100+ datasets found
  1. Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

  2. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Canada, United Kingdom, Germany, France, United States, Global
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,

  3. H

    Replication Data for the Turnout Example in Chapter 6 of Spatial Analysis...

    • dataverse.harvard.edu
    application/dbf +7
    Updated Jun 28, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2015). Replication Data for the Turnout Example in Chapter 6 of Spatial Analysis for the Social Sciences [Dataset]. http://doi.org/10.7910/DVN/NGVKUS
    Explore at:
    application/dbf(896318), docx(14171), application/shp(378252), tsv(425188), application/sbn(7484), application/shx(5940), text/plain; charset=us-ascii(17933), application/sbx(628), docx(15451)Available download formats
    Dataset updated
    Jun 28, 2015
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Replication data for the turnout example in Chapter 6 of Spatial Analysis for the Social Sciences.

  4. d

    GIS Data | Global Geospatial data | Postal/Administrative boundaries |...

    • datarade.ai
    .json, .xml
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). GIS Data | Global Geospatial data | Postal/Administrative boundaries | Countries, Regions, Cities, Suburbs, and more [Dataset]. https://datarade.ai/data-products/geopostcodes-gis-data-gesopatial-data-postal-administrati-geopostcodes
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (GIS data, Geospatial data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the GIS data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  5. d

    Geospatial Data | 164M+ Global Places

    • datarade.ai
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). Geospatial Data | 164M+ Global Places [Dataset]. https://datarade.ai/data-products/geospatial-data-164m-global-places-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    InfobelPRO
    Area covered
    Germany, United States, France, United Kingdom
    Description

    Unlock the power of 164M+ verified locations across 220+ countries with high-precision geospatial data. Featuring 50+ enriched attributes including coordinates, building type, and geometry. Our AI-powered dataset ensures unmatched accuracy through advanced deduplication and enrichment. With 30+ years of industry expertise, we deliver trusted, customizable data solutions for mapping, navigation, urban planning, and marketing, empowering smarter decision-making and strategic growth.

    Key use cases of Geospatial data have helped our customers in several areas:

    1. Gain a Competitive Edge with Smarter Mapping : Use geospatial data to analyse competitors, identify high-traffic zones, and optimize locations for maximum impact.
    2. Enhance Navigation & Location-Based Engagement : Improve turn-by-turn navigation, EV charging station discovery, and real-time travel insights for seamless customer experiences.
    3. Find High-Value Locations for Business Growth : Leverage geospatial intelligence to select profitable retail sites, franchise locations, and warehouses with precision.
    4. Streamline Deliveries & Address Validation : Improve shipping accuracy, reduce failed deliveries, and optimize courier routes for better customer satisfaction.
    5. Drive Smarter Decisions with Spatial Analysis : Utilize location intelligence for disaster risk assessment, public health campaigns, and agricultural planning.
  6. d

    Global Geospatial & GIS Data | 230M+ POIs with Location Coordinates, Mapping...

    • datarade.ai
    .json
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum, Global Geospatial & GIS Data | 230M+ POIs with Location Coordinates, Mapping Metadata & 5000 Categories [Dataset]. https://datarade.ai/data-products/xverum-geospatial-data-100-verified-locations-230m-poi-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset authored and provided by
    Xverum
    Area covered
    United States
    Description

    Xverum’s Global GIS & Geospatial Data is a high-precision dataset featuring 230M+ verified points of interest across 249 countries. With rich metadata, structured geographic attributes, and continuous updates, our dataset empowers businesses, researchers, and governments to extract location intelligence and conduct advanced geospatial analysis.

    Perfectly suited for GIS systems, mapping tools, and location intelligence platforms, this dataset covers everything from businesses and landmarks to public infrastructure, all classified into over 5000 categories. Whether you're planning urban developments, analyzing territories, or building location-based products, our data delivers unmatched coverage and accuracy.

    Key Features: ✅ 230M+ Global POIs Includes commercial, governmental, industrial, and service locations - updated regularly for accurate relevance.

    ✅ Comprehensive Geographic Coverage Worldwide dataset covering 249 countries, with attributes including latitude, longitude, city, country code, postal code, etc.

    ✅ Detailed Mapping Metadata Get structured address data, place names, categories, and location, which are ideal for map visualization and geospatial modeling.

    ✅ Bulk Delivery for GIS Platforms Available in .json - delivered via S3 Bucket or cloud storage for easy integration into ArcGIS, QGIS, Mapbox, and similar systems.

    ✅ Continuous Discovery & Refresh New POIs added and existing ones refreshed on a regular refresh cycle, ensuring reliable, up-to-date insights.

    ✅ Compliance & Scalability 100% compliant with global data regulations and scalable for enterprise use across mapping, urban planning, and retail analytics.

    Use Cases: 📍 Location Intelligence & Market Analysis Identify high-density commercial zones, assess regional activity, and understand spatial relationships between locations.

    🏙️ Urban Planning & Smart City Development Design infrastructure, zoning plans, and accessibility strategies using accurate location-based data.

    🗺️ Mapping & Navigation Enrich digital maps with verified business listings, categories, and address-level geographic attributes.

    📊 Retail Site Selection & Expansion Analyze proximity to key POIs for smarter retail or franchise placement.

    📌 Risk & Catchment Area Assessment Evaluate location clusters for insurance, logistics, or regional outreach strategies.

    Why Xverum? ✅ Global Coverage: One of the largest POI geospatial databases on the market ✅ Location Intelligence Ready: Built for GIS platforms and spatial analysis use ✅ Continuously Updated: New POIs discovered and refreshed regularly ✅ Enterprise-Friendly: Scalable, compliant, and customizable ✅ Flexible Delivery: Structured format for smooth data onboarding

    Request a free sample and discover how Xverum’s geospatial data can power your mapping, planning, and spatial analysis projects.

  7. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  8. Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States

    • zenodo.org
    • data.niaid.nih.gov
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter K. Rogan; Peter K. Rogan (2020). Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States [Dataset]. http://doi.org/10.5281/zenodo.4032708
    Explore at:
    Dataset updated
    Sep 17, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter K. Rogan; Peter K. Rogan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Geostatistics analyzes and predicts the values associated with spatial or spatial-temporal phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data within the analyses. It is a practical means of describing spatial patterns and interpolating values for locations where samples were not taken (and measures the uncertainty of those values, which is critical to informed decision making). This archive contains results of geostatistical analysis of COVID-19 case counts for all available US counties. Test results were obtained with ArcGIS Pro (ESRI). Sources are state health departments, which are scraped and aggregated by the Johns Hopkins Coronavirus Resource Center and then pre-processed by MappingSupport.com.

    This update of the Zenodo dataset (version 6) consists of three compressed archives containing geostatistical analyses of SARS-CoV-2 testing data. This dataset utilizes many of the geostatistical techniques used in previous versions of this Zenodo archive, but has been significantly expanded to include analyses of up-to-date U.S. COVID-19 case data (from March 24th to September 8th, 2020):

    Archive #1: “1.Geostat. Space-Time analysis of SARS-CoV-2 in the US (Mar24-Sept6).zip” – results of a geostatistical analysis of COVID-19 cases incorporating spatially-weighted hotspots that are conserved over one-week timespans. Results are reported starting from when U.S. COVID-19 case data first became available (March 24th, 2020) for 25 consecutive 1-week intervals (March 24th through to September 6th, 2020). Hotspots, where found, are reported in each individual state, rather than the entire continental United States.

    Archive #2: "2.Geostat. Spatial analysis of SARS-CoV-2 in the US (Mar24-Sept8).zip" – the results from geostatistical spatial analyses only of corrected COVID-19 case data for the continental United States, spanning the period from March 24th through September 8th, 2020. The geostatistical techniques utilized in this archive includes ‘Hot Spot’ analysis and ‘Cluster and Outlier’ analysis.

    Archive #3: "3.Kriging and Densification of SARS-CoV-2 in LA and MA.zip" – this dataset provides preliminary kriging and densification analysis of COVID-19 case data for certain dates within the U.S. states of Louisiana and Massachusetts.

    These archives consist of map files (as both static images and as animations) and data files (including text files which contain the underlying data of said map files [where applicable]) which were generated when performing the following Geostatistical analyses: Hot Spot analysis (Getis-Ord Gi*) [‘Archive #1’: consecutive weeklong Space-Time Hot Spot analysis; ‘Archive #2’: daily Hot Spot Analysis], Cluster and Outlier analysis (Anselin Local Moran's I) [‘Archive #2’], Spatial Autocorrelation (Global Moran's I) [‘Archive #2’], and point-to-point comparisons with Kriging and Densification analysis [‘Archive #3’].

    The Word document provided ("Description-of-Archive.Updated-Geostatistical-Analysis-of-SARS-CoV-2 (version 6).docx") details the contents of each file and folder within these three archives and gives general interpretations of these results.

  9. f

    fdata-02-00044_Parallel Processing Strategies for Big Geospatial Data.pdf

    • frontiersin.figshare.com
    pdf
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Werner (2023). fdata-02-00044_Parallel Processing Strategies for Big Geospatial Data.pdf [Dataset]. http://doi.org/10.3389/fdata.2019.00044.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Frontiers
    Authors
    Martin Werner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper provides an abstract analysis of parallel processing strategies for spatial and spatio-temporal data. It isolates aspects such as data locality and computational locality as well as redundancy and locally sequential access as central elements of parallel algorithm design for spatial data. Furthermore, the paper gives some examples from simple and advanced GIS and spatial data analysis highlighting both that big data systems have been around long before the current hype of big data and that they follow some design principles which are inevitable for spatial data including distributed data structures and messaging, which are, however, incompatible with the popular MapReduce paradigm. Throughout this discussion, the need for a replacement or extension of the MapReduce paradigm for spatial data is derived. This paradigm should be able to deal with the imperfect data locality inherent to spatial data hindering full independence of non-trivial computational tasks. We conclude that more research is needed and that spatial big data systems should pick up more concepts like graphs, shortest paths, raster data, events, and streams at the same time instead of solving exactly the set of spatially separable problems such as line simplifications or range queries in manydifferent ways.

  10. d

    Global Postal Boundaries (880K Polygons) | Global Map Data | GIS-Ready Zones...

    • datarade.ai
    .json, .xml
    Updated Jun 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Global Postal Boundaries (880K Polygons) | Global Map Data | GIS-Ready Zones by Country & ZIP [Dataset]. https://datarade.ai/data-products/geopostcodes-boundary-data-global-coverage-880k-polygons-geopostcodes
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jun 22, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover postal divisions for the whole world. The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (Geospatial data, Map data, Polygon daa)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  11. f

    New Approaches for Calculating Moran’s Index of Spatial Autocorrelation

    • plos.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yanguang Chen (2023). New Approaches for Calculating Moran’s Index of Spatial Autocorrelation [Dataset]. http://doi.org/10.1371/journal.pone.0068336
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yanguang Chen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Spatial autocorrelation plays an important role in geographical analysis; however, there is still room for improvement of this method. The formula for Moran’s index is complicated, and several basic problems remain to be solved. Therefore, I will reconstruct its mathematical framework using mathematical derivation based on linear algebra and present four simple approaches to calculating Moran’s index. Moran’s scatterplot will be ameliorated, and new test methods will be proposed. The relationship between the global Moran’s index and Geary’s coefficient will be discussed from two different vantage points: spatial population and spatial sample. The sphere of applications for both Moran’s index and Geary’s coefficient will be clarified and defined. One of theoretical findings is that Moran’s index is a characteristic parameter of spatial weight matrices, so the selection of weight functions is very significant for autocorrelation analysis of geographical systems. A case study of 29 Chinese cities in 2000 will be employed to validate the innovatory models and methods. This work is a methodological study, which will simplify the process of autocorrelation analysis. The results of this study will lay the foundation for the scaling analysis of spatial autocorrelation.

  12. H

    Replication Data for the Turnout Example in Chapter 5 of Spatial Analysis...

    • dataverse.harvard.edu
    Updated Jun 28, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Darmofal (2015). Replication Data for the Turnout Example in Chapter 5 of Spatial Analysis for the Social Sciences [Dataset]. http://doi.org/10.7910/DVN/CMEVAN
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 28, 2015
    Dataset provided by
    Harvard Dataverse
    Authors
    David Darmofal
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Replication data for the turnout example in Chapter 5 of Spatial Analysis for the Social Sciences.

  13. d

    Replication Data for the Higher Education Spending Example in Chapter 6 of...

    • search.dataone.org
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Darmofal, David (2023). Replication Data for the Higher Education Spending Example in Chapter 6 of Spatial Analysis for the Social Sciences [Dataset]. http://doi.org/10.7910/DVN/7YZEVD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Darmofal, David
    Description

    Replication data for the higher education spending example in Chapter 6 of Spatial Analysis for the Social Sciences.

  14. d

    Data from: CrimeMapTutorial Workbooks and Sample Data for ArcView and...

    • catalog.data.gov
    • icpsr.umich.edu
    • +1more
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). CrimeMapTutorial Workbooks and Sample Data for ArcView and MapInfo, 2000 [Dataset]. https://catalog.data.gov/dataset/crimemaptutorial-workbooks-and-sample-data-for-arcview-and-mapinfo-2000-3c9be
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justice
    Description

    CrimeMapTutorial is a step-by-step tutorial for learning crime mapping using ArcView GIS or MapInfo Professional GIS. It was designed to give users a thorough introduction to most of the knowledge and skills needed to produce daily maps and spatial data queries that uniformed officers and detectives find valuable for crime prevention and enforcement. The tutorials can be used either for self-learning or in a laboratory setting. The geographic information system (GIS) and police data were supplied by the Rochester, New York, Police Department. For each mapping software package, there are three PDF tutorial workbooks and one WinZip archive containing sample data and maps. Workbook 1 was designed for GIS users who want to learn how to use a crime-mapping GIS and how to generate maps and data queries. Workbook 2 was created to assist data preparers in processing police data for use in a GIS. This includes address-matching of police incidents to place them on pin maps and aggregating crime counts by areas (like car beats) to produce area or choropleth maps. Workbook 3 was designed for map makers who want to learn how to construct useful crime maps, given police data that have already been address-matched and preprocessed by data preparers. It is estimated that the three tutorials take approximately six hours to complete in total, including exercises.

  15. d

    Replication Data for the Senate Roll-Call Voting Example in Chapter 4 of...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Darmofal, David (2023). Replication Data for the Senate Roll-Call Voting Example in Chapter 4 of Spatial Analysis for the Social Sciences [Dataset]. http://doi.org/10.7910/DVN/7QX2J2
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Darmofal, David
    Description

    Replication data for the Senate roll-call voting example in Chapter 4 of Spatial Analysis for the Social Sciences.

  16. Geospatial Analytics Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Geospatial Analytics Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/geospatial-analytics-market-global-industry-analysis
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geospatial Analytics Market Outlook



    As per our latest research, the global geospatial analytics market size stood at USD 98.2 billion in 2024, exhibiting robust momentum driven by the accelerating adoption of spatial data solutions across industries. The market is projected to expand at a CAGR of 13.5% during the forecast period, reaching a remarkable USD 286.5 billion by 2033. This impressive growth is fueled by increasing demand for location-based services, smart city initiatives, and the integration of artificial intelligence with geospatial technologies, which are transforming how organizations derive actionable insights from spatial data.




    One of the primary growth factors propelling the geospatial analytics market is the rapid proliferation of advanced sensor technologies and the exponential increase in spatial data generation. The widespread deployment of Internet of Things (IoT) devices, satellites, drones, and mobile sensors is generating vast volumes of geospatial data, which organizations are leveraging to enhance decision-making processes. Additionally, the integration of real-time data streams with sophisticated analytics platforms is enabling businesses and governments to monitor, predict, and respond to dynamic environmental and operational changes with unprecedented accuracy and speed. This trend is particularly evident in sectors such as urban planning, disaster management, and logistics, where location intelligence is critical for optimizing resources and improving outcomes.




    Another significant driver of the geospatial analytics market is the growing emphasis on smart city development and infrastructure modernization worldwide. Governments and municipal authorities are increasingly investing in geospatial technologies to support urban planning, infrastructure management, and public safety initiatives. The ability to visualize, analyze, and simulate spatial data is enabling more effective land use planning, traffic management, and utility monitoring, thereby enhancing the quality of urban life. Furthermore, the integration of geospatial analytics with other emerging technologies, such as artificial intelligence and machine learning, is unlocking new possibilities for predictive modeling and scenario analysis, further boosting market growth.




    The increasing adoption of cloud-based geospatial analytics platforms is also a crucial factor contributing to market expansion. Cloud deployment offers significant advantages in terms of scalability, cost-efficiency, and accessibility, allowing organizations of all sizes to leverage advanced spatial analytics without the need for substantial upfront investments in hardware and infrastructure. This democratization of geospatial analytics is particularly beneficial for small and medium enterprises (SMEs), which can now access powerful tools for location intelligence, supply chain optimization, and risk management. Moreover, the cloud model facilitates seamless integration with other enterprise applications and data sources, driving greater operational agility and innovation across industries.




    From a regional perspective, North America continues to dominate the geospatial analytics market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The United States remains at the forefront of technological innovation and adoption, supported by a robust ecosystem of geospatial solution providers, research institutions, and government agencies. Meanwhile, Asia Pacific is witnessing the fastest growth, driven by rapid urbanization, infrastructure development, and increasing investments in smart city projects across countries such as China, India, and Japan. These regional dynamics underscore the global nature of geospatial analytics adoption and the diverse opportunities for market participants worldwide.





    Component Analysis



    The geospatial analytics market by component is segmented into software, hardware, and services, each playing a distinct yet interconnected role in the value chain. The software segment r

  17. s

    Spatial Multimodal Analysis (SMA) - Spatial Transcriptomics

    • figshare.scilifelab.se
    • researchdata.se
    json
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marco Vicari; Reza Mirzazadeh; Anna Nilsson; Patrik Bjärterot; Ludvig Larsson; Hower Lee; Mats Nilsson; Julia Foyer; Markus Ekvall; Paulo Czarnewski; Xiaoqun Zhang; Per Svenningsson; Per Andrén; Lukas Käll; Joakim Lundeberg (2025). Spatial Multimodal Analysis (SMA) - Spatial Transcriptomics [Dataset]. http://doi.org/10.17044/scilifelab.22778920.v1
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    KTH Royal Institute of Technology, Science for Life Laboratory
    Authors
    Marco Vicari; Reza Mirzazadeh; Anna Nilsson; Patrik Bjärterot; Ludvig Larsson; Hower Lee; Mats Nilsson; Julia Foyer; Markus Ekvall; Paulo Czarnewski; Xiaoqun Zhang; Per Svenningsson; Per Andrén; Lukas Käll; Joakim Lundeberg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains Spatial Transcriptomics (ST) data matching with Matrix Assisted Laser Desorption/Ionization - Mass Spetrometry Imaging (MALDI-MSI). This data is complementary to data contained in the same project. FIles with the same identifiers in the two datasets originated from the very same tissue section and can be combined in a multimodal ST-MSI object. For more information about the dataset please see our manuscript posted on BioRxiv (doi: https://doi.org/10.1101/2023.01.26.525195). This dataset includes ST data from 19 tissue sections, including human post-mortem and mouse samples. The spatial transcriptomics data was generated using the Visium protocol (10x Genomics). The murine tissue sections come from three different mice unilaterally injected with 6-OHDA. 6-OHDA is a neurotoxin that when injected in the brain can selectively destroy dopaminergic neurons. We used this mouse model to show the applicability of the technology that we developed, named Spatial Multimodal Analysis (SMA). Using our technology on these mouse brain tissue sections we were able to detect both dopamine with MALDI-MSI and the corresponding gene expression with ST. This dataset includes also one human post-mortem striatum sample that was placed on one Visium slide across the four capture areas. This sample was analyzed with a different ST protocol named RRST (Mirzazadeh, R., Andrusivova, Z., Larsson, L. et al. Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples. Nat Commun 14, 509 (2023). https://doi.org/10.1038/s41467-023-36071-5), where probes capturing the whole transcriptome are first hybridized in the tissue section and then spatially detected. Each tissue section contained in the dataset has been given a unique identifier that is composed of the Visium array ID and capture area ID of the Visium slide that the tissue section was placed on. This unique identifier is included in the file names of all the files relative to the same tissue section, including the MALDI-MSI files published in the other dataset included in this project. In this dataset you will find the following files for each tissue section: - raw files: these are the read one fastq files (containing the pattern *R1*fastq.gz in the file name), read two fastq files (containing the pattern *R1*fastq.gz in the file name) and the raw microscope images (containing the pattern Spot.jpg in the file name). These are the only files needed to run the Space Ranger pipeline, which is freely available for any user (please see the 10x Genomics website for information on how to install and run Space Ranger); - processed data files: we provide processed data files of two types: a) Space Ranger outputs that were used to produce the figures in our publication; b) manual annotation tables in csv format produced using Loupe Browser 6 (csv tables with file names ending _RegionLoupe.csv, _filter.csv, _dopamine.csv, _lesion.csv, _region.csv patterns); c) json files that we used as input for Space Ranger in the cases where the automatic tissue detection included in the pipeline failed to recognize the tissue or the fiducials. Using these processed files the user can reproduce the figures of our publication without having to restart from the raw data files. The MALDI-MSI analyses preceding ST was performed with different matrices in different tissue section. We used 1) 9-aminoacridine (9-AA) for detection of metabolites in negative ionization mode, 2) 2,5-dihydroxybenzoic acid (DHB) for detection of metabolites in positive ionization mode, 3) 4-(anthracen-9-yl)-2-fluoro-1-ethylpyridin-1-ium iodide (FMP-10), which charge-tags molecules with phenolic hydroxyls and/or primary amines, including neurotransmitters. The information about which matrix was sprayed on the tissue sections and other information about the samples is included in the metadata table. We also used three types of control samples: - standard Visium: samples processed with standard Visium (i.e. no matrix spraying, no MALDI-MSI, protocol as recommended by 10x Gemomics with no exeptions) - internal controls (iCTRL): samples not sprayed with any matrix, neither processed with MALDI-MSI, but located on the same Visium slide were other samples were processed with MALDI-MSI - FMP-10-iCTRL: sample sprayed with FMP-10, and then processed as an iCTRL. This and other information is provided in the metadata table.

  18. Codes in R for spatial statistics analysis, ecological response models and...

    • zenodo.org
    • data.niaid.nih.gov
    bin
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D. W. Rössel-Ramírez; D. W. Rössel-Ramírez; J. Palacio-Núñez; J. Palacio-Núñez; S. Espinosa; S. Espinosa; J. F. Martínez-Montoya; J. F. Martínez-Montoya (2025). Codes in R for spatial statistics analysis, ecological response models and spatial distribution models [Dataset]. http://doi.org/10.5281/zenodo.7603557
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    D. W. Rössel-Ramírez; D. W. Rössel-Ramírez; J. Palacio-Núñez; J. Palacio-Núñez; S. Espinosa; S. Espinosa; J. F. Martínez-Montoya; J. F. Martínez-Montoya
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In the last decade, a plethora of algorithms have been developed for spatial ecology studies. In our case, we use some of these codes for underwater research work in applied ecology analysis of threatened endemic fishes and their natural habitat. For this, we developed codes in Rstudio® script environment to run spatial and statistical analyses for ecological response and spatial distribution models (e.g., Hijmans & Elith, 2017; Den Burg et al., 2020). The employed R packages are as follows: caret (Kuhn et al., 2020), corrplot (Wei & Simko, 2017), devtools (Wickham, 2015), dismo (Hijmans & Elith, 2017), gbm (Freund & Schapire, 1997; Friedman, 2002), ggplot2 (Wickham et al., 2019), lattice (Sarkar, 2008), lattice (Musa & Mansor, 2021), maptools (Hijmans & Elith, 2017), modelmetrics (Hvitfeldt & Silge, 2021), pander (Wickham, 2015), plyr (Wickham & Wickham, 2015), pROC (Robin et al., 2011), raster (Hijmans & Elith, 2017), RColorBrewer (Neuwirth, 2014), Rcpp (Eddelbeuttel & Balamura, 2018), rgdal (Verzani, 2011), sdm (Naimi & Araujo, 2016), sf (e.g., Zainuddin, 2023), sp (Pebesma, 2020) and usethis (Gladstone, 2022).

    It is important to follow all the codes in order to obtain results from the ecological response and spatial distribution models. In particular, for the ecological scenario, we selected the Generalized Linear Model (GLM) and for the geographic scenario we selected DOMAIN, also known as Gower's metric (Carpenter et al., 1993). We selected this regression method and this distance similarity metric because of its adequacy and robustness for studies with endemic or threatened species (e.g., Naoki et al., 2006). Next, we explain the statistical parameterization for the codes immersed in the GLM and DOMAIN running:

    In the first instance, we generated the background points and extracted the values of the variables (Code2_Extract_values_DWp_SC.R). Barbet-Massin et al. (2012) recommend the use of 10,000 background points when using regression methods (e.g., Generalized Linear Model) or distance-based models (e.g., DOMAIN). However, we considered important some factors such as the extent of the area and the type of study species for the correct selection of the number of points (Pers. Obs.). Then, we extracted the values of predictor variables (e.g., bioclimatic, topographic, demographic, habitat) in function of presence and background points (e.g., Hijmans and Elith, 2017).

    Subsequently, we subdivide both the presence and background point groups into 75% training data and 25% test data, each group, following the method of Soberón & Nakamura (2009) and Hijmans & Elith (2017). For a training control, the 10-fold (cross-validation) method is selected, where the response variable presence is assigned as a factor. In case that some other variable would be important for the study species, it should also be assigned as a factor (Kim, 2009).

    After that, we ran the code for the GBM method (Gradient Boost Machine; Code3_GBM_Relative_contribution.R and Code4_Relative_contribution.R), where we obtained the relative contribution of the variables used in the model. We parameterized the code with a Gaussian distribution and cross iteration of 5,000 repetitions (e.g., Friedman, 2002; kim, 2009; Hijmans and Elith, 2017). In addition, we considered selecting a validation interval of 4 random training points (Personal test). The obtained plots were the partial dependence blocks, in function of each predictor variable.

    Subsequently, the correlation of the variables is run by Pearson's method (Code5_Pearson_Correlation.R) to evaluate multicollinearity between variables (Guisan & Hofer, 2003). It is recommended to consider a bivariate correlation ± 0.70 to discard highly correlated variables (e.g., Awan et al., 2021).

    Once the above codes were run, we uploaded the same subgroups (i.e., presence and background groups with 75% training and 25% testing) (Code6_Presence&backgrounds.R) for the GLM method code (Code7_GLM_model.R). Here, we first ran the GLM models per variable to obtain the p-significance value of each variable (alpha ≤ 0.05); we selected the value one (i.e., presence) as the likelihood factor. The generated models are of polynomial degree to obtain linear and quadratic response (e.g., Fielding and Bell, 1997; Allouche et al., 2006). From these results, we ran ecological response curve models, where the resulting plots included the probability of occurrence and values for continuous variables or categories for discrete variables. The points of the presence and background training group are also included.

    On the other hand, a global GLM was also run, from which the generalized model is evaluated by means of a 2 x 2 contingency matrix, including both observed and predicted records. A representation of this is shown in Table 1 (adapted from Allouche et al., 2006). In this process we select an arbitrary boundary of 0.5 to obtain better modeling performance and avoid high percentage of bias in type I (omission) or II (commission) errors (e.g., Carpenter et al., 1993; Fielding and Bell, 1997; Allouche et al., 2006; Kim, 2009; Hijmans and Elith, 2017).

    Table 1. Example of 2 x 2 contingency matrix for calculating performance metrics for GLM models. A represents true presence records (true positives), B represents false presence records (false positives - error of commission), C represents true background points (true negatives) and D represents false backgrounds (false negatives - errors of omission).

    Validation set

    Model

    True

    False

    Presence

    A

    B

    Background

    C

    D

    We then calculated the Overall and True Skill Statistics (TSS) metrics. The first is used to assess the proportion of correctly predicted cases, while the second metric assesses the prevalence of correctly predicted cases (Olden and Jackson, 2002). This metric also gives equal importance to the prevalence of presence prediction as to the random performance correction (Fielding and Bell, 1997; Allouche et al., 2006).

    The last code (i.e., Code8_DOMAIN_SuitHab_model.R) is for species distribution modelling using the DOMAIN algorithm (Carpenter et al., 1993). Here, we loaded the variable stack and the presence and background group subdivided into 75% training and 25% test, each. We only included the presence training subset and the predictor variables stack in the calculation of the DOMAIN metric, as well as in the evaluation and validation of the model.

    Regarding the model evaluation and estimation, we selected the following estimators:

    1) partial ROC, which evaluates the approach between the curves of positive (i.e., correctly predicted presence) and negative (i.e., correctly predicted absence) cases. As farther apart these curves are, the model has a better prediction performance for the correct spatial distribution of the species (Manzanilla-Quiñones, 2020).

    2) ROC/AUC curve for model validation, where an optimal performance threshold is estimated to have an expected confidence of 75% to 99% probability (De Long et al., 1988).

  19. n

    Data from: A new digital method of data collection for spatial point pattern...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    zip
    Updated Jul 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chao Jiang; Xinting Wang (2021). A new digital method of data collection for spatial point pattern analysis in grassland communities [Dataset]. http://doi.org/10.5061/dryad.brv15dv70
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 6, 2021
    Dataset provided by
    Chinese Academy of Agricultural Sciences
    Inner Mongolia University of Technology
    Authors
    Chao Jiang; Xinting Wang
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    A major objective of plant ecology research is to determine the underlying processes responsible for the observed spatial distribution patterns of plant species. Plants can be approximated as points in space for this purpose, and thus, spatial point pattern analysis has become increasingly popular in ecological research. The basic piece of data for point pattern analysis is a point location of an ecological object in some study region. Therefore, point pattern analysis can only be performed if data can be collected. However, due to the lack of a convenient sampling method, a few previous studies have used point pattern analysis to examine the spatial patterns of grassland species. This is unfortunate because being able to explore point patterns in grassland systems has widespread implications for population dynamics, community-level patterns and ecological processes. In this study, we develop a new method to measure individual coordinates of species in grassland communities. This method records plant growing positions via digital picture samples that have been sub-blocked within a geographical information system (GIS). Here, we tested out the new method by measuring the individual coordinates of Stipa grandis in grazed and ungrazed S. grandis communities in a temperate steppe ecosystem in China. Furthermore, we analyzed the pattern of S. grandis by using the pair correlation function g(r) with both a homogeneous Poisson process and a heterogeneous Poisson process. Our results showed that individuals of S. grandis were overdispersed according to the homogeneous Poisson process at 0-0.16 m in the ungrazed community, while they were clustered at 0.19 m according to the homogeneous and heterogeneous Poisson processes in the grazed community. These results suggest that competitive interactions dominated the ungrazed community, while facilitative interactions dominated the grazed community. In sum, we successfully executed a new sampling method, using digital photography and a Geographical Information System, to collect experimental data on the spatial point patterns for the populations in this grassland community.

    Methods 1. Data collection using digital photographs and GIS

    A flat 5 m x 5 m sampling block was chosen in a study grassland community and divided with bamboo chopsticks into 100 sub-blocks of 50 cm x 50 cm (Fig. 1). A digital camera was then mounted to a telescoping stake and positioned in the center of each sub-block to photograph vegetation within a 0.25 m2 area. Pictures were taken 1.75 m above the ground at an approximate downward angle of 90° (Fig. 2). Automatic camera settings were used for focus, lighting and shutter speed. After photographing the plot as a whole, photographs were taken of each individual plant in each sub-block. In order to identify each individual plant from the digital images, each plant was uniquely marked before the pictures were taken (Fig. 2 B).

    Digital images were imported into a computer as JPEG files, and the position of each plant in the pictures was determined using GIS. This involved four steps: 1) A reference frame (Fig. 3) was established using R2V software to designate control points, or the four vertexes of each sub-block (Appendix S1), so that all plants in each sub-block were within the same reference frame. The parallax and optical distortion in the raster images was then geometrically corrected based on these selected control points; 2) Maps, or layers in GIS terminology, were set up for each species as PROJECT files (Appendix S2), and all individuals in each sub-block were digitized using R2V software (Appendix S3). For accuracy, the digitization of plant individual locations was performed manually; 3) Each plant species layer was exported from a PROJECT file to a SHAPE file in R2V software (Appendix S4); 4) Finally each species layer was opened in Arc GIS software in the SHAPE file format, and attribute data from each species layer was exported into Arc GIS to obtain the precise coordinates for each species. This last phase involved four steps of its own, from adding the data (Appendix S5), to opening the attribute table (Appendix S6), to adding new x and y coordinate fields (Appendix S7) and to obtaining the x and y coordinates and filling in the new fields (Appendix S8).

    1. Data reliability assessment

    To determine the accuracy of our new method, we measured the individual locations of Leymus chinensis, a perennial rhizome grass, in representative community blocks 5 m x 5 m in size in typical steppe habitat in the Inner Mongolia Autonomous Region of China in July 2010 (Fig. 4 A). As our standard for comparison, we used a ruler to measure the individual coordinates of L. chinensis. We tested for significant differences between (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler (see section 3.2 Data Analysis). If (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler, did not differ significantly, then we could conclude that our new method of measuring the coordinates of L. chinensis was reliable.

    We compared the results using a t-test (Table 1). We found no significant differences in either (1) the coordinates of L. chinensis or (2) the pair correlation function g of L. chinensis. Further, we compared the pattern characteristics of L. chinensis when measured by our new method against the ruler measurements using a null model. We found that the two pattern characteristics of L. chinensis did not differ significantly based on the homogenous Poisson process or complete spatial randomness (Fig. 4 B). Thus, we concluded that the data obtained using our new method was reliable enough to perform point pattern analysis with a null model in grassland communities.

  20. m

    GeoStoryTelling

    • data.mendeley.com
    Updated Apr 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manuel Gonzalez Canche (2023). GeoStoryTelling [Dataset]. http://doi.org/10.17632/nh2c5t3vf9.1
    Explore at:
    Dataset updated
    Apr 21, 2023
    Authors
    Manuel Gonzalez Canche
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Database created for replication of GeoStoryTelling. Our life stories evolve in specific and contextualized places. Although our homes may be our primarily shaping environment, our homes are themselves situated in neighborhoods that expose us to the immediate “real world” outside home. Indeed, the places where we are currently experiencing, and have experienced life, play a fundamental role in gaining a deeper and more nuanced understanding of our beliefs, fears, perceptions of the world, and even our prospects of social mobility. Despite the immediate impact of the places where we experience life in reaching a better understanding of our life stories, to date most qualitative and mixed methods researchers forego the analytic and elucidating power that geo-contextualizing our narratives bring to social and health research. From this view then, most research findings and conclusions may have been ignoring the spatial contexts that most likely have shaped the experiences of research participants. The main reason for the underuse of these geo-contextualized stories is the requirement of specialized training in geographical information systems and/or computer and statistical programming along with the absence of cost-free and user-friendly geo-visualization tools that may allow non-GIS experts to benefit from geo-contextualized outputs. To address this gap, we present GeoStoryTelling, an analytic framework and user-friendly, cost-free, multi-platform software that enables researchers to visualize their geo-contextualized data narratives. The use of this software (available in Mac and Windows operative systems) does not require users to learn GIS nor computer programming to obtain state-of-the-art, and visually appealing maps. In addition to providing a toy database to fully replicate the outputs presented, we detail the process that researchers need to follow to build their own databases without the need of specialized external software nor hardware. We show how the resulting HTML outputs are capable of integrating a variety of multi-media inputs (i.e., text, image, videos, sound recordings/music, and hyperlinks to other websites) to provide further context to the geo-located stories we are sharing (example https://cutt.ly/k7X9tfN). Accordingly, the goals of this paper are to describe the components of the methodology, the steps to construct the database, and to provide unrestricted access to the software tool, along with a toy dataset so that researchers may interact first-hand with GeoStoryTelling and fully replicate the outputs discussed herein. Since GeoStoryTelling relied on OpenStreetMap its applications may be used worldwide, thus strengthening its potential reach to the mixed methods and qualitative scientific communities, regardless of location around the world. Keywords: Geographical Information Systems; Interactive Visualizations; Data StoryTelling; Mixed Methods & Qualitative Research Methodologies; Spatial Data Science; Geo-Computation.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
Organization logo

Geodatabase for the Baltimore Ecosystem Study Spatial Data

Explore at:
Dataset updated
Apr 1, 2020
Dataset provided by
Long Term Ecological Research Networkhttp://www.lternet.edu/
Authors
Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
Time period covered
Jan 1, 1999 - Jun 1, 2014
Area covered
Description

The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

Search
Clear search
Close search
Google apps
Main menu