Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pen-and-paper homework and project-based learning are both commonly used instructional methods in introductory statistics courses. However, there have been few studies comparing these two methods exclusively. In this case study, each was used in two different sections of the same introductory statistics course at a regional state university. Students’ statistical literacy was measured by exam scores across the course, including the final. The comparison of the two instructional methods includes using descriptive statistics and two-sample t-tests, as well authors’ reflections on the instructional methods. Results indicated that there is no statistically discernible difference between the two instructional methods in the introductory statistics course.
The Project for Statistics on Living standards and Development was a coutrywide World Bank Living Standards Measurement Survey. It covered approximately 9000 households, drawn from a representative sample of South African households. The fieldwork was undertaken during the nine months leading up to the country's first democratic elections at the end of April 1994. The purpose of the survey was to collect statistical information about the conditions under which South Africans live in order to provide policymakers with the data necessary for planning strategies. This data would aid the implementation of goals such as those outlined in the Government of National Unity's Reconstruction and Development Programme.
National coverage
All Household members.
Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described above for the households in ESDs.
Sample survey data [ssd]
Sample size is 9,000 households
The sample design adopted for the study was a two-stage self-weightingdesign in which the first stage units were Census Enumerator Subdistricts (ESDs, or their equivalent) and the second stage were households.
The advantage of using such a design is that it provides a representative sample that need not be based on accurate census population distribution.in the case of South Africa, the sample will automatically include many poor people, without the need to go beyond this and oversample the poor. Proportionate sampling as in such a self-weighting sample design offers the simplest possible data files for further analysis, as weights do not have to be added. However, in the end this advantage could not be retained and weights had to be added.
The sampling frame was drawn up on the basis of small, clearly demarcated area units, each with a population estimate. The nature of the self-weighting procedure adopted ensured that this population estimate was not important for determining the final sample, however. For most of the country, census ESDs were used. Where some ESDs comprised relatively large populations as for instance in some black townships such as Soweto, aerial photographs were used to divide the areas into blocks of approximately equal population size. In other instances, particularly in some of the former homelands, the area units were not ESDs but villages or village groups.
In the sample design chosen, the area stage units (generally ESDs) were selected with probability proportional to size, based on the census population. Systematic sampling was used throughout that is, sampling at fixed interval in a list of ESDs, starting at a randomly selected starting point. Given that sampling was self-weighting, the impact of stratification was expected to be modest. The main objective was to ensure that the racial and geographic breakdown approximated the national population distribution. This was done by listing the area stage units (ESDs) by statistical region and then within the statistical region by urban or rural. Within these sub-statistical regions, the ESDs were then listed in order of percentage African. The sampling interval for the selection of the ESDs was obtained by dividing the 1991 census population of 38,120,853 by the 300 clusters to be selected. This yielded 105,800. Starting at a randomly selected point, every 105,800th person down the cluster list was selected. This ensured both geographic and racial diversity (ESDs were ordered by statistical sub-region and proportion of the population African). In three or four instances, the ESD chosen was judged inaccessible and replaced with a similar one.
In the second sampling stage the unit of analysis was the household. In each selected ESD a listing or enumeration of households was carried out by means of a field operation. From the households listed in an ESD a sample of households was selected by systematic sampling. Even though the ultimate enumeration unit was the household, in most cases "stands" were used as enumeration units. However, when a stand was chosen as the enumeration unit all households on that stand had to be interviewed.
Census population data, however, was available only for 1991. An assumption on population growth was thus made to obtain an approximation of the population size for 1993, the year of the survey. The sampling interval at the level of the household was determined in the following way: Based on the decision to have a take of 125 individuals on average per cluster (i.e. assuming 5 members per household to give an average cluster size of 25 households), the interval of households to be selected was determined as the census population divided by 118.1, i.e. allowing for population growth since the census. It was subsequently discovered that population growth was slightly over-estimated but this had little effect on the findings of the survey.
Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described abovefor the households in ESDs.
Face-to-face [f2f]
The main instrument used in the survey was a comprehensive household questionnaire. This questionnaire covered a wide range of topics but was not intended to provide exhaustive coverage of any single subject. In other words, it was an integrated questionnaire aimed at capturing different aspects of living standards. The topics covered included demography, household services, household expenditure, educational status and expenditure, remittances and marital maintenance, land access and use, employment and income, health status and expenditure and anthropometry (children under the age of six were weighed and their heights measured). This questionnaire was available to households in two languages, namely English and Afrikaans. In addition, interviewers had in their possession a translation in the dominant African language/s of the region.
In addition to the detailed household questionnaire referred to above, a community questionnaire was administered in each cluster of the sample. The purpose of this questionnaire was to elicit information on the facilities available to the community in each cluster. Questions related primarily to the provision of education, health and recreational facilities. Furthermore there was a detailed section for the prices of a range of commodities from two retail sources in or near the cluster: a formal source such as a supermarket and a less formal one such as the "corner cafe" or a "spaza". The purpose of this latter section was to obtain a measure of regional price variation both by region and by retail source. These prices were obtained by the interviewer. For the questions relating to the provision of facilities, respondents were "prominent" members of the community such as school principals, priests and chiefs.
All the questionnaires were checked when received. Where information was incomplete or appeared contradictory, the questionnaire was sent back to the relevant survey organization. As soon as the data was available, it was captured using local development platform ADE. This was completed in February 1994. Following this, a series of exploratory programs were written to highlight inconsistencies and outlier. For example, all person level files were linked together to ensure that the same person code reported in different sections of the questionnaire corresponded to the same person. The error reports from these programs were compared to the questionnaires and the necessary alterations made. This was a lengthy process, as several files were checked more than once, and completed at the beginning of August 1994. In some cases questionnaires would contain missing values, or comments that the respondent did not know, or refused to answer a question.
These responses are coded in the data files with the following values: VALUE MEANING -1 : The data was not available on the questionnaire or form -2 : The field is not applicable -3 : Respondent refused to answer -4 : Respondent did not know answer to question
The data collected in clusters 217 and 218 should be viewed as highly unreliable and therefore removed from the data set. The data currently available on the web site has been revised to remove the data from these clusters. Researchers who have downloaded the data in the past should revise their data sets. For information on the data in those clusters, contact SALDRU http://www.saldru.uct.ac.za/.
A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hurricane Maria is an example of a natural disaster that caused disruptions to infrastructure resulting in concerns with water treatment failures and potential contamination of drinking water supplies. This dataset is focused on the water quality data collected in Puerto Rico after Hurricane Maria and is part of the larger collaborative RAPID Hurricane Maria project.
This resource consists of Excel workbooks and a SQLite database. Both were populated with data and metadata corresponding to discrete water quality analysis of drinking water systems in Puerto Rico impacted by Hurricane Maria collected as part of the RAPID Maria project. Sampling and analysis was performed by a team from Virginia Tech in February-April 2018. Discrete samples were collected and returned to the lab for ICPMS analysis. Sampling was also conducted in the field for temperature, pH, free and total chlorine, turbidity, and dissolved oxygen. Complete method and variable descriptions are contained in the workbooks and database. There are two separate workbooks: one for ICPMS data and one for field data. All results are contained in the single database. Sites were sampled corresponding to several water distribution systems and source streams in southwestern Puerto Rico. Coordinates are included for the stream sites, but to preserve the security of the water distribution sites, the locations are only identified as within Puerto Rico.
The workbooks follow the specifications for YAML Observations Data Archive (YODA) exchange format (https://github.com/ODM2/YODA-File). The workbooks are templates with sheets containing tables that are mapped to entities in the Observations Data Model 2 (ODM2 - https://github.com/ODM2). Each sheet in the workbook contains directions for its completion and brief descriptions of the attributes. The data in the sheets was converted to an SQLite database following the ODM2 schema that is also contained in this resource. Conversion was performed using a prototype Python translation software (https://github.com/ODM2/YODA-Tools).
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Households and persons
UNITS IDENTIFIED: - Dwellings: No - Vacant units: No - Households: Yes - Individuals: Yes - Group quarters: No - Special populations: No
UNIT DESCRIPTIONS: - Households: A household is a group of people who normally live in the same household unit, who are or are not related to one another, and and who eat from the same pot.
Census/enumeration data [cen]
MICRODATA SOURCE: National Bureau of Statistics
SAMPLE DESIGN: The sample followed a two-stage design in which enumeration areas (EAs) served as the primary sampling units and households as the secondary sampling units. A total of 500 EAs were selected based on probability proportional to size (PPS) of the total EAs in each state and the total households listed in those EAs. In each EA, 10 households were selected randomly from a list of all households in the EA. In total, 4,851 households and 29,993 individuals were interviewed in 500 EAs.
SAMPLE UNIT: Enumeration area and household
SAMPLE FRACTION: 0.1%
SAMPLE SIZE (person records): 72,191
Face-to-face [f2f]
Three questionnaires: household questionnaire, agricultural questionnaire, and community/prices questionnaire. The household questionnaire collected information on size and composition of the household, as well as demographic, migration, education, work, time use, household assets, income, savings, and food consumption and security. The agricultural questionnaire collected information on crop and livestock production, storage, and sales. The community/prices questionnaire collected information on community and prices components.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
.csv file of climate change perception data. Note this data is made up as an example for survey analysis so should not be used for any other purposes. For R code for analysis see:For example write-up of this data see:https://figshare.com/account/projects/88601/articles/12928067
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database includes simulated data showing the accuracy of estimated probability distributions of project durations when limited data are available for the project activities. The base project networks are taken from PSPLIB. Then, various stochastic project networks are synthesized by changing the variability and skewness of project activity durations.
Number of variables: 20
Number of cases/rows: 114240
Variable List:
• Experiment ID: The ID of the experiment
• Experiment for network: The ID of the experiment for each of the synthesized networks
• Network ID: ID of the synthesized network
• #Activities: Number of activities in the network, including start and finish activities
• Variability: Variance of the activities in the network (this value can be either high, low, medium or rand, where rand shows a random combination of low, high and medium variance in the network activities.)
• Skewness: Skewness of the activities in the network (Skewness can be either right, left, None or rand, where rand shows a random combination of right, left, and none skewed in the network activities)
• Fitted distribution type: Distribution type used to fit on sampled data
• Sample size: Number of sampled data used for the experiment resembling limited data condition
• Benchmark 10th percentile: 10th percentile of project duration in the benchmark stochastic project network
• Benchmark 50th percentile: 50th project duration in the benchmark stochastic project network
• Benchmark 90th percentile: 90th project duration in the benchmark stochastic project network
• Benchmark mean: Mean project duration in the benchmark stochastic project network
• Benchmark variance: Variance project duration in the benchmark stochastic project network
• Experiment 10th percentile: 10th percentile of project duration distribution for the experiment
• Experiment 50th percentile: 50th percentile of project duration distribution for the experiment
• Experiment 90th percentile: 90th percentile of project duration distribution for the experiment
• Experiment mean: Mean of project duration distribution for the experiment
• Experiment variance: Variance of project duration distribution for the experiment
• K-S: Kolmogorov–Smirnov test comparing benchmark distribution and project duration
• distribution of the experiment
• P_value: the P-value based on the distance calculated in the K-S test
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GAPs Data Repository provides a comprehensive overview of available qualitative and quantitative data on national return regimes, now accessible through an advanced web interface at https://data.returnmigration.eu/.
This updated guideline outlines the complete process, starting from the initial data collection for the return migration data repository to the development of a comprehensive web-based platform. Through iterative development, participatory approaches, and rigorous quality checks, we have ensured a systematic representation of return migration data at both national and comparative levels.
The Repository organizes data into five main categories, covering diverse aspects and offering a holistic view of return regimes: country profiles, legislation, infrastructure, international cooperation, and descriptive statistics. These categories, further divided into subcategories, are based on insights from a literature review, existing datasets, and empirical data collection from 14 countries. The selection of categories prioritizes relevance for understanding return and readmission policies and practices, data accessibility, reliability, clarity, and comparability. Raw data is meticulously collected by the national experts.
The transition to a web-based interface builds upon the Repository’s original structure, which was initially developed using REDCap (Research Electronic Data Capture). It is a secure web application for building and managing online surveys and databases.The REDCAP ensures systematic data entries and store them on Uppsala University’s servers while significantly improving accessibility and usability as well as data security. It also enables users to export any or all data from the Project when granted full data export privileges. Data can be exported in various ways and formats, including Microsoft Excel, SAS, Stata, R, or SPSS for analysis. At this stage, the Data Repository design team also converted tailored records of available data into public reports accessible to anyone with a unique URL, without the need to log in to REDCap or obtain permission to access the GAPs Project Data Repository. Public reports can be used to share information with stakeholders or external partners without granting them access to the Project or requiring them to set up a personal account. Currently, all public report links inserted in this report are also available on the Repository’s webpage, allowing users to export original data.
This report also includes a detailed codebook to help users understand the structure, variables, and methodologies used in data collection and organization. This addition ensures transparency and provides a comprehensive framework for researchers and practitioners to effectively interpret the data.
The GAPs Data Repository is committed to providing accessible, well-organized, and reliable data by moving to a centralized web platform and incorporating advanced visuals. This Repository aims to contribute inputs for research, policy analysis, and evidence-based decision-making in the return and readmission field.
Explore the GAPs Data Repository at https://data.returnmigration.eu/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hypothesis: The reliability can be adopted to quantitatively measure the sustainability of mega-projects.
Presentation: This dataset shows two scenario based examples to establish an initial reliability assessment of megaproject sustainability. Data were gathered from the author’s assumption with regard to assumed differences between scenarios A and B. There are two sheets in this Microsoft Excel file, including a comparison between two scenarios by using a Fault Tree Analysis model, and a correlation analysis between reliability and unavailability.
Notable findings: It has been found from this exploratory experiment that the reliability can be used to quantitatively measure megaproject sustainability, and there is a negative correlation between reliability and unavailability among 11 related events in association with sustainability goals in the life-cycle of megaproject.
Interpretation: Results from data analysis by using the two sheets can be useful to inform decision making on megaproject sustainability. For example, the reliability to achieve sustainability goals can be enhanced by decrease the unavailability or the failure at individual work stages in megaproject delivery.
Implication: This dataset file can be used to perform reliability analysis in other experiment to access megaproject sustainability.
The dataset contains the analytical results for environmental and quality-control replicate sample sets and the computed relative percent differences (RPD) greater than 25 percent for the data collected during the surface-water sampling for the Triangle Area Water Supply Monitoring Project. The data are from samples collected during October 2011 through September 2013. Several study sites contained in this dataset were sampled for other USGS projects during the same time frame. Unless the samples at these sites were collected in conjunction with the Triangle Area Water Supply Monitoring Project, the data for other projects are not included in the dataset.
The dataset contains the environmental data collected for the Triangle Area Water Supply Monitoring Project. The data are from the samples collected during routine and storm-runoff sampling events during October 2013 through September 2015. Several study sites contained in this dataset were sampled for other USGS projects during the same time frame. Unless the samples at these sites were collected in conjunction with the Triangle Area Water Supply Monitoring Project, the data for other projects at these sites are not included in this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A collection of 22 data set of 50+ requirements each, expressed as user stories.
The dataset has been created by gathering data from web sources and we are not aware of license agreements or intellectual property rights on the requirements / user stories. The curator took utmost diligence in minimizing the risks of copyright infringement by using non-recent data that is less likely to be critical, by sampling a subset of the original requirements collection, and by qualitatively analyzing the requirements. In case of copyright infringement, please contact the dataset curator (Fabiano Dalpiaz, f.dalpiaz@uu.nl) to discuss the possibility of removal of that dataset [see Zenodo's policies]
The data sets have been originally used to conduct experiments about ambiguity detection with the REVV-Light tool: https://github.com/RELabUU/revv-light
This collection has been originally published in Mendeley data: https://data.mendeley.com/datasets/7zbk8zsd8y/1
The following text provides a description of the datasets, including links to the systems and websites, when available. The datasets are organized by macro-category and then by identifier.
g02-federalspending.txt
(2018) originates from early data in the Federal Spending Transparency project, which pertain to the website that is used to share publicly the spending data for the U.S. government. The website was created because of the Digital Accountability and Transparency Act of 2014 (DATA Act). The specific dataset pertains a system called DAIMS or Data Broker, which stands for DATA Act Information Model Schema. The sample that was gathered refers to a sub-project related to allowing the government to act as a data broker, thereby providing data to third parties. The data for the Data Broker project is currently not available online, although the backend seems to be hosted in GitHub under a CC0 1.0 Universal license. Current and recent snapshots of federal spending related websites, including many more projects than the one described in the shared collection, can be found here.
g03-loudoun.txt
(2018) is a set of extracted requirements from a document, by the Loudoun County Virginia, that describes the to-be user stories and use cases about a system for land management readiness assessment called Loudoun County LandMARC. The source document can be found here and it is part of the Electronic Land Management System and EPlan Review Project - RFP RFQ issued in March 2018. More information about the overall LandMARC system and services can be found here.
g04-recycling.txt
(2017) concerns a web application where recycling and waste disposal facilities can be searched and located. The application operates through the visualization of a map that the user can interact with. The dataset has obtained from a GitHub website and it is at the basis of a students' project on web site design; the code is available (no license).
g05-openspending.txt
(2018) is about the OpenSpending project (www), a project of the Open Knowledge foundation which aims at transparency about how local governments spend money. At the time of the collection, the data was retrieved from a Trello board that is currently unavailable. The sample focuses on publishing, importing and editing datasets, and how the data should be presented. Currently, OpenSpending is managed via a GitHub repository which contains multiple sub-projects with unknown license.
g11-nsf.txt
(2018) refers to a collection of user stories referring to the NSF Site Redesign & Content Discovery project, which originates from a publicly accessible GitHub repository (GPL 2.0 license). In particular, the user stories refer to an early version of the NSF's website. The user stories can be found as closed Issues.
g08-frictionless.txt
(2016) regards the Frictionless Data project, which offers an open source dataset for building data infrastructures, to be used by researchers, data scientists, and data engineers. Links to the many projects within the Frictionless Data project are on GitHub (with a mix of Unlicense and MIT license) and web. The specific set of user stories has been collected in 2016 by GitHub user @danfowler and are stored in a Trello board.
g14-datahub.txt
(2013) concerns the open source project DataHub, which is currently developed via a GitHub repository (the code has Apache License 2.0). DataHub is a data discovery platform which has been developed over multiple years. The specific data set is an initial set of user stories, which we can date back to 2013 thanks to a comment therein.
g16-mis.txt
(2015) is a collection of user stories that pertains a repository for researchers and archivists. The source of the dataset is a public Trello repository. Although the user stories do not have explicit links to projects, it can be inferred that the stories originate from some project related to the library of Duke University.
g17-cask.txt
(2016) refers to the Cask Data Application Platform (CDAP). CDAP is an open source application platform (GitHub, under Apache License 2.0) that can be used to develop applications within the Apache Hadoop ecosystem, an open-source framework which can be used for distributed processing of large datasets. The user stories are extracted from a document that includes requirements regarding dataset management for Cask 4.0, which includes the scenarios, user stories and a design for the implementation of these user stories. The raw data is available in the following environment.
g18-neurohub.txt
(2012) is concerned with the NeuroHub platform, a neuroscience data management, analysis and collaboration platform for researchers in neuroscience to collect, store, and share data with colleagues or with the research community. The user stories were collected at a time NeuroHub was still a research project sponsored by the UK Joint Information Systems Committee (JISC). For information about the research project from which the requirements were collected, see the following record.
g22-rdadmp.txt
(2018) is a collection of user stories from the Research Data Alliance's working group on DMP Common Standards. Their GitHub repository contains a collection of user stories that were created by asking the community to suggest functionality that should part of a website that manages data management plans. Each user story is stored as an issue on the GitHub's page.
g23-archivesspace.txt
(2012-2013) refers to ArchivesSpace: an open source, web application for managing archives information. The application is designed to support core functions in archives administration such as accessioning; description and arrangement of processed materials including analog, hybrid, and
born digital content; management of authorities and rights; and reference service. The application supports collection management through collection management records, tracking of events, and a growing number of administrative reports. ArchivesSpace is open source and its
The basic goal of this survey is to provide the necessary database for formulating national policies at various levels. It represents the contribution of the household sector to the Gross National Product (GNP). Household Surveys help as well in determining the incidence of poverty, and providing weighted data which reflects the relative importance of the consumption items to be employed in determining the benchmark for rates and prices of items and services. Generally, the Household Expenditure and Consumption Survey is a fundamental cornerstone in the process of studying the nutritional status in the Palestinian territory.
The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality. Data is a public good, in the interest of the region, and it is consistent with the Economic Research Forum's mandate to make micro data available, aiding regional research on this important topic.
The survey data covers urban, rural and camp areas in West Bank and Gaza Strip.
1- Household/families. 2- Individuals.
The survey covered all the Palestinian households who are a usual residence in the Palestinian Territory.
Sample survey data [ssd]
The sampling frame consists of all enumeration areas which were enumerated in 1997; the enumeration area consists of buildings and housing units and is composed of an average of 120 households. The enumeration areas were used as Primary Sampling Units (PSUs) in the first stage of the sampling selection. The enumeration areas of the master sample were updated in 2003.
The sample is a stratified cluster systematic random sample with two stages: First stage: selection of a systematic random sample of 299 enumeration areas. Second stage: selection of a systematic random sample of 12-18 households from each enumeration area selected in the first stage. A person (18 years and more) was selected from each household in the second stage.
The population was divided by: 1- Governorate 2- Type of Locality (urban, rural, refugee camps)
The calculated sample size is 3,781 households.
The target cluster size or "sample-take" is the average number of households to be selected per PSU. In this survey, the sample take is around 12 households.
Detailed information/formulas on the sampling design are available in the user manual.
Face-to-face [f2f]
The PECS questionnaire consists of two main sections:
First section: Certain articles / provisions of the form filled at the beginning of the month,and the remainder filled out at the end of the month. The questionnaire includes the following provisions:
Cover sheet: It contains detailed and particulars of the family, date of visit, particular of the field/office work team, number/sex of the family members.
Statement of the family members: Contains social, economic and demographic particulars of the selected family.
Statement of the long-lasting commodities and income generation activities: Includes a number of basic and indispensable items (i.e, Livestock, or agricultural lands).
Housing Characteristics: Includes information and data pertaining to the housing conditions, including type of shelter, number of rooms, ownership, rent, water, electricity supply, connection to the sewer system, source of cooking and heating fuel, and remoteness/proximity of the house to education and health facilities.
Monthly and Annual Income: Data pertaining to the income of the family is collected from different sources at the end of the registration / recording period.
Second section: The second section of the questionnaire includes a list of 54 consumption and expenditure groups itemized and serially numbered according to its importance to the family. Each of these groups contains important commodities. The number of commodities items in each for all groups stood at 667 commodities and services items. Groups 1-21 include food, drink, and cigarettes. Group 22 includes homemade commodities. Groups 23-45 include all items except for food, drink and cigarettes. Groups 50-54 include all of the long-lasting commodities. Data on each of these groups was collected over different intervals of time so as to reflect expenditure over a period of one full year.
Both data entry and tabulation were performed using the ACCESS and SPSS software programs. The data entry process was organized in 6 files, corresponding to the main parts of the questionnaire. A data entry template was designed to reflect an exact image of the questionnaire, and included various electronic checks: logical check, range checks, consistency checks and cross-validation. Complete manual inspection was made of results after data entry was performed, and questionnaires containing field-related errors were sent back to the field for corrections.
The survey sample consists of about 3,781 households interviewed over a twelve-month period between January 2004 and January 2005. There were 3,098 households that completed the interview, of which 2,060 were in the West Bank and 1,038 households were in GazaStrip. The response rate was 82% in the Palestinian Territory.
The calculations of standard errors for the main survey estimations enable the user to identify the accuracy of estimations and the survey reliability. Total errors of the survey can be divided into two kinds: statistical errors, and non-statistical errors. Non-statistical errors are related to the procedures of statistical work at different stages, such as the failure to explain questions in the questionnaire, unwillingness or inability to provide correct responses, bad statistical coverage, etc. These errors depend on the nature of the work, training, supervision, and conducting all various related activities. The work team spared no effort at different stages to minimize non-statistical errors; however, it is difficult to estimate numerically such errors due to absence of technical computation methods based on theoretical principles to tackle them. On the other hand, statistical errors can be measured. Frequently they are measured by the standard error, which is the positive square root of the variance. The variance of this survey has been computed by using the “programming package” CENVAR.
KL3M Data Project
Note: This page provides general information about the KL3M Data Project. Additional details specific to this dataset will be added in future updates. For complete information, please visit the GitHub repository or refer to the KL3M Data Project paper.
Description
This dataset is part of the ALEA Institute's KL3M Data Project, which provides copyright-clean training resources for large language models.
Dataset Details
Format: Parquet… See the full description on the dataset page: https://huggingface.co/datasets/alea-institute/kl3m-data-govinfo-sample.
The Community Survey (CS) is a nationally representative, large-scale household survey which was conducted from February to March 2007. The Community Survey is designed to provide information on the trends and levels of demographic and socio-economic data, such as population size and distribution; the extent of poor households; access to facilities and services, and the levels of employment/unemployment at national, provincial and municipality level. The data can be used to assist government and the private sector in the planning, evaluation and monitoring of programmes and policies. The information collected can also be used to assess the impact of socio-economic policies and provide an indication as to how far the country has gone in its strides to eradicate poverty.
Censuses 1996 and 2001 are the only all-inclusive censuses that Statistics South Africa has thus far conducted under the new democratic dispensation. Demographic and socio-economic data were collected and the results have enabled government and all other users of this information to make informed decisions. When cabinet took a decision that Stats SA should not conduct a census in 2006, it created a gap in information or data between Census 2001 and the next Census scheduled to be carried out in 2011. A decision was therefore taken to carry out the Community Survey in 2007.
The main objectives of the survey were: · To provide estimates at lower geographical levels than existing household surveys; · To build human, management and logistical capacities for Census 2011; and · To provide inputs into the preparation of the mid-year population projections.
The wider project strategic theme is to provide relevant statistical information that meets user needs and aspirations. Some of the main topics that are covered by the survey include demography, migration, disability and social grants, educational levels, employment and economic activities.
The survey covered the whole of South Africa, including all nine provinces as well as the four settlement types - urban-formal, urban-informal, rural-formal (commercial farms) and rural-informal (tribal areas).
Households
The Community Survey covered all de jure household members (usual residents) in South Africa. The survey excluded collective living quarters (institutions) and some households in EAs classified as recreational areas or institutions. However, an approximation of the out-of-scope population was made from the 2001 Census and added to the final estimates of the CS 2007 results.
Sample survey data [ssd]
Sample Design
The sampling procedure that was adopted for the CS was a two-stage stratified random sampling process. Stage one involved the selection of enumeration areas, and stage tow was the selection of dwelling units.
Since the data are required for each local municipality, each municipality was considered as an explicit stratum. The stratification is done for those municipalities classified as category B municipalities (local municipalities) and category A municipalities (metropolitan areas) as proclaimed at the time of Census 2001. However, the newly proclaimed boundaries as well as any other higher level of geography such as province or district municipality, were considered as any other domain variable based on their link to the smallest geographic unit - the enumeration area.
The Frame
The Census 2001 enumeration areas were used because they give a full geographic coverage of the country without any overlap. Although changes in settlement type, growth or movement of people have occurred, the enumeration areas assisted in getting a spatial comparison over time. Out of 80 787 enumeration areas countrywide, 79 466 were considered in the frame. A total of 1 321 enumeration areas were excluded (919 covering institutions and 402 recreational areas).
On the second level, the listing exercise yielded the dwelling frame which facilitated the selection of dwellings to be visited. The dwelling unit is a structure or part of a structure or group of structures occupied or meant to be occupied by one or more households. Some of these structures may be vacant and/or under construction, but can be lived in at the time of the survey. A dwelling unit may also be within collective living quarters where applicable (examples of each are a house, a group of huts, a flat, hostels, etc.).
The Community Survey universe at the second-level frame is dependent on whether the different structures are classified as dwelling units (DUs) or not. Structures where people stay/live were listed and classified as dwelling units. However, there are special cases of collective living quarters that were also included in the CS frame. These are religious institutions such as convents or monasteries, and guesthouses where people stay for an extended period (more than a month). Student residences - based on how long people have stayed (more than a month) - and old-age homes not similar to hospitals (where people are living in a communal set-up) were treated the same as hostels, thereby listing either the bed or room. In addition, any other family staying in separate quarters within the premises of an institution (like wardens' quarters, military family quarters, teachers' quarters and medical staff quarters) were considered as part of the CS frame. The inclusion of such group quarters in the frame is based on the living circumstances within these structures. Members are independent of each other with the exception that they sleep under one roof.
The remaining group quarters were excluded from the CS frame because they are difficult to access and have no stable composition. Excluded dwelling types were prisons, hotels, hospitals, military barracks, etc. This is in addition to the exclusion on first level of the enumeration areas (EAs) classified as institutions (military bases) or recreational areas (national parks).
The Selection of Enumeration Areas (EAs)
The EAs within each municipality were ordered by geographic type and EA type. The selection was done by using systematic random sampling. The criteria used were as follows: In municipalities with fewer than 30 EAs, all EAs were automatically selected. In municipalities with 30 or more EAs, the sample selection used a fixed proportion of 19% of all sampled EAs. However, if the selected EAs in a municipality were less than 30 EAs, the sample in the municipality was increased to 30 EAs.
The Selection of Dwelling Units
The second level of the frame required a full re-listing of dwelling units. The listing exercise was undertaken before the selection of DUs. The adopted listing methodology ensured that the listing route was determined by the lister. Thisapproach facilitated the serpentine selection of dwelling units. The listing exercise provided a complete list of dwelling units in the selected EAs. Only those structures that were classified as dwelling units were considered for selection, whether vacant or occupied. This exercise yielded a total of 2 511 314 dwelling units.
The selection of the dwelling units was also based on a fixed proportion of 10% of the total listed dwellings in an EA. A constraint was imposed on small-size EAs where, if the listed dwelling units were less than 10 dwellings, the selection was increased to 10 dwelling units. All households within the selected dwelling units were covered. There was no replacement of refusals, vacant dwellings or non-contacts owing to their impact on the probability of selection.
Face-to-face [f2f]
Consultation on Questionnaire Design Ten stakeholder workshops were held across the country during August and September 2004. Approximately 367 stakeholders, predominantly from national, provincial and local government departments, as well as from research and educational institutions, attended. The workshops aimed to achieve two objectives, namely to better understand the type of information stakeholders need to meet their objectives, and to consider the proposed data items to be included in future household surveys. The output from this process was a set of data items relating to a specific, defined focus area and outcomes that culminated with the data collection instrument (see Annexure B for all the data items).
Questionnaire Design The design of the CS questionnaire was household-based and intended to collect information on 10 people. It was developed in line with the household-based survey questionnaires conducted by Stats SA. The questions were based on the data items generated out of the consultation process described above. Both the design and questionnaire layout were pre-tested in October 2005 and adjustments were made for the pilot in February 2006. Further adjustments were done after the pilot results had been finalised.
Editing The automated cleaning was implemented based on an editing rules specification defined with reference to the approved questionnaire. Most of the editing rules were categorised into structural edits looking into the relationship between different record type, the minimum processability rules that removed false positive readings or noise, the logical editing that determine the inconsistency between fields of the same statistical unit, and the inferential editing that search similarities across the domain. The edit specifications document for the structural, population, mortality and housing edits was developed by a team of Stats SA subject-matter specialists, demographers, and programmers. The process was successfully
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inventory data example
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
This is a sample of key infrastructure projects happening in Ontario. Projects will be added and updated on an ongoing basis.
The dataset includes:
BC Energy Regulator Engineering Project approvals may be issued, upon application, under the authority of Section 100 of the Drilling and Production Regulation or Section 97 of the Petroleum and Natural Gas Act, depending on project type. Projects grant the applicant operating latitude, under specific conditions, for the purpose of extracting oil and/or natural gas in the most efficient way that will result in maximization of resource recovery and benefit to the Crown, balanced with surface impact and socio-economic factors. Examples are ?Good Engineering Practice?, allowing increased well density in a poor quality reservoir, or ?Pressure Maintenance Water Flood? to allow injection of water into an oil pool to increase total oil recovery. Spatial data for approved projects are included. Data is updated nightly.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Title: Add title here
Project Team: Add contact information for research project team members
Summary: Provide a descriptive summary of the nature of your research project and its aims/focal research questions.
Relevant publications/outputs: When available, add links to the related publications/outputs from this data.
Data availability statement: If your data is not linked on figshare directly, provide links to where it is being hosted here (i.e., Open Science Framework, Github, etc.). If your data is not going to be made publicly available, please provide details here as to the conditions under which interested individuals could gain access to the data and how to go about doing so.
Data collection details: 1. When was your data collected? 2. How were your participants sampled/recruited?
Sample information: How many and who are your participants? Demographic summaries are helpful additions to this section.
Research Project Materials: What materials are necessary to fully reproduce your the contents of your dataset? Include a list of all relevant materials (e.g., surveys, interview questions) with a brief description of what is included in each file that should be uploaded alongside your datasets.
List of relevant datafile(s): If your project produces data that cannot be contained in a single file, list the names of each of the files here with a brief description of what parts of your research project each file is related to.
Data codebook: What is in each column of your dataset? Provide variable names as they are encoded in your data files, verbatim question associated with each response, response options, details of any post-collection coding that has been done on the raw-response (and whether that's encoded in a separate column).
Examples available at: https://www.thearda.com/data-archive?fid=PEWMU17 https://www.thearda.com/data-archive?fid=RELLAND14
Since the beginning of the 1960s, Statistics Sweden, in collaboration with various research institutions, has carried out follow-up surveys in the school system. These surveys have taken place within the framework of the IS project (Individual Statistics Project) at the University of Gothenburg and the UGU project (Evaluation through follow-up of students) at the University of Teacher Education in Stockholm, which since 1990 have been merged into a research project called 'Evaluation through Follow-up'. The follow-up surveys are part of the central evaluation of the school and are based on large nationally representative samples from different cohorts of students.
Evaluation through follow-up (UGU) is one of the country's largest research databases in the field of education. UGU is part of the central evaluation of the school and is based on large nationally representative samples from different cohorts of students. The longitudinal database contains information on nationally representative samples of school pupils from ten cohorts, born between 1948 and 2004. The sampling process was based on the student's birthday for the first two and on the school class for the other cohorts.
For each cohort, data of mainly two types are collected. School administrative data is collected annually by Statistics Sweden during the time that pupils are in the general school system (primary and secondary school), for most cohorts starting in compulsory school year 3. This information is provided by the school offices and, among other things, includes characteristics of school, class, special support, study choices and grades. Information obtained has varied somewhat, e.g. due to changes in curricula. A more detailed description of this data collection can be found in reports published by Statistics Sweden and linked to datasets for each cohort.
Survey data from the pupils is collected for the first time in compulsory school year 6 (for most cohorts). Questionnaire in survey in year 6 includes questions related to self-perception and interest in learning, attitudes to school, hobbies, school motivation and future plans. For some cohorts, questionnaire data are also collected in year 3 and year 9 in compulsory school and in upper secondary school.
Furthermore, results from various intelligence tests and standartized knowledge tests are included in the data collection year 6. The intelligence tests have been identical for all cohorts (except cohort born in 1987 from which questionnaire data were first collected in year 9). The intelligence test consists of a verbal, a spatial and an inductive test, each containing 40 tasks and specially designed for the UGU project. The verbal test is a vocabulary test of the opposite type. The spatial test is a so-called ‘sheet metal folding test’ and the inductive test are made up of series of numbers. The reliability of the test, intercorrelations and connection with school grades are reported by Svensson (1971).
For the first three cohorts (1948, 1953 and 1967), the standartized knowledge tests in year 6 consist of the standard tests in Swedish, mathematics and English that up to and including the beginning of the 1980s were offered to all pupils in compulsory school year 6. For the cohort 1972, specially prepared tests in reading and mathematics were used. The test in reading consists of 27 tasks and aimed to identify students with reading difficulties. The mathematics test, which was also offered for the fifth cohort, (1977) includes 19 assignments. After a changed version of the test, caused by the previously used test being judged to be somewhat too simple, has been used for the cohort born in 1982. Results on the mathematics test are not available for the 1987 cohort. The mathematics test was not offered to the students in the cohort in 1992, as the test did not seem to fully correspond with current curriculum intentions in mathematics. For further information, see the description of the dataset for each cohort.
For several of the samples, questionnaires were also collected from the students 'parents and teachers in year 6. The teacher questionnaire contains questions about the teacher, class size and composition, the teacher's assessments of the class' knowledge level, etc., school resources, working methods and parental involvement and questions about the existence of evaluations. The questionnaire for the guardians includes questions about the child's upbringing conditions, ambitions and wishes regarding the child's education, views on the school's objectives and the parents' own educational and professional situation.
The students are followed up even after they have left primary school. Among other things, data collection is done during the time they are in high school. Then school administrative data such as e.g. choice of upper secondary school line / program and grades after completing studies. For some of the cohorts, in addition to school administrative data, questionnaire data were also collected from the students.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pen-and-paper homework and project-based learning are both commonly used instructional methods in introductory statistics courses. However, there have been few studies comparing these two methods exclusively. In this case study, each was used in two different sections of the same introductory statistics course at a regional state university. Students’ statistical literacy was measured by exam scores across the course, including the final. The comparison of the two instructional methods includes using descriptive statistics and two-sample t-tests, as well authors’ reflections on the instructional methods. Results indicated that there is no statistically discernible difference between the two instructional methods in the introductory statistics course.