2 datasets found
  1. Superstore Sales Analysis

    • kaggle.com
    Updated Oct 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Reda Elblgihy (2023). Superstore Sales Analysis [Dataset]. https://www.kaggle.com/datasets/aliredaelblgihy/superstore-sales-analysis/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 21, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ali Reda Elblgihy
    Description

    Analyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:

    1- Data Import and Transformation:

    • Gather and import relevant sales data from various sources into Excel.
    • Utilize Power Query to clean, transform, and structure the data for analysis.
    • Merge and link different data sheets to create a cohesive dataset, ensuring that all data fields are connected logically.

    2- Data Quality Assessment:

    • Perform data quality checks to identify and address issues like missing values, duplicates, outliers, and data inconsistencies.
    • Standardize data formats and ensure that all data is in a consistent, usable state.

    3- Calculating COGS:

    • Determine the Cost of Goods Sold (COGS) for each product sold by considering factors like purchase price, shipping costs, and any additional expenses.
    • Apply appropriate formulas and calculations to determine COGS accurately.

    4- Discount Analysis:

    • Analyze the discount values offered on products to understand their impact on sales and profitability.
    • Calculate the average discount percentage, identify trends, and visualize the data using charts or graphs.

    5- Sales Metrics:

    • Calculate and analyze various sales metrics, such as total revenue, profit margins, and sales growth.
    • Utilize Excel functions to compute these metrics and create visuals for better insights.

    6- Visualization:

    • Create visualizations, such as charts, graphs, and pivot tables, to present the data in an understandable and actionable format.
    • Visual representations can help identify trends, outliers, and patterns in the data.

    7- Report Generation:

    • Compile the findings and insights into a well-structured report or dashboard, making it easy for stakeholders to understand and make informed decisions.

    Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.

  2. d

    Manual snow course observations, raw met data, raw snow depth observations,...

    • catalog.data.gov
    Updated Jun 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Climate Adaptation Science Centers (2024). Manual snow course observations, raw met data, raw snow depth observations, locations, and associated metadata for Oregon sites [Dataset]. https://catalog.data.gov/dataset/manual-snow-course-observations-raw-met-data-raw-snow-depth-observations-locations-and-ass
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    Climate Adaptation Science Centers
    Area covered
    Oregon
    Description

    OSU_SnowCourse Summary: Manual snow course observations were collected over WY 2012-2014 from four paired forest-open sites chosen to span a broad elevation range. Study sites were located in the upper McKenzie (McK) River watershed, approximately 100 km east of Corvallis, Oregon, on the western slope of the Cascade Range and in the Middle Fork Willamette (MFW) watershed, located to the south of the McKenzie. The sites were designated based on elevation, with a range of 1110-1480 m. Distributed snow depth and snow water equivalent (SWE) observations were collected via monthly manual snow courses from 1 November through 1 April and bi-weekly thereafter. Snow courses spanned 500 m of forested terrain and 500 m of adjacent open terrain. Snow depth observations were collected approximately every 10 m and SWE was measured every 100 m along the snow courses with a federal snow sampler. These data are raw observations and have not been quality controlled in any way. Distance along the transect was estimated in the field. OSU_SnowDepth Summary: 10-minute snow depth observations collected at OSU met stations in the upper McKenzie River Watershed and the Middle Fork Willamette Watershed during Water Years 2012-2014. Each meterological tower was deployed to represent either a forested or an open area at a particular site, and generally the locations were paired, with a meterological station deployed in the forest and in the open area at a single site. These data were collected in conjunction with manual snow course observations, and the meterological stations were located in the approximate center of each forest or open snow course transect. These data have undergone basic quality control. See manufacturer specifications for individual instruments to determine sensor accuracy. This file was compiled from individual raw data files (named "RawData.txt" within each site and year directory) provided by OSU, along with metadata of site attributes. We converted the Excel-based timestamp (seconds since origin) to a date, changed the NaN flags for missing data to NA, and added site attributes such as site name and cover. We replaced positive values with NA, since snow depth values in raw data are negative (i.e., flipped, with some correction to use the height of the sensor as zero). Thus, positive snow depth values in the raw data equal negative snow depth values. Second, the sign of the data was switched to make them positive. Then, the smooth.m (MATLAB) function was used to roughly smooth the data, with a moving window of 50 points. Third, outliers were removed. All values higher than the smoothed values +10, were replaced with NA. In some cases, further single point outliers were removed. OSU_Met Summary: Raw, 10-minute meteorological observations collected at OSU met stations in the upper McKenzie River Watershed and the Middle Fork Willamette Watershed during Water Years 2012-2014. Each meterological tower was deployed to represent either a forested or an open area at a particular site, and generally the locations were paired, with a meterological station deployed in the forest and in the open area at a single site. These data were collected in conjunction with manual snow course observations, and the meteorological stations were located in the approximate center of each forest or open snow course transect. These stations were deployed to collect numerous meteorological variables, of which snow depth and wind speed are included here. These data are raw datalogger output and have not been quality controlled in any way. See manufacturer specifications for individual instruments to determine sensor accuracy. This file was compiled from individual raw data files (named "RawData.txt" within each site and year directory) provided by OSU, along with metadata of site attributes. We converted the Excel-based timestamp (seconds since origin) to a date, changed the NaN and 7999 flags for missing data to NA, and added site attributes such as site name and cover. OSU_Location Summary: Location Metadata for manual snow course observations and meteorological sensors. These data are compiled from GPS data for which the horizontal accuracy is unknown, and from processed hemispherical photographs. They have not been quality controlled in any way.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ali Reda Elblgihy (2023). Superstore Sales Analysis [Dataset]. https://www.kaggle.com/datasets/aliredaelblgihy/superstore-sales-analysis/code
Organization logo

Superstore Sales Analysis

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Oct 21, 2023
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Ali Reda Elblgihy
Description

Analyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:

1- Data Import and Transformation:

  • Gather and import relevant sales data from various sources into Excel.
  • Utilize Power Query to clean, transform, and structure the data for analysis.
  • Merge and link different data sheets to create a cohesive dataset, ensuring that all data fields are connected logically.

2- Data Quality Assessment:

  • Perform data quality checks to identify and address issues like missing values, duplicates, outliers, and data inconsistencies.
  • Standardize data formats and ensure that all data is in a consistent, usable state.

3- Calculating COGS:

  • Determine the Cost of Goods Sold (COGS) for each product sold by considering factors like purchase price, shipping costs, and any additional expenses.
  • Apply appropriate formulas and calculations to determine COGS accurately.

4- Discount Analysis:

  • Analyze the discount values offered on products to understand their impact on sales and profitability.
  • Calculate the average discount percentage, identify trends, and visualize the data using charts or graphs.

5- Sales Metrics:

  • Calculate and analyze various sales metrics, such as total revenue, profit margins, and sales growth.
  • Utilize Excel functions to compute these metrics and create visuals for better insights.

6- Visualization:

  • Create visualizations, such as charts, graphs, and pivot tables, to present the data in an understandable and actionable format.
  • Visual representations can help identify trends, outliers, and patterns in the data.

7- Report Generation:

  • Compile the findings and insights into a well-structured report or dashboard, making it easy for stakeholders to understand and make informed decisions.

Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.

Search
Clear search
Close search
Google apps
Main menu