100+ datasets found
  1. Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

  2. H

    Replication Data for the Turnout Example in Chapter 6 of Spatial Analysis...

    • dataverse.harvard.edu
    Updated Jun 28, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Darmofal (2015). Replication Data for the Turnout Example in Chapter 6 of Spatial Analysis for the Social Sciences [Dataset]. http://doi.org/10.7910/DVN/NGVKUS
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 28, 2015
    Dataset provided by
    Harvard Dataverse
    Authors
    David Darmofal
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Replication data for the turnout example in Chapter 6 of Spatial Analysis for the Social Sciences.

  3. Data from: BIBLIOMETRIC MAPPING OF PAPERS ON GEOGRAPHICAL INFORMATION...

    • scielo.figshare.com
    jpeg
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandre Vastella Ferreira de Melo; Alfredo Pereira de Queiroz (2023). BIBLIOMETRIC MAPPING OF PAPERS ON GEOGRAPHICAL INFORMATION SYSTEMS (2007-2016) [Dataset]. http://doi.org/10.6084/m9.figshare.9986138.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Alexandre Vastella Ferreira de Melo; Alfredo Pereira de Queiroz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract The amount of researchers and scientific papers rapidly grows, annually. The metrics to analyze the quality and quantity of these publications have consolidated in the academic world. A bibliometric mapping of scientific papers on Geographic Information Systems (GIS) published between 2007 and 2016 was carried out. The sample analyzed 2,053 papers, extracted from twenty journals of the Web of Science Core Collection platform. The following were evaluated: total number of publications, production by area of knowledge and by country, authors, periodicals and the most cited words. The results shows that 2012 and 2013 were the most productive periods, and that the annual growth rate of publication was 1.8%. The most significant academic areas were Geography, Computer Science, Physical Geography, and Environmental Sciences/Ecology. The three major publishing clusters were North America, Western Europe, and Eastern Asia. The International Journal of Geographic Information Science was considered the most important journal. The most relevant topics were cellular automata, relationship between GIS and users, integration of GIS with remote sensing, different land use classification methods, and critical reflections on technologies and GIS.

  4. d

    Global 3D Maps | Spatial Models Training Data | 165K Locations | Machine...

    • datarade.ai
    .bin, .json, .csv
    Updated May 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Over The Reality (2025). Global 3D Maps | Spatial Models Training Data | 165K Locations | Machine Learning Data | 0.73 PB Data [Dataset]. https://datarade.ai/data-products/global-3d-maps-spatial-models-training-data-125k-location-over-the-reality
    Explore at:
    .bin, .json, .csvAvailable download formats
    Dataset updated
    May 21, 2025
    Authors
    Over The Reality
    Area covered
    Curaçao, Latvia, Thailand, Saudi Arabia, Cambodia, Virgin Islands (British), Norway, San Marino, Denmark, Sao Tome and Principe
    Description

    Our dataset delivers unprecedented scale and diversity for geospatial AI training:

    🌍 Massive scale: 165,000 unique 3D map sequences and locations, 82,000,000 images, 0.73 PB of Data, orders of magnitude larger than datasets currently used for SOTA Vision/Spatial Models.

    ⏱️ Constantly growing dataset: 12k new 3D Map sequences and locations monthly.

    📷 Full-frame, high-res captures: OVER retains full-resolution, dynamic aspect-ratio images with complete Exif metadata (GPS, timestamp, device orientation), multiple resolutions 1920x1080 - 3840x2880, pre-computed COLMAP poses.

    🧭 Global diversity: Environments span urban, suburban, rural, and natural settings across 120+ countries, capturing architectural, infrastructural, and environmental variety.

    📐 Rich metadata: Per-image geolocation (±3 m accuracy), timestamps, device pose, COLMAP pose; per-map calibration data (camera intrinsics/extrinsics).

    🧠 Applications: Spatial Models Training, Multi-view stereo & NeRF/3DGS training, semantic segmentation, novel view synthesis, 3D object detection, geolocation, urban planning, AR/VR, autonomous navigation.

    🤗 1k Scenes Sample: You can access our 1,000-scene sample under the CC-BY-NC license at this link: https://huggingface.co/datasets/OverTheReality/OverMaps_1k

  5. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2024 - 2028
    Area covered
    Canada, United States
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover

  6. Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States

    • zenodo.org
    • data.niaid.nih.gov
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter K. Rogan; Peter K. Rogan (2020). Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States [Dataset]. http://doi.org/10.5281/zenodo.4032708
    Explore at:
    Dataset updated
    Sep 17, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter K. Rogan; Peter K. Rogan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Geostatistics analyzes and predicts the values associated with spatial or spatial-temporal phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data within the analyses. It is a practical means of describing spatial patterns and interpolating values for locations where samples were not taken (and measures the uncertainty of those values, which is critical to informed decision making). This archive contains results of geostatistical analysis of COVID-19 case counts for all available US counties. Test results were obtained with ArcGIS Pro (ESRI). Sources are state health departments, which are scraped and aggregated by the Johns Hopkins Coronavirus Resource Center and then pre-processed by MappingSupport.com.

    This update of the Zenodo dataset (version 6) consists of three compressed archives containing geostatistical analyses of SARS-CoV-2 testing data. This dataset utilizes many of the geostatistical techniques used in previous versions of this Zenodo archive, but has been significantly expanded to include analyses of up-to-date U.S. COVID-19 case data (from March 24th to September 8th, 2020):

    Archive #1: “1.Geostat. Space-Time analysis of SARS-CoV-2 in the US (Mar24-Sept6).zip” – results of a geostatistical analysis of COVID-19 cases incorporating spatially-weighted hotspots that are conserved over one-week timespans. Results are reported starting from when U.S. COVID-19 case data first became available (March 24th, 2020) for 25 consecutive 1-week intervals (March 24th through to September 6th, 2020). Hotspots, where found, are reported in each individual state, rather than the entire continental United States.

    Archive #2: "2.Geostat. Spatial analysis of SARS-CoV-2 in the US (Mar24-Sept8).zip" – the results from geostatistical spatial analyses only of corrected COVID-19 case data for the continental United States, spanning the period from March 24th through September 8th, 2020. The geostatistical techniques utilized in this archive includes ‘Hot Spot’ analysis and ‘Cluster and Outlier’ analysis.

    Archive #3: "3.Kriging and Densification of SARS-CoV-2 in LA and MA.zip" – this dataset provides preliminary kriging and densification analysis of COVID-19 case data for certain dates within the U.S. states of Louisiana and Massachusetts.

    These archives consist of map files (as both static images and as animations) and data files (including text files which contain the underlying data of said map files [where applicable]) which were generated when performing the following Geostatistical analyses: Hot Spot analysis (Getis-Ord Gi*) [‘Archive #1’: consecutive weeklong Space-Time Hot Spot analysis; ‘Archive #2’: daily Hot Spot Analysis], Cluster and Outlier analysis (Anselin Local Moran's I) [‘Archive #2’], Spatial Autocorrelation (Global Moran's I) [‘Archive #2’], and point-to-point comparisons with Kriging and Densification analysis [‘Archive #3’].

    The Word document provided ("Description-of-Archive.Updated-Geostatistical-Analysis-of-SARS-CoV-2 (version 6).docx") details the contents of each file and folder within these three archives and gives general interpretations of these results.

  7. Socio-Demographic Predictors and Distribution of Pulmonary Tuberculosis (TB)...

    • plos.figshare.com
    tiff
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atikaimu Wubuli; Feng Xue; Daobin Jiang; Xuemei Yao; Halmurat Upur; Qimanguli Wushouer (2023). Socio-Demographic Predictors and Distribution of Pulmonary Tuberculosis (TB) in Xinjiang, China: A Spatial Analysis [Dataset]. http://doi.org/10.1371/journal.pone.0144010
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Atikaimu Wubuli; Feng Xue; Daobin Jiang; Xuemei Yao; Halmurat Upur; Qimanguli Wushouer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Xinjiang, China
    Description

    ObjectivesXinjiang is one of the high TB burden provinces of China. A spatial analysis was conducted using geographical information system (GIS) technology to improve the understanding of geographic variation of the pulmonary TB occurrence in Xinjiang, its predictors, and to search for targeted interventions.MethodsNumbers of reported pulmonary TB cases were collected at county/district level from TB surveillance system database. Population data were extracted from Xinjiang Statistical Yearbook (2006~2014). Spatial autocorrelation (or dependency) was assessed using global Moran’s I statistic. Anselin’s local Moran’s I and local Getis-Ord statistics were used to detect local spatial clusters. Ordinary least squares (OLS) regression, spatial lag model (SLM) and geographically-weighted regression (GWR) models were used to explore the socio-demographic predictors of pulmonary TB incidence from global and local perspectives. SPSS17.0, ArcGIS10.2.2, and GeoDA software were used for data analysis.ResultsIncidence of sputum smear positive (SS+) TB and new SS+TB showed a declining trend from 2005 to 2013. Pulmonary TB incidence showed a declining trend from 2005 to 2010 and a rising trend since 2011 mainly caused by the rising trend of sputum smear negative (SS-) TB incidence (p

  8. Geospatial Data | Global Map data | Administrative boundaries | Global...

    • datarade.ai
    .json, .xml
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Geospatial Data | Global Map data | Administrative boundaries | Global coverage | 245k Polygons [Dataset]. https://datarade.ai/data-products/geopostcodes-geospatial-data-global-map-data-administrati-geopostcodes-a4bf
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Germany, United Kingdom, United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  9. Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

  10. d

    Replication Data for the Higher Education Spending Example in Chapter 6 of...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Darmofal, David (2023). Replication Data for the Higher Education Spending Example in Chapter 6 of Spatial Analysis for the Social Sciences [Dataset]. http://doi.org/10.7910/DVN/7YZEVD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Darmofal, David
    Description

    Replication data for the higher education spending example in Chapter 6 of Spatial Analysis for the Social Sciences.

  11. d

    Geospatial Data | 164M+ Global Places

    • datarade.ai
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). Geospatial Data | 164M+ Global Places [Dataset]. https://datarade.ai/data-products/geospatial-data-164m-global-places-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    InfobelPRO
    Area covered
    United Kingdom, France, United States
    Description

    Unlock the power of 164M+ verified locations across 220+ countries with high-precision geospatial data. Featuring 50+ enriched attributes including coordinates, building type, and geometry. Our AI-powered dataset ensures unmatched accuracy through advanced deduplication and enrichment. With 30+ years of industry expertise, we deliver trusted, customizable data solutions for mapping, navigation, urban planning, and marketing, empowering smarter decision-making and strategic growth.

    Key use cases of Geospatial data have helped our customers in several areas:

    1. Gain a Competitive Edge with Smarter Mapping : Use geospatial data to analyse competitors, identify high-traffic zones, and optimize locations for maximum impact.
    2. Enhance Navigation & Location-Based Engagement : Improve turn-by-turn navigation, EV charging station discovery, and real-time travel insights for seamless customer experiences.
    3. Find High-Value Locations for Business Growth : Leverage geospatial intelligence to select profitable retail sites, franchise locations, and warehouses with precision.
    4. Streamline Deliveries & Address Validation : Improve shipping accuracy, reduce failed deliveries, and optimize courier routes for better customer satisfaction.
    5. Drive Smarter Decisions with Spatial Analysis : Utilize location intelligence for disaster risk assessment, public health campaigns, and agricultural planning.
  12. d

    GIS Data | Global Geospatial data | Postal/Administrative boundaries |...

    • datarade.ai
    .json, .xml
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). GIS Data | Global Geospatial data | Postal/Administrative boundaries | Countries, Regions, Cities, Suburbs, and more [Dataset]. https://datarade.ai/data-products/geopostcodes-gis-data-gesopatial-data-postal-administrati-geopostcodes
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    France, United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (GIS data, Geospatial data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the GIS data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  13. H

    Replication Data for the Poverty Rates Example in Chapter 4 of Spatial...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Jun 28, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Darmofal (2015). Replication Data for the Poverty Rates Example in Chapter 4 of Spatial Analysis for the Social Sciences [Dataset]. http://doi.org/10.7910/DVN/OCINEV
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 28, 2015
    Dataset provided by
    Harvard Dataverse
    Authors
    David Darmofal
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Replication data for the poverty rates example in Chapter 4 of Spatial Analysis for the Social Sciences.

  14. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +1more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  15. USAID DHS Spatial Data Repository

    • datalumos.org
    delimited
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USAID (2025). USAID DHS Spatial Data Repository [Dataset]. http://doi.org/10.3886/E224321V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    United States Agency for International Developmenthttp://usaid.gov/
    Authors
    USAID
    License

    https://creativecommons.org/share-your-work/public-domain/pdmhttps://creativecommons.org/share-your-work/public-domain/pdm

    Time period covered
    1984 - 2023
    Area covered
    World
    Description

    This collection consists of geospatial data layers and summary data at the country and country sub-division levels that are part of USAID's Demographic Health Survey Spatial Data Repository. This collection includes geographically-linked health and demographic data from the DHS Program and the U.S. Census Bureau for mapping in a geographic information system (GIS). The data includes indicators related to: fertility, family planning, maternal and child health, gender, HIV/AIDS, literacy, malaria, nutrition, and sanitation. Each set of files is associated with a specific health survey for a given year for over 90 different countries that were part of the following surveys:Demographic Health Survey (DHS)Malaria Indicator Survey (MIS)Service Provisions Assessment (SPA)Other qualitative surveys (OTH)Individual files are named with identifiers that indicate: country, survey year, survey, and in some cases the name of a variable or indicator. A list of the two-letter country codes is included in a CSV file.Datasets are subdivided into the following folders:Survey boundaries: polygon shapefiles of administrative subdivision boundaries for countries used in specific surveys. Indicator data: polygon shapefiles and geodatabases of countries and subdivisions with 25 of the most common health indicators collected in the DHS. Estimates generated from survey data.Modeled surfaces: geospatial raster files that represent gridded population and health indicators generated from survey data, for several countries.Geospatial covariates: CSV files that link survey cluster locations to ancillary data (known as covariates) that contain data on topics including population, climate, and environmental factors.Population estimates: spreadsheets and polygon shapefiles for countries and subdivisions with 5-year age/sex group population estimates and projections for 2000-2020 from the US Census Bureau, for designated countries in the PEPFAR program.Workshop materials: a tutorial with sample data for learning how to map health data using DHS SDR datasets with QGIS. Documentation that is specific to each dataset is included in the subfolders, and a methodological summary for all of the datasets is included in the root folder as an HTML file. File-level metadata is available for most files. Countries for which data included in the repository include: Afghanistan, Albania, Angola, Armenia, Azerbaijan, Bangladesh, Benin, Bolivia, Botswana, Brazil, Burkina Faso, Burundi, Cape Verde, Cambodia, Cameroon, Central African Republic, Chad, Colombia, Comoros, Congo, Congo (Democratic Republic of the), Cote d'Ivoire, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Eswatini (Swaziland), Ethiopia, Gabon, Gambia, Ghana, Guatemala, Guinea, Guyana, Haiti, Honduras, India, Indonesia, Jordan, Kazakhstan, Kenya, Kyrgyzstan, Lesotho, Liberia, Madagascar, Malawi, Maldives, Mali, Mauritania, Mexico, Moldova, Morocco, Mozambique, Myanmar, Namibia, Nepal, Nicaragua, Niger, Nigeria, Pakistan, Papua New Guinea, Paraguay, Peru, Philippines, Russia, Rwanda, Samoa, Sao Tome and Principe, Senegal, Sierra Leone, South Africa, Sri Lanka, Sudan, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, Uzbekistan, Viet Nam, Yemen, Zambia, Zimbabwe

  16. Analysis of a spatial point pattern in relation to a reference point Program...

    • figshare.com
    txt
    Updated Sep 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous (2023). Analysis of a spatial point pattern in relation to a reference point Program main.cpp (c++) Data sample.csv [Dataset]. http://doi.org/10.6084/m9.figshare.23500326.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Sep 21, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Anonymous
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper develops a new method for analyzing the relationship between a set of points and another single point, the latter of which we call a reference point.

  17. Supporting data for MuSpAn: A toolbox for Multiscale Spatial Analysis

    • zenodo.org
    zip
    Updated Oct 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joshua W. Moore; Joshua W. Moore; Joshua Bull; Joshua Bull; Shania Corry; Muyang Lin; Hayley Belnoue-Davis; Eoghan Mulholland-Illingworth; Simon Leedham; Helen Byrne; Shania Corry; Muyang Lin; Hayley Belnoue-Davis; Eoghan Mulholland-Illingworth; Simon Leedham; Helen Byrne (2025). Supporting data for MuSpAn: A toolbox for Multiscale Spatial Analysis [Dataset]. http://doi.org/10.5281/zenodo.17176282
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 22, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Joshua W. Moore; Joshua W. Moore; Joshua Bull; Joshua Bull; Shania Corry; Muyang Lin; Hayley Belnoue-Davis; Eoghan Mulholland-Illingworth; Simon Leedham; Helen Byrne; Shania Corry; Muyang Lin; Hayley Belnoue-Davis; Eoghan Mulholland-Illingworth; Simon Leedham; Helen Byrne
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the data required to reproduce all analyses presented for the manuscript:

    MuSpAn: A Toolbox for Multiscale Spatial Analysis


    The data is organised into two main folders:

    1. domains_for_figs_2_to_6 (MuSpAn domains)

      • Four domains of increasing size from regions within a healthy mouse colon (10x Genomics Colon Atlas panel).

      • Four samples of AKPT mouse tumors (10x Genomics 480 custom panel).

    2. misc_checkpoint_data (Metadata - analysis checkpointing)

      • Colormap dictionaries for consistent visualization with the published figures.

      • Checkpointing files to support analyses requiring extended computation times.

      • Annotation data used for MuSpAn labeling.

    The MuSpAn domains were created and saved using v1.2.0 of MuSpAn. This data is to be used with the associate python notebooks which can be found at:

    https://github.com/joshwillmoore1/Supporting_material_muspan_paper

    These notebooks both reproduce the analysis conducted in the study and serve as example material for MuSpAn usage, fully explained and linked to relevent documentation.

  18. North America Geographic Information System Market Analysis - Size and...

    • technavio.com
    pdf
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). North America Geographic Information System Market Analysis - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/north-america-gis-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    North America
    Description

    Snapshot img

    North America Geographic Information System Market Size 2025-2029

    The geographic information system market size in North America is forecast to increase by USD 11.4 billion at a CAGR of 23.7% between 2024 and 2029.

    The market is experiencing significant growth due to the increasing adoption of advanced technologies such as artificial intelligence, satellite imagery, and sensors in various industries. In fleet management, GIS software is being used to optimize routes and improve operational efficiency. In the context of smart cities, GIS solutions are being utilized for content delivery, public safety, and building information modeling. The demand for miniaturization of technologies is also driving the market, allowing for the integration of GIS into smaller devices and applications. However, data security concerns remain a challenge, as the collection and storage of sensitive information requires robust security measures. The insurance industry is also leveraging GIS for telematics and risk assessment, while the construction sector uses GIS for server-based project management and planning. Overall, the GIS market is poised for continued growth as these trends and applications continue to evolve.
    

    What will be the Size of the market During the Forecast Period?

    Request Free Sample

    The Geographic Information System (GIS) market encompasses a range of technologies and applications that enable the collection, management, analysis, and visualization of spatial data. Key industries driving market growth include transportation, infrastructure planning, urban planning, and environmental monitoring. Remote sensing technologies, such as satellite imaging and aerial photography, play a significant role in data collection. Artificial intelligence and the Internet of Things (IoT) are increasingly integrated into GIS solutions for real-time location data processing and operational efficiency.
    Applications span various sectors, including agriculture, natural resources, construction, and smart cities. GIS is essential for infrastructure analysis, disaster management, and land management. Geospatial technology enables spatial data integration, providing valuable insights for decision-making and optimization. Market size is substantial and growing, fueled by increasing demand for efficient urban planning, improved infrastructure, and environmental sustainability. Geospatial startups continue to emerge, innovating in areas such as telematics, natural disasters, and smart city development.
    

    How is this market segmented and which is the largest segment?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Component
    
      Software
      Data
      Services
    
    
    Deployment
    
      On-premise
      Cloud
    
    
    Geography
    
      North America
    
        Canada
        Mexico
        US
    

    By Component Insights

    The software segment is estimated to witness significant growth during the forecast period.
    

    The Geographic Information System (GIS) market encompasses desktop, mobile, cloud, and server software for managing and analyzing spatial data. In North America, industry-specific GIS software dominates, with some commercial entities providing open-source alternatives for limited functions like routing and geocoding. Despite this, counterfeit products pose a threat, making open-source software a viable option for smaller applications. Market trends indicate a shift towards cloud-based GIS solutions for enhanced operational efficiency and real-time location data. Spatial data applications span various sectors, including transportation infrastructure planning, urban planning, natural resources management, environmental monitoring, agriculture, and disaster management. Technological innovations, such as artificial intelligence, the Internet of Things (IoT), and satellite imagery, are revolutionizing GIS solutions.

    Cloud-based GIS solutions, IoT integration, and augmented reality are emerging trends. Geospatial technology is essential for smart city projects, climate monitoring, intelligent transportation systems, and land management. Industry statistics indicate steady growth, with key players focusing on product innovation, infrastructure optimization, and geospatial utility solutions.

    Get a glance at the market report of share of various segments Request Free Sample

    Market Dynamics

    Our North America Geographic Information System Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.

    What are the key market drivers leading to the rise in the adoption of the North America Geographic Information System Market?

    Rising applications of geographic

  19. 🌎 Location Intelligence Data | From Google Map

    • kaggle.com
    zip
    Updated Apr 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Azhar Saleem (2024). 🌎 Location Intelligence Data | From Google Map [Dataset]. https://www.kaggle.com/datasets/azharsaleem/location-intelligence-data-from-google-map
    Explore at:
    zip(1911275 bytes)Available download formats
    Dataset updated
    Apr 21, 2024
    Authors
    Azhar Saleem
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    👨‍💻 Author: Azhar Saleem

    "https://github.com/azharsaleem18" target="_blank"> https://img.shields.io/badge/GitHub-Profile-blue?style=for-the-badge&logo=github" alt="GitHub Profile"> "https://www.kaggle.com/azharsaleem" target="_blank"> https://img.shields.io/badge/Kaggle-Profile-blue?style=for-the-badge&logo=kaggle" alt="Kaggle Profile"> "https://www.linkedin.com/in/azhar-saleem/" target="_blank"> https://img.shields.io/badge/LinkedIn-Profile-blue?style=for-the-badge&logo=linkedin" alt="LinkedIn Profile">
    "https://www.youtube.com/@AzharSaleem19" target="_blank"> https://img.shields.io/badge/YouTube-Profile-red?style=for-the-badge&logo=youtube" alt="YouTube Profile"> "https://www.facebook.com/azhar.saleem1472/" target="_blank"> https://img.shields.io/badge/Facebook-Profile-blue?style=for-the-badge&logo=facebook" alt="Facebook Profile"> "https://www.tiktok.com/@azhar_saleem18" target="_blank"> https://img.shields.io/badge/TikTok-Profile-blue?style=for-the-badge&logo=tiktok" alt="TikTok Profile">
    "https://twitter.com/azhar_saleem18" target="_blank"> https://img.shields.io/badge/Twitter-Profile-blue?style=for-the-badge&logo=twitter" alt="Twitter Profile"> "https://www.instagram.com/azhar_saleem18/" target="_blank"> https://img.shields.io/badge/Instagram-Profile-blue?style=for-the-badge&logo=instagram" alt="Instagram Profile"> "mailto:azharsaleem6@gmail.com"> https://img.shields.io/badge/Email-Contact%20Me-red?style=for-the-badge&logo=gmail" alt="Email Contact">

    Dataset Overview

    Welcome to the Google Places Comprehensive Business Dataset! This dataset has been meticulously scraped from Google Maps and presents extensive information about businesses across several countries. Each entry in the dataset provides detailed insights into business operations, location specifics, customer interactions, and much more, making it an invaluable resource for data analysts and scientists looking to explore business trends, geographic data analysis, or consumer behaviour patterns.

    Key Features

    • Business Details: Includes unique identifiers, names, and contact information.
    • Geolocation Data: Precise latitude and longitude for pinpointing business locations on a map.
    • Operational Timings: Detailed opening and closing hours for each day of the week, allowing analysis of business activity patterns.
    • Customer Engagement: Data on review counts and ratings, offering insights into customer satisfaction and business popularity.
    • Additional Attributes: Links to business websites, time zone information, and country-specific details enrich the dataset for comprehensive analysis.

    Potential Use Cases

    This dataset is ideal for a variety of analytical projects, including: - Market Analysis: Understand business distribution and popularity across different regions. - Customer Sentiment Analysis: Explore relationships between customer ratings and business characteristics. - Temporal Trend Analysis: Analyze patterns of business activity throughout the week. - Geospatial Analysis: Integrate with mapping software to visualise business distribution or cluster businesses based on location.

    Dataset Structure

    The dataset contains 46 columns, providing a thorough profile for each listed business. Key columns include:

    • business_id: A unique Google Places identifier for each business, ensuring distinct entries.
    • phone_number: The contact number associated with the business. It provides a direct means of communication.
    • name: The official name of the business as listed on Google Maps.
    • full_address: The complete postal address of the business, including locality and geographic details.
    • latitude: The geographic latitude coordinate of the business location, useful for mapping and spatial analysis.
    • longitude: The geographic longitude coordinate of the business location.
    • review_count: The total number of reviews the business has received on Google Maps.
    • rating: The average user rating out of 5 for the business, reflecting customer satisfaction.
    • timezone: The world timezone the business is located in, important for temporal analysis.
    • website: The official website URL of the business, providing further information and contact options.
    • category: The category or type of service the business provides, such as restaurant, museum, etc.
    • claim_status: Indicates whether the business listing has been claimed by the owner on Google Maps.
    • plus_code: A sho...
  20. f

    fdata-02-00044_Parallel Processing Strategies for Big Geospatial Data.pdf

    • frontiersin.figshare.com
    pdf
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Werner (2023). fdata-02-00044_Parallel Processing Strategies for Big Geospatial Data.pdf [Dataset]. http://doi.org/10.3389/fdata.2019.00044.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Frontiers
    Authors
    Martin Werner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper provides an abstract analysis of parallel processing strategies for spatial and spatio-temporal data. It isolates aspects such as data locality and computational locality as well as redundancy and locally sequential access as central elements of parallel algorithm design for spatial data. Furthermore, the paper gives some examples from simple and advanced GIS and spatial data analysis highlighting both that big data systems have been around long before the current hype of big data and that they follow some design principles which are inevitable for spatial data including distributed data structures and messaging, which are, however, incompatible with the popular MapReduce paradigm. Throughout this discussion, the need for a replacement or extension of the MapReduce paradigm for spatial data is derived. This paradigm should be able to deal with the imperfect data locality inherent to spatial data hindering full independence of non-trivial computational tasks. We conclude that more research is needed and that spatial big data systems should pick up more concepts like graphs, shortest paths, raster data, events, and streams at the same time instead of solving exactly the set of spatially separable problems such as line simplifications or range queries in manydifferent ways.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
Organization logo

Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

Explore at:
Dataset updated
Sep 10, 2022
Dataset provided by
CKANhttps://ckan.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

Search
Clear search
Close search
Google apps
Main menu