22 datasets found
  1. f

    Graph Input Data Example.xlsx

    • figshare.com
    xlsx
    Updated Dec 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Corynen (2018). Graph Input Data Example.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.7506209.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 26, 2018
    Dataset provided by
    figshare
    Authors
    Dr Corynen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.

  2. Graph Input Data.xlsx

    • figshare.com
    xlsx
    Updated Dec 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Corynen (2018). Graph Input Data.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.7527734.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 28, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Dr Corynen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Using the User Manual as a guide and the Excel Graph Input Data Example file as a reference, the user enters the semantics of the graph model in this file.

  3. f

    Petre_Slide_CategoricalScatterplotFigShare.pptx

    • figshare.com
    pptx
    Updated Sep 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benj Petre; Aurore Coince; Sophien Kamoun (2016). Petre_Slide_CategoricalScatterplotFigShare.pptx [Dataset]. http://doi.org/10.6084/m9.figshare.3840102.v1
    Explore at:
    pptxAvailable download formats
    Dataset updated
    Sep 19, 2016
    Dataset provided by
    figshare
    Authors
    Benj Petre; Aurore Coince; Sophien Kamoun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Categorical scatterplots with R for biologists: a step-by-step guide

    Benjamin Petre1, Aurore Coince2, Sophien Kamoun1

    1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK

    Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.

    Protocol

    • Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.

    • Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.

    • Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.

    Notes

    • Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.

    • Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.

    7 Display the graph in a separate window. Dot colors indicate

    replicates

    graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()

    References

    Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.

    Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035

    Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128

    https://cran.r-project.org/

    http://ggplot2.org/

  4. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  5. Z

    A study on real graphs of fake news spreading on Twitter

    • data.niaid.nih.gov
    Updated Aug 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amirhosein Bodaghi (2021). A study on real graphs of fake news spreading on Twitter [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3711599
    Explore at:
    Dataset updated
    Aug 20, 2021
    Dataset authored and provided by
    Amirhosein Bodaghi
    Description

    *** Fake News on Twitter ***

    These 5 datasets are the results of an empirical study on the spreading process of newly fake news on Twitter. Particularly, we have focused on those fake news which have given rise to a truth spreading simultaneously against them. The story of each fake news is as follow:

    1- FN1: A Muslim waitress refused to seat a church group at a restaurant, claiming "religious freedom" allowed her to do so.

    2- FN2: Actor Denzel Washington said electing President Trump saved the U.S. from becoming an "Orwellian police state."

    3- FN3: Joy Behar of "The View" sent a crass tweet about a fatal fire in Trump Tower.

    4- FN4: The animated children's program 'VeggieTales' introduced a cannabis character in August 2018.

    5- FN5: In September 2018, the University of Alabama football program ended its uniform contract with Nike, in response to Nike's endorsement deal with Colin Kaepernick.

    The data collection has been done in two stages that each provided a new dataset: 1- attaining Dataset of Diffusion (DD) that includes information of fake news/truth tweets and retweets 2- Query of neighbors for spreaders of tweets that provides us with Dataset of Graph (DG).

    DD

    DD for each fake news story is an excel file, named FNx_DD where x is the number of fake news, and has the following structure:

    The structure of excel files for each dataset is as follow:

    Each row belongs to one captured tweet/retweet related to the rumor, and each column of the dataset presents a specific information about the tweet/retweet. These columns from left to right present the following information about the tweet/retweet:

    User ID (user who has posted the current tweet/retweet)

    The description sentence in the profile of the user who has published the tweet/retweet

    The number of published tweet/retweet by the user at the time of posting the current tweet/retweet

    Date and time of creation of the account by which the current tweet/retweet has been posted

    Language of the tweet/retweet

    Number of followers

    Number of followings (friends)

    Date and time of posting the current tweet/retweet

    Number of like (favorite) the current tweet had been acquired before crawling it

    Number of times the current tweet had been retweeted before crawling it

    Is there any other tweet inside of the current tweet/retweet (for example this happens when the current tweet is a quote or reply or retweet)

    The source (OS) of device by which the current tweet/retweet was posted

    Tweet/Retweet ID

    Retweet ID (if the post is a retweet then this feature gives the ID of the tweet that is retweeted by the current post)

    Quote ID (if the post is a quote then this feature gives the ID of the tweet that is quoted by the current post)

    Reply ID (if the post is a reply then this feature gives the ID of the tweet that is replied by the current post)

    Frequency of tweet occurrences which means the number of times the current tweet is repeated in the dataset (for example the number of times that a tweet exists in the dataset in the form of retweet posted by others)

    State of the tweet which can be one of the following forms (achieved by an agreement between the annotators):

    r : The tweet/retweet is a fake news post

    a : The tweet/retweet is a truth post

    q : The tweet/retweet is a question about the fake news, however neither confirm nor deny it

    n : The tweet/retweet is not related to the fake news (even though it contains the queries related to the rumor, but does not refer to the given fake news)

    DG

    DG for each fake news contains two files:

    A file in graph format (.graph) which includes the information of graph such as who is linked to whom. (This file named FNx_DG.graph, where x is the number of fake news)

    A file in Jsonl format (.jsonl) which includes the real user IDs of nodes in the graph file. (This file named FNx_Labels.jsonl, where x is the number of fake news)

    Because in the graph file, the label of each node is the number of its entrance in the graph. For example if node with user ID 12345637 be the first node which has been entered into the graph file then its label in the graph is 0 and its real ID (12345637) would be at the row number 1 (because the row number 0 belongs to column labels) in the jsonl file and so on other node IDs would be at the next rows of the file (each row corresponds to 1 user id). Therefore, if we want to know for example what the user id of node 200 (labeled 200 in the graph) is, then in jsonl file we should look at row number 202.

    The user IDs of spreaders in DG (those who have had a post in DD) would be available in DD to get extra information about them and their tweet/retweet. The other user IDs in DG are the neighbors of these spreaders and might not exist in DD.

  6. Graph Database Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Graph Database Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-graph-database-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 22, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Graph Database Market Outlook



    The global graph database market size was valued at USD 1.5 billion in 2023 and is projected to reach USD 8.5 billion by 2032, growing at a CAGR of 21.2% from 2024 to 2032. The substantial growth of this market is driven primarily by increasing data complexity, advancements in data analytics technologies, and the rising need for more efficient database management systems.



    One of the primary growth factors for the graph database market is the exponential increase in data generation. As organizations generate vast amounts of data from various sources such as social media, e-commerce platforms, and IoT devices, the need for sophisticated data management and analysis tools becomes paramount. Traditional relational databases struggle to handle the complexity and interconnectivity of this data, leading to a shift towards graph databases which excel in managing such intricate relationships.



    Another significant driver is the growing adoption of artificial intelligence (AI) and machine learning (ML) technologies. These technologies rely heavily on connected data for predictive analytics and decision-making processes. Graph databases, with their inherent ability to model relationships between data points effectively, provide a robust foundation for AI and ML applications. This synergy between AI/ML and graph databases further accelerates market growth.



    Additionally, the increasing prevalence of personalized customer experiences across industries like retail, finance, and healthcare is fueling demand for graph databases. Businesses are leveraging graph databases to analyze customer behaviors, preferences, and interactions in real-time, enabling them to offer tailored recommendations and services. This enhanced customer experience translates to higher customer satisfaction and retention, driving further adoption of graph databases.



    From a regional perspective, North America currently holds the largest market share due to early adoption of advanced technologies and the presence of key market players. However, significant growth is also anticipated in the Asia-Pacific region, driven by rapid digital transformation, increasing investments in IT infrastructure, and growing awareness of the benefits of graph databases. Europe is also expected to witness steady growth, supported by stringent data management regulations and a strong focus on data privacy and security.



    Component Analysis



    The graph database market can be segmented into two primary components: software and services. The software segment holds the largest market share, driven by extensive adoption across various industries. Graph database software is designed to create, manage, and query graph databases, offering features such as scalability, high performance, and efficient handling of complex data relationships. The growth in this segment is propelled by continuous advancements and innovations in graph database technologies. Companies are increasingly investing in research and development to enhance the capabilities of their graph database software products, catering to the evolving needs of their customers.



    On the other hand, the services segment is also witnessing substantial growth. This segment includes consulting, implementation, and support services provided by vendors to help organizations effectively deploy and manage graph databases. As businesses recognize the benefits of graph databases, the demand for expert services to ensure successful implementation and integration into existing systems is rising. Additionally, ongoing support and maintenance services are crucial for the smooth operation of graph databases, driving further growth in this segment.



    The increasing complexity of data and the need for specialized expertise to manage and analyze it effectively are key factors contributing to the growth of the services segment. Organizations often lack the in-house skills required to harness the full potential of graph databases, prompting them to seek external assistance. This trend is particularly evident in large enterprises, where the scale and complexity of data necessitate robust support services.



    Moreover, the services segment is benefiting from the growing trend of outsourcing IT functions. Many organizations are opting to outsource their database management needs to specialized service providers, allowing them to focus on their core business activities. This shift towards outsourcing is further bolstering the demand for graph database services, driving market growth.


    &l

  7. Stock Market Analysis using Power BI

    • kaggle.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DileepKumarVemali (2024). Stock Market Analysis using Power BI [Dataset]. https://www.kaggle.com/datasets/dileepkumarvemali/stock-market-analysis-using-power-bi/data?select=StocksListNSETest.xlsx
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 12, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    DileepKumarVemali
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the essential files for conducting a dynamic stock market analysis using Power BI. The data is sourced from Yahoo Finance and includes historical stock prices, which can be dynamically updated by adding new stock codes to the provided Excel sheet.

    Files Included: Power BI Report (.pbix): The interactive Power BI report that includes various visualizations such as Candle Charts, Line Charts for Support and Resistance, and Technical Indicators like SMA, EMA, Bollinger Bands, and RSI. The report is designed to provide a comprehensive analysis of stock performance over time.

    Stock Data Excel Sheet (.xlsx): This Excel sheet is connected to the Power BI report and allows for dynamic data loading. By adding new stock codes to this sheet, the Power BI report automatically refreshes to include the new data, enabling continuous updates without manual intervention.

    Overview and Chart Pages Snapshots for better understanding about the Report.

    Key Features: Dynamic Data Loading: Easily update the dataset by adding new stock codes to the Excel sheet. The Power BI report will automatically pull the corresponding data from Yahoo Finance. Comprehensive Visualizations: Analyze stock trends using Candle Charts, identify key price levels with Support and Resistance lines, and explore market behavior through various technical indicators. Interactive Analysis: The Power BI report includes slicers and navigation buttons to switch between different time periods and visualizations, providing a tailored analysis experience. Use Cases: Ideal for financial analysts, traders, or anyone interested in conducting a detailed stock market analysis. Can be used to monitor the performance of individual stocks or compare trends across multiple stocks over time. Tags: Stock Market Power BI Financial Analysis Yahoo Finance Data Visualization

  8. Bank Loan Analysis Project in Power Bi

    • kaggle.com
    Updated May 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjana Murthy (2024). Bank Loan Analysis Project in Power Bi [Dataset]. https://www.kaggle.com/datasets/sanjanamurthy392/bank-loan-analysis-project-in-power-bi/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 6, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sanjana Murthy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    About Datasets: - Domain : Finance - Project: Bank loan of customers - Datasets: Finance_1.xlsx & Finance_2.xlsx - Dataset Type: Excel Data - Dataset Size: Each Excel file has 39k+ records

    KPI's: 1. Year wise loan amount Stats 2. Grade and sub grade wise revol_bal 3. Total Payment for Verified Status Vs Total Payment for Non Verified Status 4. State wise loan status 5. Month wise loan status 6. Get more insights based on your understanding of the data

    Process: 1. Understanding the problem 2. Data Collection 3. Data Cleaning 4. Exploring and analyzing the data 5. Interpreting the results

    This data contains stacked column chart, Donut chart, Stacked area chart, pie chart, matrix, slicer, treemap, clustered column chart, Map, Dashboard, Page Navigator, card, text box.

  9. Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm

    • plos.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic (2023). Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm [Dataset]. http://doi.org/10.1371/journal.pbio.1002128
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.

  10. m

    Data for:Review on Current Research Directions in Energy Harvesting Power...

    • data.mendeley.com
    Updated Jun 17, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    roskhatijah radzuan (2019). Data for:Review on Current Research Directions in Energy Harvesting Power Conversion (EHPC) System [Dataset]. http://doi.org/10.17632/x4nfg7p7p4.2
    Explore at:
    Dataset updated
    Jun 17, 2019
    Authors
    roskhatijah radzuan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Original excel files of tabular data that have been used to generate the visual presentation using graphs and charts of the techniques for the current research trends within 6 years (from years 2013 to 2018).

  11. Bank Loan Analysis Project in Excel

    • kaggle.com
    Updated May 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjana Murthy (2024). Bank Loan Analysis Project in Excel [Dataset]. https://www.kaggle.com/datasets/sanjanamurthy392/bank-loan-analysis-project/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 4, 2024
    Dataset provided by
    Kaggle
    Authors
    Sanjana Murthy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    About Datasets: - Domain : Finance - Project: Bank loan of customers - Datasets: Finance_1.xlsx & Finance_2.xlsx - Dataset Type: Excel Data - Dataset Size: Each Excel file has 39k+ records

    KPI's: 1. Year wise loan amount Stats 2. Grade and sub grade wise revol_bal 3. Total Payment for Verified Status Vs Total Payment for Non Verified Status 4. State wise loan status 5. Month wise loan status 6. Get more insights based on your understanding of the data

    Process: 1. Understanding the problem 2. Data Collection 3. Data Cleaning 4. Exploring and analyzing the data 5. Interpreting the results

    This data contains Power Query, Power Pivot, Merge data, Clustered Bar Chart, Clustered Column Chart, Line Chart, 3D Pie chart, Dashboard, slicers, timeline, formatting techniques.

  12. M

    S&P 500 - 100 Year Historical Chart

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). S&P 500 - 100 Year Historical Chart [Dataset]. https://www.macrotrends.net/2324/sp-500-historical-chart-data
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1915 - 2025
    Area covered
    United States
    Description

    Interactive chart of the S&P 500 stock market index since 1927. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.

  13. g

    Dataset: Smoldering and Flaming Biomass Wood Smoke Inhibit Respiratory...

    • gimi9.com
    • datasets.ai
    • +1more
    Updated Dec 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Dataset: Smoldering and Flaming Biomass Wood Smoke Inhibit Respiratory Responses in Mice [Dataset]. https://gimi9.com/dataset/data-gov_dataset-smoldering-and-flaming-biomass-wood-smoke-inhibit-respiratory-responses-in-mice
    Explore at:
    Dataset updated
    Dec 9, 2019
    Description

    The dataset consists of 2 revised files. The excel file shows all of the individual data used in calculation of the tables and figures. Each table and figure has data stored on a separate tab of the file. The zip file consists of 5 GraphPad Prism files which show the statistics and graphs used in the paper. The names of the 5 files indicate which figures and tables are analyzed statistically and the graphs generated from the data. This dataset is associated with the following publication: Hargrove, M., Y.H. Kim, C. King, C. Wood, M. Gilmour, J. Dye, and S. Gavett. Smoldering and Flaming Biomass Wood Smoke Inhibit Respiratory Responses in Mice. INHALATION TOXICOLOGY. Taylor & Francis, Inc., Philadelphia, PA, USA, 31(6): 236-247, (2019).

  14. r

    Marine Futures Project: Middle Island

    • researchdata.edu.au
    Updated Feb 11, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The University of Western Australia (2014). Marine Futures Project: Middle Island [Dataset]. https://researchdata.edu.au/marine-futures-project-middle-island/347786
    Explore at:
    Dataset updated
    Feb 11, 2014
    Dataset provided by
    The University of Western Australia
    Time period covered
    Jan 1, 2006 - Dec 1, 2008
    Area covered
    Description

    Middle Island is the most easterly of the Marine Futures sampling areas, and is located in the Recherche Archipelago, which comprises over 150 islands east of Esperance. This collection comprises datasets describing habitat mapping, biodiversity and human uses in the Middle Island area. Habitat mapping consists of four Google earth detailed and basic biota and substratum maps for Middle Island. There are two baited remote underwater video systems (BRUVS) datasets and five interactive Microsoft Excel charts each of which contribute to biodiversity analysis. The baited videos illustrate the fish diversity over an array of habitats found throughout the Middle Island study location. The interactive Microsoft Excel charts combine the biodiversity and mapping products to give the user an interactive and visual display of which organisms are found in what habitats. A Human Uses report containing an appendix of the Middle Island study location is also included.

  15. f

    Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  16. m

    Data from: Thermo-Hydro-Mechanical behavior of frozen soils: a comprehensive...

    • data.mendeley.com
    Updated Mar 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mita Hajizadeh (2025). Thermo-Hydro-Mechanical behavior of frozen soils: a comprehensive analysis using the Ghoreishian Amiri constitutive model and its implications for cold region engineering [Dataset]. http://doi.org/10.17632/d5x37h2g69.1
    Explore at:
    Dataset updated
    Mar 5, 2025
    Authors
    Mita Hajizadeh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    this are two excel files which contain export data of plaxis models (case studies in the article) and their charts.

  17. Tree Annotation Vocabulary (TAV) - Knowledge Graph and Annotated Dataset

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shakeeb Arzoo; Shakeeb Arzoo; Stephen H. Blackwell; Aidan Hogan; Aidan Hogan; Stephen H. Blackwell (2025). Tree Annotation Vocabulary (TAV) - Knowledge Graph and Annotated Dataset [Dataset]. http://doi.org/10.5281/zenodo.14531216
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Shakeeb Arzoo; Shakeeb Arzoo; Stephen H. Blackwell; Aidan Hogan; Aidan Hogan; Stephen H. Blackwell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 28, 2024
    Description

    This dataset contains all the files used in developing the Tree-KG, the knowledge graph to capture the tree annotations in the works of Vladimir Nabokov.

    In the Annotated Dataset folder, 6 spreadsheets in excel (.xlsx) format are provided. They are numbered. Note that annotated data are all in English as the consulted works are the English translations of the literary works of Nabokov.

    (1) contains the tree annotations from the novels originally written in Russian by Vladimir Nabokov.

    (2) contains the tree annotations from the novels originally written in English by Vladimir Nabokov.

    (3) contains the tree annotations from the short stories originally written in Russian and English by Vladimir Nabokov.

    (4) is the knowledge base (KB) developed to link the annotated trees to Wikidata and DBPedia.

    (5) is the benchmarking results of some entity recognition tools. It includes the relevant passages from Nabokov's novels that were used in the experiments as well as the prompts used in getting the results.

    (6) represents the complete bibliographic details of the works of Vladimir Nabokov (https://thenabokovian.org/abbreviations).

    In the Ontology Versions folder, four ontology (TAV) files in turtle (.ttl) format are provided. They are all numbered and dated to represent their different versions. Some sample SPARQL queries are provided in a .txt file. The KG was developed on Protégé.

    (1) contains the essential schema for the TAV vocabulary.

    (2) contains the schema for TAV vocabulary with links to external vocabularies (Schema.Org; Open Annotation, etc.).

    (3) contains the Tree-KG in so far it reflects data from three novels (Mary; King, Queen, Knave; Glory).

    (4) contains the entire Tree-KG based on all the works mentioned in the excel sheets (20 books).

    (5) contains some sample SPARQL queries (.txt) file.

  18. m

    Uromodulin:HbA1c ratio in detection of diabetic nephropathy

    • data.mendeley.com
    • narcis.nl
    Updated Aug 11, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suchanda Sahu (2020). Uromodulin:HbA1c ratio in detection of diabetic nephropathy [Dataset]. http://doi.org/10.17632/dz3h4kfzj3.2
    Explore at:
    Dataset updated
    Aug 11, 2020
    Authors
    Suchanda Sahu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    UHR in DN. Excel sheet containing the blinded master chart.

  19. f

    European Mountain Territory and Value Chains: Knowledge Graphs, CSV, HTML,...

    • figshare.com
    txt
    Updated Jul 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    aimhdhgroup (2024). European Mountain Territory and Value Chains: Knowledge Graphs, CSV, HTML, and Excel Data [Dataset]. http://doi.org/10.6084/m9.figshare.25243009.v8
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 29, 2024
    Dataset provided by
    figshare
    Authors
    aimhdhgroup
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains a collection of data about 454 value chains from 23 rural European areas of 16 countries. This data is obtained through a semi-automatic workflow that transforms raw textual data from an unstructured MS Excel sheet into semantic knowledge graphs.In particular, the repository contains:MS Excel sheet containing different value chains details provided by MOuntain Valorisation through INterconnectedness and Green growth (MOVING) European project;454 CSV files containing events, titles, entities and coordinates of narratives of each value chain, obtained by pre-processing the MS Excel sheet454 Web Ontology Language (OWL) files. This collection of files is the result of the semi-automatic workflow, and is organized as a semantic knowledge graph of narratives, where each narrative is a sub-graph explaining one among the 454 value chains and its territory aspects. The knowledge graph is based on the Narrative Ontology, an ontology developed by Institute of Information Science and Technologies (ISTI-CNR) as an extension of CIDOC CRM, FRBRoo, and OWL Time.Two CSV files that compile all the possible available information extracted from 454 Web Ontology Language (OWL) files.GeoPackage files with the geographic coordinates related to the narratives.The HTML files that show all the different SPARQL and GeoSPARQL queries.The HTML files that show the story maps about the 454 value chains.An image showing how the various components of the dataset interact with each other.

  20. Sample Student Data

    • figshare.com
    xls
    Updated Aug 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carrie Ellis (2022). Sample Student Data [Dataset]. http://doi.org/10.6084/m9.figshare.20419434.v1
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Aug 2, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Carrie Ellis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In "Sample Student Data", there are 6 sheets. There are three sheets with sample datasets, one for each of the three different exercise protocols described (CrP Sample Dataset, Glycolytic Dataset, Oxidative Dataset). Additionally, there are three sheets with sample graphs created using one of the three datasets (CrP Sample Graph, Glycolytic Graph, Oxidative Graph). Each dataset and graph pairs are from different subjects. · CrP Sample Dataset and CrP Sample Graph: This is an example of a dataset and graph created from an exercise protocol designed to stress the creatine phosphate system. Here, the subject was a track and field athlete who threw the shot put for the DeSales University track team. The NIRS monitor was placed on the right triceps muscle, and the student threw the shot put six times with a minute rest in between throws. Data was collected telemetrically by the NIRS device and then downloaded after the student had completed the protocol. · Glycolytic Dataset and Glycolytic Graph: This is an example of a dataset and graph created from an exercise protocol designed to stress the glycolytic energy system. In this example, the subject performed continuous squat jumps for 30 seconds, followed by a 90 second rest period, for a total of three exercise bouts. The NIRS monitor was place on the left gastrocnemius muscle. Here again, data was collected telemetrically by the NIRS device and then downloaded after he had completed the protocol. · Oxidative Dataset and Oxidative Graph: In this example, the dataset and graph are from an exercise protocol designed to stress the oxidative system. Here, the student held a sustained, light-intensity, isometric biceps contraction (pushing against a table). The NIRS monitor was attached to the left biceps muscle belly. Here, data was collected by a student observing the SmO2 values displayed on a secondary device; specifically, a smartphone with the IPSensorMan APP displaying data. The recorder student observed and recorded the data on an Excel Spreadsheet, and marked the times that exercise began and ended on the Spreadsheet.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dr Corynen (2018). Graph Input Data Example.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.7506209.v1

Graph Input Data Example.xlsx

Explore at:
xlsxAvailable download formats
Dataset updated
Dec 26, 2018
Dataset provided by
figshare
Authors
Dr Corynen
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.

Search
Clear search
Close search
Google apps
Main menu