89 datasets found
  1. D

    Soil Data Confidence map for NSW

    • data.nsw.gov.au
    • researchdata.edu.au
    html, pdf +2
    Updated Feb 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSW Department of Climate Change, Energy, the Environment and Water (2024). Soil Data Confidence map for NSW [Dataset]. https://data.nsw.gov.au/data/dataset/soil-data-confidence-map-for-nsw9859e
    Explore at:
    spatial viewer, html, zip, pdfAvailable download formats
    Dataset updated
    Feb 26, 2024
    Dataset provided by
    NSW Department of Climate Change, Energy, the Environment and Water
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New South Wales
    Description

    This map provides a guide to the data confidence of DPIE's soil related thematic map products in NSW. Examples of products this map supports includes Land and Soil Capability mapping, Inherent fertility of soils in NSW and Great Soil Group soil types in NSW.

    Confidence classes are determined based on the data scale, type of mapping and information collected, accuracy of the attributes and quality assurance on the product.

    Soil data confidence is described using a 4 class system between high and very low as outlined below.:

    • Good (1) - All necessary soil and landscape data is available at a catchment scale (1:100,000 & 1:250,000) to undertake the assessment of LSC and other soil thematic maps.

    • Moderate (2) - Most soil and landscape data is available at a catchment scale (1:100,000 - 1:250,000) to undertake the assessment of LSC and other soil thematic maps.

    • Low (3) - Limited soil and landscape data is available at a reconnaissance catchment scale (1:100,000 & 1:250,000) which limits the quality of the assessment of LSC and other soil thematic maps.

    • Very low (4) - Very limited soil and landscape data is available at a broad catchment scale (1:250,000 - 1:500,000) and the LSC and other soil thematic maps should be used as a guide only.

    Online Maps: This dataset can be viewed using eSPADE (NSW’s soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area.

    Reference: Department of Planning, Industry and Environment, 2020, Soil Data Confidence map for NSW, Version 4, NSW Department of Planning, Industry and Environment, Parramatta.

  2. f

    IMCOMA-example-datasets

    • figshare.com
    xml
    Updated Feb 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nowosad (2021). IMCOMA-example-datasets [Dataset]. http://doi.org/10.6084/m9.figshare.13379228.v1
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Feb 12, 2021
    Dataset provided by
    figshare
    Authors
    Nowosad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Datasets- simple_land_cover1.tif - an example land cover dataset presented in Figures 1 and 2- simple_landform1.tif - an example landform dataset presented in Figures 1 and 2- landcover_europe.tif - a land cover dataset with nine categories for Europe - landcover_europe.qml - a QGIS color style for the landcover_europe.tif dataset- landform_europe.tif - a landform dataset with 17 categories for Europe - landform_europe.qml - a QGIS color style for the landform_europe.tif dataset- map1.gpkg - a map of LTs in Europe constructed using the INCOMA-based method- map1.qml - a QGIS color style for the map1.gpkg dataset- map2.gpkg - a map of LTs in Europe constructed using the COMA method to identify and delineate pattern types in each theme separately- map2.qml - a QGIS color style for the map2.gpkg dataset- map3.gpkg - a map of LTs in Europe constructed using the map overlay method- map3.qml - a QGIS color style for the map3.gpkg dataset

  3. a

    World War II: Pearl Harbor Sample Interactive thematic map (borrowed from...

    • hub.arcgis.com
    Updated Apr 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jba5531_pennstate (2022). World War II: Pearl Harbor Sample Interactive thematic map (borrowed from maps.com carto) [Dataset]. https://hub.arcgis.com/maps/60d30c01719545cf8cc7d949a270fe10
    Explore at:
    Dataset updated
    Apr 29, 2022
    Dataset authored and provided by
    jba5531_pennstate
    Area covered
    Description

    This activity shows how the expansion of the Japanese empire resulted in the U.S. involvement in WW II.THE U.S. HISTORY GEOINQUIRY COLLECTIONhttp://www.esri.com/geoinquiriesTo support Esri’s involvement in the White House ConnectED Initiative, GeoInquiry instructional materials using ArcGIS Online for Earth Science education are now freely available. The U.S. History GeoInquiry collection contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading high school U.S. History textbooks. The activities use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device agnostic. The activities harmonize with the C3 curriculum standards for social studies education. Activity topics include:· The Great Exchange· The 13 Colonies - 1700s· The War Before Independence (The American Revolution)· The War of 1812· Westward, ho! (Trails west)· The Underground Railroad· From Compromise to Conflict· A nation divided: The Civil War· Native American Lands· Steel and the birth of a city (natural resources)· World War I· Dust Bowl· A day that lived in infamy (Pearl Harbor)· Operation Overlord - D-Day· Hot spots in the Cold WarTeachers, GeoMentors, and administrators can learn more at http://www.esri.com/geoinquiries.

  4. f

    Data from: Gradually morphing a thematic map series based on cellular...

    • tandf.figshare.com
    application/x-rar
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heng Lin; Wei Gong (2023). Gradually morphing a thematic map series based on cellular automata [Dataset]. http://doi.org/10.6084/m9.figshare.5432779.v2
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Heng Lin; Wei Gong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Maps are often animated to help users make comparisons and comprehend trends. However, large and complex differences between sequential maps can inhibit users from doing so. This paper proposes a morphing technique to highlight trends without manual intervention. Changes between sequential maps are considered as the diffusion processes of expanding classes, with these processes simulated by cellular automata. A skeleton extraction technique is introduced to handle special cases. Experimental results demonstrate that the proposed morphing technique can reveal obvious trends between dramatically changed maps. The potential application of the proposed morphing technique in sequential spatial data (e.g. remote-sensing images) is discussed.

  5. d

    Soil Data Confidence map for NSW

    • data.gov.au
    basic, html, pdf, zip
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Planning, Industry and Environment (2021). Soil Data Confidence map for NSW [Dataset]. https://data.gov.au/dataset/ds-nsw-80de4817-f954-4d9b-ae53-348fb7c9c831
    Explore at:
    basic, html, zip, pdfAvailable download formats
    Dataset updated
    Jul 9, 2021
    Dataset provided by
    Department of Planning, Industry and Environment
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New South Wales
    Description

    This map provides a guide to the data confidence of DPIE's soil related thematic map products in NSW. Examples of products this map supports includes Land and Soil Capability mapping, Inherent …Show full descriptionThis map provides a guide to the data confidence of DPIE's soil related thematic map products in NSW. Examples of products this map supports includes Land and Soil Capability mapping, Inherent fertility of soils in NSW and Great Soil Group soil types in NSW. Confidence classes are determined based on the data scale, type of mapping and information collected, accuracy of the attributes and quality assurance on the product. Soil data confidence is described using a 4 class system between high and very low as outlined below.: Good (1) - All necessary soil and landscape data is available at a catchment scale (1:100,000 & 1:250,000) to undertake the assessment of LSC and other soil thematic maps. Moderate (2) - Most soil and landscape data is available at a catchment scale (1:100,000 - 1:250,000) to undertake the assessment of LSC and other soil thematic maps. Low (3) - Limited soil and landscape data is available at a reconnaissance catchment scale (1:100,000 & 1:250,000) which limits the quality of the assessment of LSC and other soil thematic maps. Very low (4) - Very limited soil and landscape data is available at a broad catchment scale (1:250,000 - 1:500,000) and the LSC and other soil thematic maps should be used as a guide only. Online Maps: This dataset can be viewed using eSPADE (NSW’s soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area. Reference: Department of Planning, Industry and Environment, 2020, Soil Data Confidence map for NSW, Version 4, NSW Department of Planning, Industry and Environment, Parramatta.

  6. f

    Data from: RELATIONSHIP BETWEEN SAMPLE DESIGN AND GEOMETRIC ANISOTROPY IN...

    • scielo.figshare.com
    jpeg
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luciana P. C. Guedes; Miguel A. Uribe-Opazo; Paulo J. Ribeiro Junior; Gustavo H. Dalposso (2023). RELATIONSHIP BETWEEN SAMPLE DESIGN AND GEOMETRIC ANISOTROPY IN THE PREPARATION OF THEMATIC MAPS OF CHEMICAL SOIL ATTRIBUTES [Dataset]. http://doi.org/10.6084/m9.figshare.6388367.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    SciELO journals
    Authors
    Luciana P. C. Guedes; Miguel A. Uribe-Opazo; Paulo J. Ribeiro Junior; Gustavo H. Dalposso
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT Spatial variability depends on the sampling configuration and characteristics associated with the georeferenced phenomenon, such as geometric anisotropy. This study aimed to determine the influence of the sampling design on parameter estimation in an anisotropic geostatistical model and the spatial estimation of a georeferenced variable at unsampled locations. Datasets were simulated with geometric anisotropy, considering five values for the anisotropic ratio (1, 2, 3, 4, 5), and three sampling designs: lattice, random and lattice plus close pairs. The simulation results were used as a reference to select anisotropic models to describe the spatial dependence structure in chemical soil properties. For each dataset (with either simulated or chemical soil properties), the values of the georeferenced variables at unsampled locations were estimated by kriging, considering estimated isotropic and anisotropic geostatistical models. The choice of the sampling design influenced the spatial estimation of the georeferenced variable and the quality of the estimation of the geostatistical anisotropic model. The incorporation of geometric anisotropy in the spatial estimation of simulated data sets and soil chemical properties produced differences in the spatial estimation and improved the level of detail of subregions in thematic maps.

  7. a

    World Canvas Light

    • hub.arcgis.com
    Updated Sep 16, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2013). World Canvas Light [Dataset]. https://hub.arcgis.com/maps/eaglegis::world-canvas-light/about
    Explore at:
    Dataset updated
    Sep 16, 2013
    Dataset authored and provided by
    Eagle Technology Group Ltd
    Area covered
    Description

    This service was last updated September 2016. This map service draws attention to your thematic content by providing a neutral background with minimal colors, labels, and features. Only key information is represented to provide geographic context, allowing your data to come to the foreground. This light gray basemap supports any strong colors and labels for your theme, creating a visually compelling map graphic which helps your reader see the patterns intended. See these blog posts for more information on how to use this map: Esri Canvas Maps Part I: Author Beautiful Web Maps With Our New Artisan Basemap Sandwich and Esri Canvas Maps Part II: Using the Light Gray Canvas Map effectively. The map shows populated places, water, roads, urban areas, parks, building footprints, and administrative boundaries. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri or any governing authority. This map was compiled by Esri using HERE data, DeLorme basemap layers, MapmyIndia data, and Esri basemap data. The basemap includes boundaries, city labels and outlines, and major roads worldwide from 1:591M scale to 1:72k scale. More detailed nationwide coverage is included in North America, Europe, Africa, South America and Central America, the Middle East, India, Australia, and New Zealand to be fully consistent with the World Street Map and World Topo map down to the 1:9k scale. Data for select areas of Africa and Pacific Island nations from ~1:288k to ~1:9k was sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view.In addition, some of the data in the World Light Gray Base map service has been contributed by the GIS community. You can contribute your data to this service and have it served by Esri. For details, see the Community Maps Program. For details on data sources in this map service, view the list of Contributors for the World Light Gray Base map.View the coverage map below to learn more about the levels of detail:World coverage map: Shows the levels of detail throughout the world. The World Light Gray Reference is designed to be drawn on top of this map and provides selected city labels throughout the world. This web map lets you view the Light Gray Base with the Reference service drawn on top. This sample web map contains several examples of thematic content in the light gray canvas basemap with its reference overlay. Note: This map service is not supported in ArcGIS for Desktop 9.3.1 or earlier because it uses the mixed format cache format. Scale Range: 1:591,657,528 down to 1:9,028Coordinate System: Web Mercator Auxiliary Sphere (WKID 102100)Tiling Scheme: Web Mercator Auxiliary SphereMap Service Name: World_Light_Gray_Base

  8. t

    Probability sampling protocol of classification maps from...

    • service.tib.eu
    • doi.pangaea.de
    • +1more
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Probability sampling protocol of classification maps from spaceborne/airborne image [Dataset]. https://service.tib.eu/ldmservice/dataset/png-doi-10-1594-pangaea-806528
    Explore at:
    Dataset updated
    Nov 29, 2024
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    To deliver sample estimates provided with the necessary probability foundation to permit generalization from the sample data subset to the whole target population being sampled, probability sampling strategies are required to satisfy three necessary not sufficient conditions: (i) All inclusion probabilities be greater than zero in the target population to be sampled. If some sampling units have an inclusion probability of zero, then a map accuracy assessment does not represent the entire target region depicted in the map to be assessed. (ii) The inclusion probabilities must be: (a) knowable for nonsampled units and (b) known for those units selected in the sample: since the inclusion probability determines the weight attached to each sampling unit in the accuracy estimation formulas, if the inclusion probabilities are unknown, so are the estimation weights. This original work presents a novel (to the best of these authors' knowledge, the first) probability sampling protocol for quality assessment and comparison of thematic maps generated from spaceborne/airborne Very High Resolution (VHR) images, where: (I) an original Categorical Variable Pair Similarity Index (CVPSI, proposed in two different formulations) is estimated as a fuzzy degree of match between a reference and a test semantic vocabulary, which may not coincide, and (II) both symbolic pixel-based thematic quality indicators (TQIs) and sub-symbolic object-based spatial quality indicators (SQIs) are estimated with a degree of uncertainty in measurement in compliance with the well-known Quality Assurance Framework for Earth Observation (QA4EO) guidelines. Like a decision-tree, any protocol (guidelines for best practice) comprises a set of rules, equivalent to structural knowledge, and an order of presentation of the rule set, known as procedural knowledge. The combination of these two levels of knowledge makes an original protocol worth more than the sum of its parts. The several degrees of novelty of the proposed probability sampling protocol are highlighted in this paper, at the levels of understanding of both structural and procedural knowledge, in comparison with related multi-disciplinary works selected from the existing literature. In the experimental session the proposed protocol is tested for accuracy validation of preliminary classification maps automatically generated by the Satellite Image Automatic MapperTM (SIAMTM) software product from two WorldView-2 images and one QuickBird-2 image provided by DigitalGlobe for testing purposes. In these experiments, collected TQIs and SQIs are statistically valid, statistically significant, consistent across maps and in agreement with theoretical expectations, visual (qualitative) evidence and quantitative quality indexes of operativeness (OQIs) claimed for SIAMTM by related papers. As a subsidiary conclusion, the statistically consistent and statistically significant accuracy validation of the SIAMTM pre-classification maps proposed in this contribution, together with OQIs claimed for SIAMTM by related works, make the operational (automatic, accurate, near real-time, robust, scalable) SIAMTM software product eligible for opening up new inter-disciplinary research and market opportunities in accordance with the visionary goal of the Global Earth Observation System of Systems (GEOSS) initiative and the QA4EO international guidelines.

  9. Links to all datasets and downloads for 80 A0/A3 digital image of map...

    • data.csiro.au
    • researchdata.edu.au
    Updated Jan 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober (2016). Links to all datasets and downloads for 80 A0/A3 digital image of map posters accompanying AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach [Dataset]. http://doi.org/10.4225/08/569C1F6F9DCC3
    Explore at:
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober
    License

    https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/

    Time period covered
    Jan 1, 2015 - Jan 10, 2015
    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.

    These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.

    The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.

    Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.

    Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.

    Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.

    An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.

    Example citations:

    Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.

    Maps were generated using layout and drawing tools in ArcGIS 10.2.2

    A check list of map posters and datasets is provided with the collection.

    Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x

    8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)

    9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)

    9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)

    10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)

    10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)

    11.1 Refugial potential for vascular plants and mammals (1990-2050)

    11.1 Refugial potential for reptiles and amphibians (1990-2050)

    12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)

    12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)

  10. Digital Map Market Analysis, Size, and Forecast 2025-2029: North America (US...

    • technavio.com
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Digital Map Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), APAC (China, India, Indonesia, Japan, and South Korea), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/digital-map-market-industry-analysis
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Canada, United States, Global
    Description

    Snapshot img

    Digital Map Market Size 2025-2029

    The digital map market size is forecast to increase by USD 31.95 billion at a CAGR of 31.3% between 2024 and 2029.

    The market is driven by the increasing adoption of intelligent Personal Digital Assistants (PDAs) and the availability of location-based services. PDAs, such as smartphones and smartwatches, are becoming increasingly integrated with digital map technologies, enabling users to navigate and access real-time information on-the-go. The integration of Internet of Things (IoT) enables remote monitoring of cars and theft recovery. Location-based services, including mapping and navigation apps, are a crucial component of this trend, offering users personalized and convenient solutions for travel and exploration. However, the market also faces significant challenges.
    Ensuring the protection of sensitive user information is essential for companies operating in this market, as trust and data security are key factors in driving user adoption and retention. Additionally, the competition in the market is intense, with numerous players vying for market share. Companies must differentiate themselves through innovative features, user experience, and strong branding to stand out in this competitive landscape. Security and privacy concerns continue to be a major obstacle, as the collection and use of location data raises valid concerns among consumers.
    

    What will be the Size of the Digital Map Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the market, cartographic generalization and thematic mapping techniques are utilized to convey complex spatial information, transforming raw data into insightful visualizations. Choropleth maps and dot density maps illustrate distribution patterns of environmental data, economic data, and demographic data, while spatial interpolation and predictive modeling enable the estimation of hydrographic data and terrain data in areas with limited information. Urban planning and land use planning benefit from these tools, facilitating network modeling and location intelligence for public safety and emergency management.

    Spatial regression and spatial autocorrelation analyses provide valuable insights into urban development trends and patterns. Network analysis and shortest path algorithms optimize transportation planning and logistics management, enhancing marketing analytics and sales territory optimization. Decision support systems and fleet management incorporate 3D building models and real-time data from street view imagery, enabling effective resource management and disaster response. The market in the US is experiencing robust growth, driven by the integration of Geographic Information Systems (GIS), Global Positioning Systems (GPS), and advanced computer technology into various industries.

    How is this Digital Map Industry segmented?

    The digital map industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Application
    
      Navigation
      Geocoders
      Others
    
    
    Type
    
      Outdoor
      Indoor
    
    
    Solution
    
      Software
      Services
    
    
    Deployment
    
      On-premises
      Cloud
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        Indonesia
        Japan
        South Korea
    
    
      Rest of World (ROW)
    

    By Application Insights

    The navigation segment is estimated to witness significant growth during the forecast period. Digital maps play a pivotal role in various industries, particularly in automotive applications for driver assistance systems. These maps encompass raster data, aerial photography, government data, and commercial data, among others. Open-source data and proprietary data are integrated to ensure map accuracy and up-to-date information. Map production involves the use of GPS technology, map projections, and GIS software, while map maintenance and quality control ensure map accuracy. Location-based services (LBS) and route optimization are integral parts of digital maps, enabling real-time navigation and traffic data.

    Data validation and map tiles ensure data security. Cloud computing facilitates map distribution and map customization, allowing users to access maps on various devices, including mobile mapping and indoor mapping. Map design, map printing, and reverse geocoding further enhance the user experience. Spatial analysis and data modeling are essential for data warehousing and real-time navigation. The automotive industry's increasing adoption of connected cars and long-term evolution (LTE) technologies have fueled the demand for digital maps. These maps enable driver assistance app

  11. y

    Occurrence map for less common tree species, 2015 - Dataset - CKAN

    • ckanfeo.ymparisto.fi
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Occurrence map for less common tree species, 2015 - Dataset - CKAN [Dataset]. https://ckanfeo.ymparisto.fi/dataset/urn-nbn-fi-att-564b23a2-13a0-4fea-9638-cbff64734992
    Explore at:
    Dataset updated
    Mar 1, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset presents the estimated occurrence of less common tree species (other than pine and spruce) in the form of thematic maps covering entire area of Finland. The maps series represent the following years: 1994, 2002, 2009 and 2015. The tree species maps are based on geostatistical interpolation of field measurements from national forest inventory sample plots and satellite image-based forest resource estimates. The occurrence data is presented as the average volume (m3/ha) of the tree species in forestry land. The tree species maps are available as ESRI polygon shapefiles where Finland is divided into 1 x 1 km2 square polygons for which the tree species data is estimated. Koordinaattijärjestelmä: ETRS89 / ETRS-TM35FIN (EPSG:3067)

  12. j

    Data from: Dataset for estimating area and assessing the accuracy of forest...

    • jstagedata.jst.go.jp
    zip
    Updated Jul 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katsuto Shimizu (2023). Dataset for estimating area and assessing the accuracy of forest change maps from satellite data [Dataset]. http://doi.org/10.50853/data.jjfs.22152242.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 27, 2023
    Dataset provided by
    Japanese Forest Society
    Authors
    Katsuto Shimizu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains raster data, R scripts, and obtained results that are related to statistically rigorous methods for accuracy assessment and area estimation of forest change maps. These data can be used to run all simulations, comparisons, and examples described in RELATED MATERIALS 1. The R scripts can also be used for the accuracy assessment of thematic maps derived from other datasets.

  13. D

    Atolls of France: geospatial vector data (MCRMP project)

    • dataverse.ird.fr
    Updated Sep 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Serge Andréfouët; Serge Andréfouët (2023). Atolls of France: geospatial vector data (MCRMP project) [Dataset]. http://doi.org/10.23708/LHTEVZ
    Explore at:
    application/zipped-shapefile(314981), application/zipped-shapefile(319150), application/zipped-shapefile(16957), application/zipped-shapefile(34377), application/zipped-shapefile(145542), application/zipped-shapefile(12969324), application/zipped-shapefile(1049821), application/zipped-shapefile(2979211), txt(1819)Available download formats
    Dataset updated
    Sep 4, 2023
    Dataset provided by
    DataSuds
    Authors
    Serge Andréfouët; Serge Andréfouët
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/LHTEVZhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/LHTEVZ

    Area covered
    France, French Polynesia, New Caledonia, Wallis and Futuna
    Dataset funded by
    NASA (2001-2007)
    IRD (2003-present)
    Description

    The Millennium Coral Reef Mapping Project provides thematic maps of coral reefs worldwide at geomorphological scale. Maps were created by photo-interpretation of Landsat 7 and Landsat 8 satellite images. Maps are provided as standard Shapefiles usable in GIS software. The geomorphological classification scheme is hierarchical and includes 5 levels. The GIS products include for each polygon a number of attributes. The 5 level geomorphological attributes are provided (numerical codes or text). The Level 1 corresponds to the differentiation between oceanic and continental reefs. Then from Levels 2 to 5, the higher the level, the more detailed the thematic classification is. Other binary attributes specify for each polygon if it belongs to terrestrial area (LAND attribute), and sedimentary or hard-bottom reef areas (REEF attribute). Examples and more details on the attributes are provided in the references cited. The products distributed here were created by IRD, in their last version. Shapefiles for 102 atolls of France (in the Pacific and Indian Oceans) as mapped by the Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). The data set provides one zip file per region of interest. Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). Funded by National Aeronautics and Space Administration, NASA grants NAG5-10908 (University of South Florida, PIs: Franck Muller-Karger and Serge Andréfouët) and CARBON-0000-0257 (NASA, PI: Julie Robinson) from 2001 to 2007. Funded by IRD since 2003 (in kind, PI: Serge Andréfouët).

  14. d

    ScienceBase Item Summary Page

    • datadiscoverystudio.org
    Updated Jun 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). ScienceBase Item Summary Page [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/824d127b57154416b692de638fd214f5/html
    Explore at:
    Dataset updated
    Jun 28, 2018
    Area covered
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  15. f

    Data from: Spatial multivariate optimization for a sampling redesign with a...

    • scielo.figshare.com
    tiff
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tamara Cantú Maltauro; Luciana Pagliosa Carvalho Guedes; Miguel Angel Uribe-Opazo; Letícia Ellen Dal Canton (2023). Spatial multivariate optimization for a sampling redesign with a reduced sample size of soil chemical properties [Dataset]. http://doi.org/10.6084/m9.figshare.22578339.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SciELO journals
    Authors
    Tamara Cantú Maltauro; Luciana Pagliosa Carvalho Guedes; Miguel Angel Uribe-Opazo; Letícia Ellen Dal Canton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT Precision agriculture can improve the decision-making process in agricultural production, as it gathers, processes and analyzes spatial data, allowing, for example, specific fertilizer application in each location. One of the proposals to deal with spatial heterogeneity of the soil or the distribution of chemical properties is to define application zones (homogeneous subareas). These zones allow reducing both spatial variability of the yield of the crop under study and of the environmental impacts. Considering the soil data, application zones can also represent strata or indicators to direct future soil sampling, thus seeking sample size reduction, for example. This study aimed to obtain an optimized sampling redesign using application zones generated from the assessment of five clustering methods (Fuzzy C-means, Fanny, K-means, McQuitty and Ward). Soil samples were collected in an agricultural area located in the city of Cascavel-Paraná-Brazil, and analyzed in the laboratory to determine the soil chemical properties, referring to four soybean harvest years (2013-2014, 2014-2015, 2015-2016 and 2016-2017). The application zones were obtained through a dissimilarity matrix that aggregates information about the Euclidean distance between the sample elements and the spatial dependence structure of the properties. Subsequently, an optimized sampling redesign, with reduction of the initial sample points, was obtained in these application zones. For the harvest years under study, the K-means and Ward clustering methods efficiently defined the application zones, dividing the study area into two or three application zones. Among the reduced sample configurations obtained by the optimization process, when comparing the initial sample configuration, the one optimized by 25 % (selecting 75 % of the initial configuration points, which corresponds to 76 sample points) was the most effective in terms of the accuracy indices (overall accuracy, Kappa, Tau). This fact indicates greater similarity between the thematic maps of these sample configurations. In this way, the reduced sample configurations could be used to generate the application zones and reduce the costs regarding the laboratory analyses involved in the study.

  16. Tongass National Forest – Prince of Wales Island – Vegetation Mapping...

    • region-10-alaska-existing-vegetation-maps-usfs.hub.arcgis.com
    • usfs.hub.arcgis.com
    Updated Oct 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2020). Tongass National Forest – Prince of Wales Island – Vegetation Mapping Segmentation Examples 10152020 [Dataset]. https://region-10-alaska-existing-vegetation-maps-usfs.hub.arcgis.com/maps/0b9b0128c33347eb8c655fb946b4dd94
    Explore at:
    Dataset updated
    Oct 16, 2020
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The Prince of Wales Existing Vegetation mapping project encompasses over 4.2 million acres of Southeastern Alaska—2.3 million of which are terrestrial. This map was designed to be consistent with the standards established in the Existing Vegetation Classification and Technical Guide (Nelson et al. 2015), and to provide baseline information to support project planning and inform land management of the Prince of Wales and surrounding islands. The final map comprises seven distinct, integrated feature layers: 1) vegetation type; 2) tree canopy cover; 3) trees per acre (TPA) for trees ≥ 1’ tall; 4) trees per acre for trees ≥ 6” diameter at breast height (dbh); 5) quadratic mean diameter (QMD) for trees ≥ 2” dbh; 6) quadratic mean diameter for trees ≥ 9” dbh; and 7) thematic tree size. The dominance type map consists of 18 classes, including 15 vegetation classes and 3 other land cover types. Continuous tree canopy cover, TPA, QMD, and thematic tree size was developed for areas classified as forest on the final vegetation type map layer. Geospatial data, including remotely sensed imagery, topographic data, and climate information, were assembled to classify vegetation and produce the maps. A semi-automated image segmentation process was used to develop the modeling units (mapping polygons), which delineate homogeneous areas of land cover. Field plots containing thematic vegetation type and tree size information were used as reference for random forest prediction models. Important model drivers included 30 cm orthoimagery collected during the height of the 2019 growing season, in addition to Sentinel 2 and Landsat 8 satellite imagery, for vegetation type prediction. Additionally, detailed tree inventory data were collected at precise field locations to develop forest metrics for Quality Level 1 (QL1) Light Detection and Ranging (LiDAR) data. LiDAR information was acquired across approximately 80% of the project’s land area. Continuous tree canopy cover and 2nd order forest metrics (TPA and QMD) were modeled across the LiDAR coverage area, and subsequently, extrapolated to the full project extent using Interferometric Synthetic Aperture Radar (IfSAR) as the primary topographic data source.

  17. e

    Supervised land cover classification using Google Earth Engine in Córdoba,...

    • portal.edirepository.org
    csv, txt, zip
    Updated Dec 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federico Fiad; Juan Insaurralde; Miriam Cardozo; Claudia Rodríguez; David Gorla (2023). Supervised land cover classification using Google Earth Engine in Córdoba, Argentina, 2018-2020 [Dataset]. http://doi.org/10.6073/pasta/bd835a5be75fb14897679cb2b5d800cc
    Explore at:
    txt(29908 byte), csv(1567 byte), txt(5742 byte), zip(161214 byte)Available download formats
    Dataset updated
    Dec 6, 2023
    Dataset provided by
    EDI
    Authors
    Federico Fiad; Juan Insaurralde; Miriam Cardozo; Claudia Rodríguez; David Gorla
    Time period covered
    Jan 1, 2018 - Dec 31, 2020
    Area covered
    Variables measured
    Class, Value, Description, Macro-class, Covered area (Ha)
    Description

    Land cover information is critical to scientific, economic, and public policy-making. There is a high demand for accurate and timely land cover information that affects the accuracy of all subsequent applications. The availability of Google Earth Engine (GEE), which derives temporal aggregation methods from time-series images (i.e., the use of metrics such as mean or median), has also enabled optimization of computation time, such as managing large amounts of data to obtain more accurate results. Our objective was to obtain a land cover map for the northwest of the province of Córdoba, Argentina. The study was carried out in rural communities that belong to the departments of Cruz del Eje and Ischilín, northwest of Córdoba, and have different degrees of intervention in the land cover. Sentinel 2 Level 2A images were acquired for the study area. Images available from January 1, 2018, to December 31, 2020, were sampled. To create a thematic map, the median value was calculated for the sample of images from the selected time interval. Finally, the Normalized Difference Vegetation Index (NDVI) was calculated and added to the total bands of the median image. Training polygons were placed there considering the visual features in the median image. The Random Forest algorithm was used as the classification method. To verify the quality of the classified map, a list of 97,753 verification pixels was obtained. In addition, a confusion matrix was created to collect the conflicts that arise between categories, and the precision and kappa coefficient was calculated to define the quality of the map obtained. Image acquisition, preprocessing, and analysis were performed on the Google Earth Engine platform. Thematic maps with eight classes were obtained, with a total area of 719880 ha. The confusion matrix showed an overall precision of 99.26% and a corrected kappa index of 0.99, the classes were correctly classified by the algorithm.

  18. m

    Qld 100k mapsheets - Warwick

    • demo.dev.magda.io
    • cloud.csiss.gmu.edu
    • +3more
    zip
    Updated Apr 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Qld 100k mapsheets - Warwick [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-2e4acaf5-a291-4fa1-9811-580b41de0bc4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 13, 2022
    Dataset provided by
    Bioregional Assessment Program
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Queensland
    Description

    Abstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. The polygons in this dataset are a digital representation of the distribution or extent of geological units within the area. Polygons have a range of attributes including unit name, age, lithological description and an abbreviated symbol for use in labelling the polygons. These have been extracted from the Rock Units Table held …Show full descriptionAbstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. The polygons in this dataset are a digital representation of the distribution or extent of geological units within the area. Polygons have a range of attributes including unit name, age, lithological description and an abbreviated symbol for use in labelling the polygons. These have been extracted from the Rock Units Table held in the Department of Natural Resources, Mines and Energy Merlin Database. Purpose To display the geology polygons which define the extent of rock units. Dataset History Supplemental_Information: Data captured at 1:40 000 scale. The data set is sourced from the Department's Geoscience and Resources Database (GRDB), a component of the Mineral and Energy Resources Location and Information Network (MERLIN) corporate database.(GRDB), a component of the Mineral and Energy Resources Location and Information Network (MERLIN) corporate database. NOTE: GEOLDATA was in most cases compiled based on Datum AGD66. The map tile coverages so compiled have now been projected to geographics based on Datum GDA94. Consequently the boundaries for these map tiles will not conform to the Latitude and Longitude graticule based on Datum GDA94. Entity_and_Attribute_Information: Detailed_Description: Entity_Type: Entity_Type_Label: 9341_r Entity_Type_Definition: Polygons have a range of attributes including unit name, age, lithological description and an abbreviated symbol for use in labelling the polygons. Entity_Type_Definition_Source: The Rock Units Table held in the Department of Natural Resources, Mines and Energy Merlin Database. Attribute: Attribute_Label: FID Attribute_Definition: Internal feature number. Attribute_Definition_Source: ESRI Attribute_Domain_Values: Unrepresentable_Domain: Sequential unique whole numbers that are automatically generated. Beginning_Date_of_Attribute_Values: March 2004 Attribute: Attribute_Label: Shape Attribute_Definition: Feature geometry. Attribute_Definition_Source: ESRI Attribute_Domain_Values: Unrepresentable_Domain: Coordinates defining the features. Attribute: Attribute_Label: KEY Attribute_Definition: Unique polygon identifier and relate item for poygon attributes Attribute: Attribute_Label: ROCK_U_NAM Attribute_Definition: The Map Unit Name of the polygon. In the case of named units it comprises of the standard binomial name. Unnamed subdivisions of named units include the binomial name with a letter symbol as a suffix. Unnamed units are represented by a letter symbol, usually in combination with a map sheet number. Attribute: Attribute_Label: AGE Attribute_Definition: Geological age of unit Attribute: Attribute_Label: LITH_SUMMA Attribute_Definition: Provides a brief description of the map units as they have been described in the course of the project work, or as has appeared on relevant hard copy map legends. Attribute: Attribute_Label: ROCK_U_TYP Attribute_Definition: Provides a means of separating map units, eg for constructing a map reference. This item will contain one of the following: STRAT- Stratigraphic unit, including sedimentary, volcanic and metamorphic rock units. INTRU- Intrusive rock units; COMPST- Compound unit where the polygon includes two or more rock units, either stratigraphic, intrusive or both; COMPST- Compound unit, as above where the dominant or topmost unit is of the STRAT type; COMPIN- Compound unit, as above, where the dominant unit is of the INTRU type; WATER- Water bodies- Large dams, lakes, waterholes. Attribute: Attribute_Label: SEQUENCE_N Attribute_Definition: A numeric field to allow sorting of the rock units in approximate stratigraphic order as they would appear on a map legend. Attribute: Attribute_Label: DOMINANT_R Attribute_Definition: A simplified lithological description to allow generation of thematic maps based on broad rock types. Attribute: Attribute_Label: MAP_SYMBOL Attribute_Definition: Provides an abbreviated label for polygons. Mostly based on the letter symbols as they appear on published maps or the original hard copy compilation sheets. These are not unique across the State, but should be unique within a single map tile, and usually adjacent tiles. Attribute: Attribute_Label: NAME_100K Attribute_Definition: Name of 1:100 000 map sheet coincident with the data extent. Overview_Description: Entity_and_Attribute_Overview: Polygon Attribute information includes Polygon Key, Rock Unit Name, Age, Lithology, Rock Unit Type, Map Symbol and 1:100 000 sheet name. Dataset Citation "Queensland Department of Natural Resources, Mines and Energy" (2014) Qld 100k mapsheets - Warwick. Bioregional Assessment Source Dataset. Viewed 28 September 2017, http://data.bioregionalassessments.gov.au/dataset/3e2fa307-1f06-4873-96d3-5c3e5638894a.

  19. d

    Data from: Resource-Area-Dependence Analysis: inferring animal resource...

    • datadryad.org
    • data.niaid.nih.gov
    • +2more
    zip
    Updated Nov 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert E. Kenward; Eduardo M. Arraut; Peter A. Robertson; Sean S Walls; Nicholas M Casey; Nicholas J Aebischer (2018). Resource-Area-Dependence Analysis: inferring animal resource needs from home-range and mapping data [Dataset]. http://doi.org/10.5061/dryad.8n183
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 7, 2018
    Dataset provided by
    Dryad
    Authors
    Robert E. Kenward; Eduardo M. Arraut; Peter A. Robertson; Sean S Walls; Nicholas M Casey; Nicholas J Aebischer
    Time period covered
    2018
    Area covered
    Southern England
    Description

    Kenward-et-al_RADA_Buzzard_radio-tracking_dataData used to infer the resource needs of common buzzards (Buteo buteo) Dorset, southern UK. Inference was made by applying Resource-Area-Dependence Analysis (RADA) to a sample of 114 buzzard home ranges and a thematic map depicting resource distribution. The compressed archive contains the radio-tracking dataset, which consists of standardized 30 locations per home range obtained via VHF telemetry between 1990 and 1995. The thematic map, formed by using knowledge about buzzards to group 25 land-cover types of the Land Cover Map of Great Britain into 16 map classes, is available against permission at public site http://www.ceh.ac.uk/services/land-cover-map-1990. All coordinates are in UK National Grid format (EPSG 27700). The radio-tracking dataset is provided as: (i) .txt and (ii) .loc. The format in (ii) is native to the Ranges suite of software (http://www.anatrack.com/home.php) for the analysis of animal home ranging and habitat use. Sinc...

  20. 2023 Cartographic Boundary File (SHP), Block Group for Mississippi,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2024). 2023 Cartographic Boundary File (SHP), Block Group for Mississippi, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2023-cartographic-boundary-file-shp-block-group-for-mississippi-1-500000
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    Mississippi
    Description

    The 2023 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. For example, tabulation blocks numbered 3001, 3002, 3003,.., 3999 within census tract 1210.02 are also within BG 3 within that census tract. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. The generalized BG boundaries in this release are based on those that were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NSW Department of Climate Change, Energy, the Environment and Water (2024). Soil Data Confidence map for NSW [Dataset]. https://data.nsw.gov.au/data/dataset/soil-data-confidence-map-for-nsw9859e

Soil Data Confidence map for NSW

Explore at:
spatial viewer, html, zip, pdfAvailable download formats
Dataset updated
Feb 26, 2024
Dataset provided by
NSW Department of Climate Change, Energy, the Environment and Water
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
New South Wales
Description

This map provides a guide to the data confidence of DPIE's soil related thematic map products in NSW. Examples of products this map supports includes Land and Soil Capability mapping, Inherent fertility of soils in NSW and Great Soil Group soil types in NSW.

Confidence classes are determined based on the data scale, type of mapping and information collected, accuracy of the attributes and quality assurance on the product.

Soil data confidence is described using a 4 class system between high and very low as outlined below.:

  • Good (1) - All necessary soil and landscape data is available at a catchment scale (1:100,000 & 1:250,000) to undertake the assessment of LSC and other soil thematic maps.

  • Moderate (2) - Most soil and landscape data is available at a catchment scale (1:100,000 - 1:250,000) to undertake the assessment of LSC and other soil thematic maps.

  • Low (3) - Limited soil and landscape data is available at a reconnaissance catchment scale (1:100,000 & 1:250,000) which limits the quality of the assessment of LSC and other soil thematic maps.

  • Very low (4) - Very limited soil and landscape data is available at a broad catchment scale (1:250,000 - 1:500,000) and the LSC and other soil thematic maps should be used as a guide only.

Online Maps: This dataset can be viewed using eSPADE (NSW’s soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area.

Reference: Department of Planning, Industry and Environment, 2020, Soil Data Confidence map for NSW, Version 4, NSW Department of Planning, Industry and Environment, Parramatta.

Search
Clear search
Close search
Google apps
Main menu