Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
simple_land_cover1.tif - an example land cover dataset presented in Figures 1 and 2- simple_landform1.tif - an example landform dataset presented in Figures 1 and 2- landcover_europe.tif - a land cover dataset with nine categories for Europe - landcover_europe.qml - a QGIS color style for the landcover_europe.tif dataset- landform_europe.tif - a landform dataset with 17 categories for Europe - landform_europe.qml - a QGIS color style for the landform_europe.tif dataset- map1.gpkg - a map of LTs in Europe constructed using the INCOMA-based method- map1.qml - a QGIS color style for the map1.gpkg dataset- map2.gpkg - a map of LTs in Europe constructed using the COMA method to identify and delineate pattern types in each theme separately- map2.qml - a QGIS color style for the map2.gpkg dataset- map3.gpkg - a map of LTs in Europe constructed using the map overlay method- map3.qml - a QGIS color style for the map3.gpkg dataset
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Thematic maps about social inequalities can engage audiences, add context to policy debates, and change attitudes toward the issues. The field of communication has long compared the relative persuasiveness of this kind of abstract data versus concrete examples about individuals. While studies have compared the effectiveness of presenting both types of information alongside each other, the line between them is sometimes blurred in data visualization, which can incorporate individuals’ stories in innovative ways. One context in which incorporating examples within thematic maps may help is when discussing the social determinants of health because the complex relationship between individual and community is central to how the determinants influence health, and communication on this can be challenging. In this study, we randomly presented the UK public (N = 389) with maps incorporating varying levels of “exemplification” for three different social determinants: public transport, air pollution, and youth service provision. We tested how this affected engagement, credibility, and perceptions about the issues. Between-group analysis found few significant differences and therefore limited persuasive power. However, within-subject analysis indicated that the maps with individual-centered stories may be more persuasive but only among those less confident in their ability to interpret data visualizations. Maps of social inequalities that incorporate stories about individuals may be more engaging and persuasive to audiences less confident with statistics.In data visualization experiments, researchers should consider analyzing both differences between treatment groups and differences within subjects in their responses to different stimuli. Maps of social inequalities that incorporate stories about individuals may be more engaging and persuasive to audiences less confident with statistics. In data visualization experiments, researchers should consider analyzing both differences between treatment groups and differences within subjects in their responses to different stimuli.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map provides a guide to the data confidence of DPIE's soil related thematic map products in NSW. Examples of products this map supports includes Land and Soil Capability mapping, Inherent fertility of soils in NSW and Great Soil Group soil types in NSW.
Confidence classes are determined based on the data scale, type of mapping and information collected, accuracy of the attributes and quality assurance on the product.
Soil data confidence is described using a 4 class system between high and very low as outlined below.:
Good (1) - All necessary soil and landscape data is available at a catchment scale (1:100,000 & 1:250,000) to undertake the assessment of LSC and other soil thematic maps.
Moderate (2) - Most soil and landscape data is available at a catchment scale (1:100,000 - 1:250,000) to undertake the assessment of LSC and other soil thematic maps.
Low (3) - Limited soil and landscape data is available at a reconnaissance catchment scale (1:100,000 & 1:250,000) which limits the quality of the assessment of LSC and other soil thematic maps.
Very low (4) - Very limited soil and landscape data is available at a broad catchment scale (1:250,000 - 1:500,000) and the LSC and other soil thematic maps should be used as a guide only.
Online Maps: This dataset can be viewed using eSPADE (NSW’s soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area.
Reference: Department of Planning, Industry and Environment, 2020, Soil Data Confidence map for NSW, Version 4, NSW Department of Planning, Industry and Environment, Parramatta.
Facebook
TwitterMultispectral remote sensing data acquired by Landsat 8 Operational Land Imager (OLI) sensor were analyzed using an automated technique to generate surficial mineralogy and vegetation maps of the conterminous western United States. Six spectral indices (e.g. band-ratios), highlighting distinct spectral absorptions, were developed to aid in the identification of mineral groups in exposed rocks, soils, mine waste rock, and mill tailings across the landscape. The data are centered on the Western U.S. and cover portions of Texas, Oklahoma, Kansas, the Canada-U.S. border, and the Mexico-U.S. border during the summers of 2013 – 2014. Methods used to process the images and algorithms used to infer mineralogical composition of surficial materials are detailed in Rockwell and others (2021) and were similar to those developed by Rockwell (2012; 2013). Final maps are provided as ERDAS IMAGINE (.img) thematic raster images and contain pixel values representing mineral and vegetation group classifications. Rockwell, B.W., 2012, Description and validation of an automated methodology for mapping mineralogy, vegetation, and hydrothermal alteration type from ASTER satellite imagery with examples from the San Juan Mountains, Colorado: U.S. Geological Survey Scientific Investigations Map 3190, 35 p. pamphlet, 5 map sheets, scale 1:100,000, http://doi.org/10.13140/RG.2.1.2769.9365. Rockwell, B.W., 2013, Automated mapping of mineral groups and green vegetation from Landsat Thematic Mapper imagery with an example from the San Juan Mountains, Colorado: U.S. Geological Survey Scientific Investigations Map 3252, 25 p. pamphlet, 1 map sheet, scale 1:325,000, http://doi.org/10.13140/RG.2.1.2507.7925. Rockwell, B.W., Gnesda, W.R., and Hofstra, A.H., 2021, Improved automated identification and mapping of iron sulfate minerals, other mineral groups, and vegetation from Landsat 8 Operational Land Imager Data: San Juan Mountains, Colorado, and Four Corners Region: U.S. Geological Survey Scientific Investigations Map 3466, scale 1:325,000, 51 p. pamphlet, https://doi.org/10.3133/sim3466/.
Facebook
TwitterA Collection of Contextual data for USA
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Digital Map Market Size 2025-2029
The digital map market size is forecast to increase by USD 31.95 billion at a CAGR of 31.3% between 2024 and 2029.
The market is driven by the increasing adoption of intelligent Personal Digital Assistants (PDAs) and the availability of location-based services. PDAs, such as smartphones and smartwatches, are becoming increasingly integrated with digital map technologies, enabling users to navigate and access real-time information on-the-go. The integration of Internet of Things (IoT) enables remote monitoring of cars and theft recovery. Location-based services, including mapping and navigation apps, are a crucial component of this trend, offering users personalized and convenient solutions for travel and exploration. However, the market also faces significant challenges.
Ensuring the protection of sensitive user information is essential for companies operating in this market, as trust and data security are key factors in driving user adoption and retention. Additionally, the competition in the market is intense, with numerous players vying for market share. Companies must differentiate themselves through innovative features, user experience, and strong branding to stand out in this competitive landscape. Security and privacy concerns continue to be a major obstacle, as the collection and use of location data raises valid concerns among consumers.
What will be the Size of the Digital Map Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the market, cartographic generalization and thematic mapping techniques are utilized to convey complex spatial information, transforming raw data into insightful visualizations. Choropleth maps and dot density maps illustrate distribution patterns of environmental data, economic data, and demographic data, while spatial interpolation and predictive modeling enable the estimation of hydrographic data and terrain data in areas with limited information. Urban planning and land use planning benefit from these tools, facilitating network modeling and location intelligence for public safety and emergency management.
Spatial regression and spatial autocorrelation analyses provide valuable insights into urban development trends and patterns. Network analysis and shortest path algorithms optimize transportation planning and logistics management, enhancing marketing analytics and sales territory optimization. Decision support systems and fleet management incorporate 3D building models and real-time data from street view imagery, enabling effective resource management and disaster response. The market in the US is experiencing robust growth, driven by the integration of Geographic Information Systems (GIS), Global Positioning Systems (GPS), and advanced computer technology into various industries.
How is this Digital Map Industry segmented?
The digital map industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Application
Navigation
Geocoders
Others
Type
Outdoor
Indoor
Solution
Software
Services
Deployment
On-premises
Cloud
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Indonesia
Japan
South Korea
Rest of World (ROW)
By Application Insights
The navigation segment is estimated to witness significant growth during the forecast period. Digital maps play a pivotal role in various industries, particularly in automotive applications for driver assistance systems. These maps encompass raster data, aerial photography, government data, and commercial data, among others. Open-source data and proprietary data are integrated to ensure map accuracy and up-to-date information. Map production involves the use of GPS technology, map projections, and GIS software, while map maintenance and quality control ensure map accuracy. Location-based services (LBS) and route optimization are integral parts of digital maps, enabling real-time navigation and traffic data.
Data validation and map tiles ensure data security. Cloud computing facilitates map distribution and map customization, allowing users to access maps on various devices, including mobile mapping and indoor mapping. Map design, map printing, and reverse geocoding further enhance the user experience. Spatial analysis and data modeling are essential for data warehousing and real-time navigation. The automotive industry's increasing adoption of connected cars and long-term evolution (LTE) technologies have fueled the demand for digital maps. These maps enable driver assistance applications,
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These are anonymized responses to a survey of 389 members of the UK public on their perceptions towards different maps about the social determinants of health. It was originally collected as part of a study described in the article 'Do personal narratives make thematic maps more persuasive? Integrating concrete examples into maps of the social determinants of health', in the Cartography and Geographic Information Science journal.The responses were collected in September 2024 on Qualtrics, via the recruitment platform Prolific.Participants were shown information on three social determinants of health (public transport, air pollution, youth services). For each topic, they were randomly shown one of three maps with varying levels of personal narratives presented. The type of map shown to each respondent can be found in columns 'transport_condition', 'pollution_condition', and 'youth_condition'. Most of the other variables refer to perceptions about those issues. For example, 'severity_pollution' refers to whether they deem air pollution a severe issue facing the country. Other variables include demographic information, chart literacy measured by four questions, and self-assessed confidence with charts.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map provides a guide to the data confidence of DPIE's soil related thematic map products in NSW. Examples of products this map supports includes Land and Soil Capability mapping, Inherent fertility of soils in NSW and Great Soil Group soil types in NSW. Confidence classes are determined based on the data scale, type of mapping and information collected, accuracy of the attributes and quality assurance on the product. Soil data confidence is described using a 4 class system between high and very low as outlined below.: Good (1) - All necessary soil and landscape data is available at a catchment scale (1:100,000 & 1:250,000) to undertake the assessment of LSC and other soil thematic maps. Moderate (2) - Most soil and landscape data is available at a catchment scale (1:100,000 - 1:250,000) to undertake the assessment of LSC and other soil thematic maps. Low (3) - Limited soil and landscape data is available at a reconnaissance catchment scale (1:100,000 & 1:250,000) which limits the quality of the assessment of LSC and other soil thematic maps. Very low (4) - Very limited soil and landscape data is available at a broad catchment scale (1:250,000 - 1:500,000) and the LSC and other soil thematic maps should be used as a guide only. Online Maps: This dataset can be viewed using eSPADE (NSW’s soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area. Reference: Department of Planning, Industry and Environment, 2020, Soil Data Confidence map for NSW, Version 4, NSW Department of Planning, Industry and Environment, Parramatta. Data and Resources
Facebook
Twitterhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/6ZNSA3https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/6ZNSA3
The Millennium Coral Reef Mapping Project provides thematic maps of coral reefs worldwide at geomorphological scale. Maps were created by photo-interpretation of Landsat 7 and Landsat 8 satellite images. Maps are provided as standard Shapefiles usable in GIS software. The geomorphological classification scheme is hierarchical and includes 5 levels. The GIS products include for each polygon a number of attributes. The 5 level geomorphological attributes are provided (numerical codes or text). The Level 1 corresponds to the differentiation between oceanic and continental reefs. Then from Levels 2 to 5, the higher the level, the more detailed the thematic classification is. Other binary attributes specify for each polygon if it belongs to terrestrial area (LAND attribute), and sedimentary or hard-bottom reef areas (REEF attribute). Examples and more details on the attributes are provided in the references cited. The products distributed here were created by IRD, in their last version. Shapefiles for 11 atolls of the Caribbean and Atlantic Ocean as mapped by the Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). The data set provides one zip file per country or region of interest. Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). Funded by National Aeronautics and Space Administration, NASA grants NAG5-10908 (University of South Florida, PIs: Franck Muller-Karger and Serge Andréfouët) and CARBON-0000-0257 (NASA, PI: Julie Robinson) from 2001 to 2007. Funded by IRD since 2003 (in kind, PI: Serge Andréfouët).
Facebook
Twitterhttps://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
To deliver sample estimates provided with the necessary probability foundation to permit generalization from the sample data subset to the whole target population being sampled, probability sampling strategies are required to satisfy three necessary not sufficient conditions: (i) All inclusion probabilities be greater than zero in the target population to be sampled. If some sampling units have an inclusion probability of zero, then a map accuracy assessment does not represent the entire target region depicted in the map to be assessed. (ii) The inclusion probabilities must be: (a) knowable for nonsampled units and (b) known for those units selected in the sample: since the inclusion probability determines the weight attached to each sampling unit in the accuracy estimation formulas, if the inclusion probabilities are unknown, so are the estimation weights. This original work presents a novel (to the best of these authors' knowledge, the first) probability sampling protocol for quality assessment and comparison of thematic maps generated from spaceborne/airborne Very High Resolution (VHR) images, where: (I) an original Categorical Variable Pair Similarity Index (CVPSI, proposed in two different formulations) is estimated as a fuzzy degree of match between a reference and a test semantic vocabulary, which may not coincide, and (II) both symbolic pixel-based thematic quality indicators (TQIs) and sub-symbolic object-based spatial quality indicators (SQIs) are estimated with a degree of uncertainty in measurement in compliance with the well-known Quality Assurance Framework for Earth Observation (QA4EO) guidelines. Like a decision-tree, any protocol (guidelines for best practice) comprises a set of rules, equivalent to structural knowledge, and an order of presentation of the rule set, known as procedural knowledge. The combination of these two levels of knowledge makes an original protocol worth more than the sum of its parts. The several degrees of novelty of the proposed probability sampling protocol are highlighted in this paper, at the levels of understanding of both structural and procedural knowledge, in comparison with related multi-disciplinary works selected from the existing literature. In the experimental session the proposed protocol is tested for accuracy validation of preliminary classification maps automatically generated by the Satellite Image Automatic MapperTM (SIAMTM) software product from two WorldView-2 images and one QuickBird-2 image provided by DigitalGlobe for testing purposes. In these experiments, collected TQIs and SQIs are statistically valid, statistically significant, consistent across maps and in agreement with theoretical expectations, visual (qualitative) evidence and quantitative quality indexes of operativeness (OQIs) claimed for SIAMTM by related papers. As a subsidiary conclusion, the statistically consistent and statistically significant accuracy validation of the SIAMTM pre-classification maps proposed in this contribution, together with OQIs claimed for SIAMTM by related works, make the operational (automatic, accurate, near real-time, robust, scalable) SIAMTM software product eligible for opening up new inter-disciplinary research and market opportunities in accordance with the visionary goal of the Global Earth Observation System of Systems (GEOSS) initiative and the QA4EO international guidelines.
Facebook
TwitterKenward-et-al_RADA_Buzzard_radio-tracking_dataData used to infer the resource needs of common buzzards (Buteo buteo) Dorset, southern UK. Inference was made by applying Resource-Area-Dependence Analysis (RADA) to a sample of 114 buzzard home ranges and a thematic map depicting resource distribution. The compressed archive contains the radio-tracking dataset, which consists of standardized 30 locations per home range obtained via VHF telemetry between 1990 and 1995. The thematic map, formed by using knowledge about buzzards to group 25 land-cover types of the Land Cover Map of Great Britain into 16 map classes, is available against permission at public site http://www.ceh.ac.uk/services/land-cover-map-1990. All coordinates are in UK National Grid format (EPSG 27700). The radio-tracking dataset is provided as: (i) .txt and (ii) .loc. The format in (ii) is native to the Ranges suite of software (http://www.anatrack.com/home.php) for the analysis of animal home ranging and habitat use. Sinc...
Facebook
TwitterLand cover information is critical to scientific, economic, and public policy-making. There is a high demand for accurate and timely land cover information that affects the accuracy of all subsequent applications. The availability of Google Earth Engine (GEE), which derives temporal aggregation methods from time-series images (i.e., the use of metrics such as mean or median), has also enabled optimization of computation time, such as managing large amounts of data to obtain more accurate results. Our objective was to obtain a land cover map for the northwest of the province of Córdoba, Argentina. The study was carried out in rural communities that belong to the departments of Cruz del Eje and Ischilín, northwest of Córdoba, and have different degrees of intervention in the land cover. Sentinel 2 Level 2A images were acquired for the study area. Images available from January 1, 2018, to December 31, 2020, were sampled. To create a thematic map, the median value was calculated for the sample of images from the selected time interval. Finally, the Normalized Difference Vegetation Index (NDVI) was calculated and added to the total bands of the median image. Training polygons were placed there considering the visual features in the median image. The Random Forest algorithm was used as the classification method. To verify the quality of the classified map, a list of 97,753 verification pixels was obtained. In addition, a confusion matrix was created to collect the conflicts that arise between categories, and the precision and kappa coefficient was calculated to define the quality of the map obtained. Image acquisition, preprocessing, and analysis were performed on the Google Earth Engine platform. Thematic maps with eight classes were obtained, with a total area of 719880 ha. The confusion matrix showed an overall precision of 99.26% and a corrected kappa index of 0.99, the classes were correctly classified by the algorithm.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT Spatial variability depends on the sampling configuration and characteristics associated with the georeferenced phenomenon, such as geometric anisotropy. This study aimed to determine the influence of the sampling design on parameter estimation in an anisotropic geostatistical model and the spatial estimation of a georeferenced variable at unsampled locations. Datasets were simulated with geometric anisotropy, considering five values for the anisotropic ratio (1, 2, 3, 4, 5), and three sampling designs: lattice, random and lattice plus close pairs. The simulation results were used as a reference to select anisotropic models to describe the spatial dependence structure in chemical soil properties. For each dataset (with either simulated or chemical soil properties), the values of the georeferenced variables at unsampled locations were estimated by kriging, considering estimated isotropic and anisotropic geostatistical models. The choice of the sampling design influenced the spatial estimation of the georeferenced variable and the quality of the estimation of the geostatistical anisotropic model. The incorporation of geometric anisotropy in the spatial estimation of simulated data sets and soil chemical properties produced differences in the spatial estimation and improved the level of detail of subregions in thematic maps.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset presents the estimated occurrence of less common tree species (other than pine and spruce) in the form of thematic maps covering entire area of Finland. The maps series represent the following years: 1994, 2002, 2009 and 2015. The tree species maps are based on geostatistical interpolation of field measurements from national forest inventory sample plots and satellite image-based forest resource estimates. The occurrence data is presented as the average volume (m3/ha) of the tree species in forestry land. The tree species maps are available as ESRI polygon shapefiles where Finland is divided into 1 x 1 km2 square polygons for which the tree species data is estimated. Koordinaattijärjestelmä: ETRS89 / ETRS-TM35FIN (EPSG:3067)
Facebook
TwitterThis land cover map is a subset of the National Land Cover Dataset (NLCD) produced by the Multi-Resolution Land Characteristics (MRLC) Consortium (USGS, EPA, NOAA, and USFS) 1/6/1999. The NLCD was produced in order to provide a consistent, land cover data layer for the conterminous U.S. utilizing early 1990s Landsat Thematic Mapper data. The raster map depicts the counties surrounding Oak Ridge Reservation (Anderson, Blount, Loudon, Knox, Morgan and Roane) and has a 30m spatial resolution. Yang et al. (2001) found the thematic accuracy for the MRLC land cover map for the eastern U.S. to be 59.7% at Anderson Level II thematic detail and 80.5% at Anderson Level I.
The NLCD classification scheme (based on Anderson et al. 1976) is as follows -
Water - All areas of open water or permanent ice/snow cover. 11. Open Water - all areas of open water, generally with less than 25% cover of vegetation/land cover. 12. Perennial Ice/Snow - all areas characterized by year-long surface cover of ice and/or snow.
Developed Areas characterized by a high percentage (30 percent or greater) of constructed materials (e.g. asphalt, concrete, buildings, etc). 21. Low Intensity Residential - Includes areas with a mixture of constructed materials and vegetation. Constructed materials account for 30-80 percent of the cover. Vegetation may account for 20 to 70 percent of the cover. These areas most commonly include single-family housing units. Population densities will be lower than in high intensity residential areas. 22. High Intensity Residential - Includes highly developed areas where people reside in high numbers. Examples include apartment complexes and row houses. Vegetation accounts for less than 20 percent of the cover. Constructed materials account for 80 to100 percent of the cover. 23. Commercial/Industrial/Transportation - Includes infrastructure (e.g. roads, railroads, etc.) and all highly developed areas not classified as High Intensity Residential.
Barren - Areas characterized by bare rock, gravel, sand, silt, clay, or other earthen material, with little or no green vegetation present regardless of its inherent ability to support life. Vegetation, if present, is more widely spaced and scrubby than that in the green vegetated categories; lichen cover may be extensive. 31. Bare Rock/Sand/Clay - Perennially barren areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, beaches, and other accumulations of earthen material. 32. Quarries/Strip Mines/Gravel Pits - Areas of extractive mining activities with significant surface expression. 33. Transitional - Areas of sparse vegetative cover (less than 25 percent of cover) that are dynamically changing from one land cover to another, often because of land use activities. Examples include forest clearcuts, a transition phase between forest and agricultural land, the temporary clearing of vegetation, and changes due to natural causes (e.g. fire, flood, etc.).
Forested Upland - Areas characterized by tree cover (natural or semi-natural woody vegetation, generally greater than 6 meters tall); tree canopy accounts for 25-100 percent of the cover. 41. Deciduous Forest - Areas dominated by trees where 75 percent or more of the tree species shed foliage simultaneously in response to seasonal change. 42. Evergreen Forest - Areas dominated by trees where 75 percent or more of the tree species maintain their leaves all year. Canopy is never without green foliage. 43. Mixed Forest - Areas dominated by trees where neither deciduous nor evergreen species represent more than 75 percent of the cover present.
Shrubland - Areas characterized by natural or semi-natural woody vegetation with aerial stems, generally less than 6 meters tall, with individuals or clumps not touching to interlocking. Both evergreen and deciduous species of true shrubs, young trees, and trees or shrubs that are small or stunted because of environmental conditions are included. 51. Shrubland - Areas dominated by shrubs; shrub canopy accounts for 25-100 percent of the cover. Shrub cover is generally greater than 25 percent when tree cover is less than 25 percent. Shrub cover may be less than 25 percent in cases when the cover of other life forms (e.g. herbaceous or tree) is less than 25 percent and shrubs cover exceeds the cover of the other life forms.
Non-Natural Woody - Areas dominated by non-natural woody vegetation; non-natural woody vegetative canopy accounts for 25-100 percent of the cover. The non-natural woody classification is subject to the availability of sufficient ancillary data to differentiate non-natural woody vegetation from natural woody vegetation. 61. Orchards/Vineyards/Other - Orchards, vineyards, and other areas planted ... Visit https://dataone.org/datasets/Map_Counties_Surrounding_ORR_Land_Cover_Landsat_NLCD_30m_1992.xml for complete metadata about this dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset presents the estimated occurrence of less common tree species (other than pine and spruce) in the form of thematic maps covering entire area of Finland. The maps series represent the following years: 1994, 2002, 2009 and 2015. The tree species maps are based on geostatistical interpolation of field measurements from national forest inventory sample plots and satellite image-based forest resource estimates. The occurrence data is presented as the average volume (m3/ha) of the tree species in forestry land. The tree species maps are available as ESRI polygon shapefiles where Finland is divided into 1 x 1 km2 square polygons for which the tree species data is estimated. Koordinaattijärjestelmä: ETRS89 / ETRS-TM35FIN (EPSG:3067)
Facebook
Twitterhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/OCEC0Shttps://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/OCEC0S
The Millennium Coral Reef Mapping Project provides thematic maps of coral reefs worldwide at geomorphological scale. Maps were created by photo-interpretation of Landsat 7 and Landsat 8 satellite images. Maps are provided as standard Shapefiles usable in GIS software. The geomorphological classification scheme is hierarchical and includes 5 levels. The GIS products include for each polygon a number of attributes. The 5 level geomorphological attributes are provided (numerical codes or text). The Level 1 corresponds to the differentiation between oceanic and continental reefs. Then from Levels 2 to 5, the higher the level, the more detailed the thematic classification is. Other binary attributes specify for each polygon if it belongs to terrestrial area (LAND attribute), and sedimentary or hard-bottom reef areas (REEF attribute). Examples and more details on the attributes are provided in the references cited. The products distributed here were created by IRD, in their last version. Shapefiles for 52 atolls of the Indian Ocean and Red Sea as mapped by the Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). The data set provides one zip file per country or region of interest. Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). Funded by National Aeronautics and Space Administration, NASA grants NAG5-10908 (University of South Florida, PIs: Franck Muller-Karger and Serge Andréfouët) and CARBON-0000-0257 (NASA, PI: Julie Robinson) from 2001 to 2007. Funded by IRD since 2003 (in kind, PI: Serge Andréfouët).
Facebook
TwitterThe dataset is produced from IGN ADMIN-EXPRESS-COG. It is once again generalised (reduction of a factor 2), optimised for thematic mapping, statistical analysis and web publication of interactive maps. The overseas regions and department (Droms) are close to the metropolis. It also describes optimised centroids, derived as much as possible from the town hall position. The coordinates appear in the layer of the municipal contours in EPSG:3857 and WGS84, and are also expressed as a separate point layer. For Droms, the coordinates are adjusted to coincide with the displaced ultra-marine territories. The layer of the municipal contours is also available in TopoJSON format, for example with D3, Magrit, etc. For more information: — a map background France per commune optimised for web and statistical analysis — the hidden treasures of TopoJSON, cartographic and topological format
Facebook
TwitterThe 2023 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. For example, tabulation blocks numbered 3001, 3002, 3003,.., 3999 within census tract 1210.02 are also within BG 3 within that census tract. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. The generalized BG boundaries in this release are based on those that were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
simple_land_cover1.tif - an example land cover dataset presented in Figures 1 and 2- simple_landform1.tif - an example landform dataset presented in Figures 1 and 2- landcover_europe.tif - a land cover dataset with nine categories for Europe - landcover_europe.qml - a QGIS color style for the landcover_europe.tif dataset- landform_europe.tif - a landform dataset with 17 categories for Europe - landform_europe.qml - a QGIS color style for the landform_europe.tif dataset- map1.gpkg - a map of LTs in Europe constructed using the INCOMA-based method- map1.qml - a QGIS color style for the map1.gpkg dataset- map2.gpkg - a map of LTs in Europe constructed using the COMA method to identify and delineate pattern types in each theme separately- map2.qml - a QGIS color style for the map2.gpkg dataset- map3.gpkg - a map of LTs in Europe constructed using the map overlay method- map3.qml - a QGIS color style for the map3.gpkg dataset