuse. Child abuse in the U.S. The child abuse rate in the United States is highest among American Indian or Alaska Native victims, followed by African-American victims. It is most common among children between two to five years of age. While child abuse cases are fairly evenly distributed between girls and boys, more boys than girls are victims of abuse resulting in death. The most common type of maltreatment is neglect, followed by physical abuse. Risk factors Child abuse is often reported by teachers, law enforcement officers, or social service providers. In the large majority of cases, the perpetrators of abuse were a parent of the victim. Risk factors, such as teen pregnancy, violent crime, and poverty that are associated with abuse and neglect have been found to be quite high in the United States in comparison to other countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 Cases by Population Characteristics Over Time’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/a3291d85-0076-43c5-a59c-df49480cdc6d on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Note: On January 22, 2022, system updates to improve the timeliness and accuracy of San Francisco COVID-19 cases and deaths data were implemented. You might see some fluctuations in historic data as a result of this change. Due to the changes, starting on January 22, 2022, the number of new cases reported daily will be higher than under the old system as cases that would have taken longer to process will be reported earlier.
A. SUMMARY This dataset shows San Francisco COVID-19 cases by population characteristics and by specimen collection date. Cases are included on the date the positive test was collected.
Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how cases have been distributed among different subgroups. This information can reveal trends and disparities among groups.
Data is lagged by five days, meaning the most recent specimen collection date included is 5 days prior to today. Tests take time to process and report, so more recent data is less reliable.
B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases and deaths are from: * Case interviews * Laboratories * Medical providers
These multiple streams of data are merged, deduplicated, and undergo data verification processes. This data may not be immediately available for recently reported cases because of the time needed to process tests and validate cases. Daily case totals on previous days may increase or decrease. Learn more.
Data are continually updated to maximize completeness of information and reporting on San Francisco residents with COVID-19.
Data notes on each population characteristic type is listed below.
Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.
Sexual orientation * Sexual orientation data is collected from individuals who are 18 years old or older. These individuals can choose whether to provide this information during case interviews. Learn more about our data collection guidelines. * The City began asking for this information on April 28, 2020.
Gender * The City collects information on gender identity using these guidelines.
Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.
Transmission type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.
Homelessness
Persons are identified as homeless based on several data sources:
* self-reported living situation
* the location at the time of testing
* Department of Public Health homelessness and health databases
* Residents in Single-Room Occupancy hotels are not included in these figures.
These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.
Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing
--- Original source retains full ownership of the source dataset ---
This statistic shows the share of ethnic groups in Australia in the total population. 33 percent of the total population of Australia are english.
Australia’s population
Australia’s ethnic diversity can be attributed to their history and location. The country’s colonization from Europeans is a significant reason for the majority of its population being Caucasian. Additionally, being that Australia is one of the most developed countries closest to Eastern Asia; its Asian population comes as no surprise.
Australia is one of the world’s most developed countries, often earning recognition as one of the world’s economical leaders. With a more recent economic boom, Australia has become an attractive country for students and workers alike, who seek an opportunity to improve their lifestyle. Over the past decade, Australia’s population has slowly increased and is expected to continue to do so over the next several years. A beautiful landscape, many work opportunities and a high quality of life helped play a role in the country’s development. In 2011, Australia was considered to have one of the highest life expectancies in the world, with the average Australian living to approximately 82 years of age.
From an employment standpoint, Australia has maintained a rather low employment rate compared to many other developed countries. After experiencing a significant jump in unemployment in 2009, primarily due to the world economic crisis, Australia has been able to remain stable and slightly increase employment year-over-year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Detailed ICD9 codes, distribution of next-of-kin racial classifications for discordant cases, and models with alternate sample restrictions. (DOC)
2010 Deschutes County, Oregon Census Block Groups. A census block group (BG) is a cluster of census blocks having the same first digit of their four-digit identifying numbers within a census tract. For example, block group 3 (BG 3) within a census tract includes all blocks numbered from 3000 to 3999. BGs generally contain between 600 and 3,000 people, with an optimum size of 1,500 people. Most BGs were delineated by local participants as part of the U.S. Census Bureau's Participant Statistical Areas Program.
Notes: These 7 fields are mutually exclusive. Use them if you need the sum of the race categories to equal total population. NH_WHITE_O Not Hispanic or Latino: Population of one race: White alone NH_BLACK_O Not Hispanic or Latino: Population of one race: Black or African American alone NH_AIAN_ON Not Hispanic or Latino: Population of one race: American Indian and Alaska Native alone NH_ASIAN_O Not Hispanic or Latino: Population of one race: Asian alone NH_NHOPI_O Not Hispanic or Latino: Population of one race: Native Hawaiian and Other Pacific Islander alone NH_OTHER Not Hispanic or Latino: Population of one race: Some Other Race alone NH_TWO_OR_ Not Hispanic or Latino: Population of two or more races
Use these fields to include all people who chose the specific race. For example, 30% of Oregonians who chose ""Black or African American"" also chose another race and some also chose Hispanic, so the NH_BLACK_O field under reports the African American population. The sum of these fields may exceed total population.WH_AOIC White alone or in combination with one or more other races BL_AOIC Black or African American alone or in combination with one or more other races AIAN_AOIC American Indian and Alaska Native alone or in combination with one or more other races ASN_AOIC Asian alone or in combination with one or more other races NHOPI_AOIC Native Hawaiian and Other Pacific Islander alone or in combination with one or more other races OTH_AOIC Some Other Race alone or in combination with one or more other races.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background:Opioid use disorder (OUD) is a debilitating health condition that is associated with significant morbidity and mortality in the U.S. While preliminary studies have demonstrated that psilocybin is associated with lowered odds of OUD, current research in this domain suffers from a lack of investigation into the impact of race/ethnicity on this association.Objective:To assess the impact of race and ethnicity on the association between psilocybin use and lowered odds of OUD using data from the National Survey on Drug Use and Health (2002–2019) (N = 706,891).Method:I used survey-weighted multivariable logistic regression to test whether race/ethnicity moderates the association between psilocybin use and lowered odds of OUD. Subsequently, I stratified my sample by race and ethnicity and assessed the associations between psilocybin and OUD for individual racial and ethnic groups (White, Black, Indigenous, Asian, Multiracial, Hispanic). My analysis plan was pre-registered.Results:Race and ethnicity significantly moderated the association between psilocybin and OUD. Furthermore, when I stratified my sample by race and ethnicity, only White participants and Hispanic participants demonstrated a link between psilocybin and lowered odds of OUD (White aOR: 0.84; Hispanic aOR: 0.68). For Black, Asian, Indigenous, and Multiracial participants, psilocybin did not share a significant association with OUD.Conclusion:Race and ethnicity moderate the associations between psilocybin and OUD. Future longitudinal, experimental, and qualitative research is needed to better understand the pattern of associations I observed in this study.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, and definitions, see the 2020 Island Areas Censuses Technical Documentation..Due to COVID-19 restrictions impacting data collection for the 2020 Census of the U.S. Virgin Islands, data tables reporting social and economic characteristics do not include the group quarters population in the table universe. As a result, impacted 2020 data tables should not be compared to 2010 and other past census data tables reporting the same characteristics. The Census Bureau advises data users to verify table universes are the same before comparing data across census years. For more information about data collection limitations and the impacts on the U.S. Virgin Islands' data products, see the 2020 Island Areas Censuses Technical Documentation..[1] People who reported multiple responses may be counted in more than one of the race alone or in combination categories. For example, a respondent reporting Anguillan and White is counted in both the "Black or African American alone or in combination" category and the "White alone or in combination" category. These categories may add to more than the total population..[2] "Black or African American alone or in combination" includes respondents who reported a Black or African American group alone (e.g., Haitian), multiple Black or African American groups (e.g., Haitian and Dominica Islander), as well as respondents who reported one Black or African American group and one or more other groups classified as another race (e.g., Haitian and German)..[3] "White alone or in combination" includes respondents who reported a White group alone (e.g., German), multiple White groups (e.g., German and Irish), as well as respondents who reported one White group and one or more other groups classified as another race (e.g., German and Haitian)..[4] "Other races alone or in combination" includes respondents who reported one race group or multiple race groups that were not classified as Black or African American or White (e.g., Chinese and Samoan), as well as respondents who reported one group that was not classified as Black or African American or White and another that was classified as Black or African American or White (e.g., Chinese and Haitian)..[5] This category includes people who reported Cuban, Spaniard, and other detailed Hispanic responses. It also includes people who reported "Hispanic" or "Latino" and other general terms..[6] This category includes respondents who reported one race group that was not classified as Black or African American or White..[7] "Spouse" represents spouse of the householder. It does not reflect all spouses in a household..[8] "Family households" consist of a householder and one or more other people related to the householder by birth, marriage, or adoption..Explanation of Symbols: 1.An "-" means the statistic could not be computed because there were an insufficient number of observations. 2. An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.3. An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.4. An "(X)" means not applicable..Source: U.S. Census Bureau, 2020 Census, U.S. Virgin Islands.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, and definitions, see the 2020 Island Areas Censuses Technical Documentation..Due to COVID-19 restrictions impacting data collection for the 2020 Census of American Samoa, data tables reporting social and economic characteristics do not include the group quarters population in the table universe. As a result, impacted 2020 data tables should not be compared to 2010 and other past census data tables reporting the same characteristics. The Census Bureau advises data users to verify table universes are the same before comparing data across census years. For more information about data collection limitations and the impacts on American Samoa's data products, see the 2020 Island Areas Censuses Technical Documentation..[1] People who reported multiple responses may be counted in more than one of the race alone or in combination categories. For example, a respondent who reported Samoan and Filipino is counted in the "Native Hawaiian and Other Pacific Islander alone or in combination" category, the "Samoan alone or in any combination" category, and the "Asian alone or in combination" category. These categories may add to more than the total population..[2] "Native Hawaiian and Other Pacific Islander alone or in combination" includes respondents who reported a Native Hawaiian and Other Pacific Islander group alone (e.g., Samoan), multiple Native Hawaiian and Other Pacific Islander groups (e.g., Samoan and Tongan), as well as respondents who reported one Native Hawaiian and Other Pacific Islander group and one or more other groups classified as another race (e.g., Samoan and White)..[3] "Asian alone or in combination" includes respondents who reported an Asian group alone (e.g., Chinese), multiple Asian groups (e.g., Chinese and Japanese), as well as respondents who reported an Asian group and one or more other groups classified as another race (e.g., Chinese and White)..[4] "Other races alone or in combination" includes respondents who reported one race group or multiple race groups that were not classified as Native Hawaiian and Other Pacific Islander or Asian (e.g., White and a Black or African American group such as Jamaican), as well as respondents who reported one group that was not classified as Native Hawaiian and Other Pacific Islander or Asian and another that was classified as Native Hawaiian and Other Pacific Islander or Asian (e.g., Jamaican and Chamorro)..[5] "Spouse" represents spouse of the householder. It does not reflect all spouses in a household..[6] "Family households" consist of a householder and one or more other people related to the householder by birth, marriage, or adoption. .Explanation of Symbols: 1.An "-" means the statistic could not be computed because there were an insufficient number of observations. 2. An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.3. An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.4. An "(X)" means not applicable..Source: U.S. Census Bureau, 2020 Census, American Samoa.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Dataset population: Households
Multiple ethnic group households
Multiple ethnic groups classifies households by the diversity in ethnic group of household members in different relationships.
For example, different ethnic groups between generations or within partnerships.
For Northern Ireland only, 'Same ethnic group' means within the same ethnic group as defined by the 12-way ethnic classification (White, Chinese, Irish Traveller, Indian, Pakistani, Bangladeshi, Other Asian, Black Caribbean, Black African, Black Other, Mixed, Other).
'Different ethnic groups within partnerships' includes all households where there are different ethnic groups within partnerships whether or not there are also different ethnic groups between generations.
Summary File 4 is repeated or iterated for the total population and 335 additional population groups: 132 race groups,78 American Indian and Alaska Native tribe categories, 39 Hispanic or Latino groups, and 86 ancestry groups.Tables for any population group excluded from SF 2 because the group's total population in a specific geographic area did not meet the SF 2 threshold of 100 people are excluded from SF 4. Tables in SF 4 shown for any of the above population groups will only be shown if there are at least 50 unweighted sample cases in a specific geographic area. The same 50 unweighted sample cases also applied to ancestry iterations. In an iterated file such as SF 4, the universes households, families, and occupied housing units are classified by the race or ethnic group of the householder. The universe subfamilies is classified by the race or ethnic group of the reference person for the subfamily. In a husband/wife subfamily, the reference person is the husband; in a parent/child subfamily, the reference person is always the parent. The universes population in households, population in families, and population in subfamilies are classified by the race or ethnic group of the inidviduals within the household, family, or subfamily without regard to the race or ethnicity of the householder. Notes follow selected tables to make the classification of the universe clear. In any population table where there is no note, the universe classification is always based on the race or ethnicity of the person. In all housing tables, the universe classification is based on the race or ethnicity of the householder.