6 datasets found
  1. Store Data Analysis using MS excel

    • kaggle.com
    Updated Mar 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NisshaaChoudhary (2024). Store Data Analysis using MS excel [Dataset]. https://www.kaggle.com/datasets/nisshaachoudhary/store-data-analysis-using-ms-excel/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 10, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    NisshaaChoudhary
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Vrinda Store: Interactive Ms Excel dashboardVrinda Store: Interactive Ms Excel dashboard Feb 2024 - Mar 2024Feb 2024 - Mar 2024 The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022?

    And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022? And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel Skills: Data Analysis · Data Analytics · ms excel · Pivot Tables

  2. Instagram Reach Analysis - Excel Project

    • kaggle.com
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raghad Al-marshadi (2025). Instagram Reach Analysis - Excel Project [Dataset]. https://www.kaggle.com/datasets/raghadalmarshadi/instagram-reach-analysis-excel-project/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Raghad Al-marshadi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    📊 Instagram Reach Analysis | تحليل الوصول في إنستغرام

    An exploratory data analysis project using Excel to understand what influences Instagram post reach and engagement.
    مشروع تحليل استكشافي لفهم العوامل المؤثرة في وصول منشورات إنستغرام وتفاعل المستخدمين، باستخدام Excel.

    📁 Project Description | وصف المشروع

    This project uses an Instagram dataset imported from Kaggle to explore how different factors like hashtags, saves, shares, and caption length influence impressions and engagement.
    يستخدم هذا المشروع بيانات من إنستغرام تم استيرادها من منصة Kaggle لتحليل كيف تؤثر عوامل مثل الهاشتاقات، الحفظ، المشاركة، وطول التسمية التوضيحية في عدد مرات الظهور والتفاعل.

    🛠️ Tools Used | الأدوات المستخدمة

    • Microsoft Excel
    • Pivot Tables
    • TRIM, WRAP, and other Excel formulas
    • مايكروسوفت إكسل
    • الجداول المحورية
    • دوال مثل TRIM و WRAP وغيرها في Excel

    🧹 Data Cleaning | تنظيف البيانات

    • Removed unnecessary spaces using TRIM
    • Removed 17 duplicate rows → 103 unique rows remained
    • Standardized formatting: freeze top row, wrap text, center align

    • إزالة المسافات غير الضرورية باستخدام TRIM

    • حذف 17 صفًا مكررًا → تبقى 103 صفوف فريدة

    • تنسيق موحد: تثبيت الصف الأول، لف النص، وتوسيط المحتوى

    🔍 Key Analysis Highlights | أبرز نتائج التحليل

    1. Impressions by Source | مرات الظهور حسب المصدر

    • Highest reach: Home > Hashtags > Explore > Other
    • Some totals exceed 100% due to overlapping

    2. Engagement Insights | رؤى حول التفاعل

    • Saves strongly correlate with higher impressions
    • Caption length is inversely related to likes
    • Shares have weak correlation with impressions

    3. Hashtag Patterns | تحليل الهاشتاقات

    • Most used: #Thecleverprogrammer, #Amankharwal, #Python
    • Repeating hashtags does not guarantee higher reach

    ✅ Conclusion | الخلاصة

    Shorter captions and higher save counts contribute more to reach than repeated hashtags. Profile visits are often linked to new followers.
    العناوين القصيرة وعدد الحفظات تلعب دورًا أكبر في الوصول من تكرار الهاشتاقات. كما أن زيارات الملف الشخصي ترتبط غالبًا بزيادة المتابعين.

    👩‍💻 Author | المؤلفة

    Raghad's LinkedIn

    🧠 Inspiration | الإلهام

    Inspired by content from TheCleverProgrammer, Aman Kharwal, and Kaggle datasets.
    استُلهم المشروع من محتوى TheCleverProgrammer وأمان خروال، وبيانات من Kaggle.

    💬 Feedback | الملاحظات

    Feel free to open an issue or share suggestions!
    يسعدنا تلقي ملاحظاتكم واقتراحاتكم عبر صفحة المشروع.

  3. f

    Enhancing UNCDF Operations: Power BI Dashboard Development and Data Mapping

    • figshare.com
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maryam Binti Haji Abdul Halim (2025). Enhancing UNCDF Operations: Power BI Dashboard Development and Data Mapping [Dataset]. http://doi.org/10.6084/m9.figshare.28147451.v1
    Explore at:
    Dataset updated
    Jan 6, 2025
    Dataset provided by
    figshare
    Authors
    Maryam Binti Haji Abdul Halim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This project focuses on data mapping, integration, and analysis to support the development and enhancement of six UNCDF operational applications: OrgTraveler, Comms Central, Internal Support Hub, Partnership 360, SmartHR, and TimeTrack. These apps streamline workflows for travel claims, internal support, partnership management, and time tracking within UNCDF.Key Features and Tools:Data Mapping for Salesforce CRM Migration: Structured and mapped data flows to ensure compatibility and seamless migration to Salesforce CRM.Python for Data Cleaning and Transformation: Utilized pandas, numpy, and APIs to clean, preprocess, and transform raw datasets into standardized formats.Power BI Dashboards: Designed interactive dashboards to visualize workflows and monitor performance metrics for decision-making.Collaboration Across Platforms: Integrated Google Collab for code collaboration and Microsoft Excel for data validation and analysis.

  4. "9,565 Top-Rated Movies Dataset"

    • kaggle.com
    Updated Aug 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harshit@85 (2024). "9,565 Top-Rated Movies Dataset" [Dataset]. https://www.kaggle.com/datasets/harshit85/9565-top-rated-movies-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 19, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Harshit@85
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    About the Dataset

    Title: 9,565 Top-Rated Movies Dataset

    Description:
    This dataset offers a comprehensive collection of 9,565 of the highest-rated movies according to audience ratings on the Movie Database (TMDb). The dataset includes detailed information about each movie, such as its title, overview, release date, popularity score, average vote, and vote count. It is designed to be a valuable resource for anyone interested in exploring trends in popular cinema, analyzing factors that contribute to a movie’s success, or building recommendation engines.

    Key Features: - Title: The official title of each movie. - Overview: A brief synopsis or description of the movie's plot. - Release Date: The release date of the movie, formatted as YYYY-MM-DD. - Popularity: A score indicating the current popularity of the movie on TMDb, which can be used to gauge current interest. - Vote Average: The average rating of the movie, based on user votes. - Vote Count: The total number of votes the movie has received.

    Data Source: The data was sourced from the TMDb API, a well-regarded platform for movie information, using the /movie/top_rated endpoint. The dataset represents a snapshot of the highest-rated movies as of the time of data collection.

    Data Collection Process: - API Access: Data was retrieved programmatically using TMDb’s API. - Pagination Handling: Multiple API requests were made to cover all pages of top-rated movies, ensuring the dataset’s comprehensiveness. - Data Aggregation: Collected data was aggregated into a single, unified dataset using the pandas library. - Cleaning: Basic data cleaning was performed to remove duplicates and handle missing or malformed data entries.

    Potential Uses: - Trend Analysis: Analyze trends in movie ratings over time or compare ratings across different genres. - Recommendation Systems: Build and train models to recommend movies based on user preferences. - Sentiment Analysis: Perform text analysis on movie overviews to understand common themes and sentiments. - Statistical Analysis: Explore the relationship between popularity, vote count, and average ratings.

    Data Format: The dataset is provided in a structured tabular format (e.g., CSV), making it easy to load into data analysis tools like Python, R, or Excel.

    Usage License: The dataset is shared under [appropriate license], ensuring that it can be used for educational, research, or commercial purposes, with proper attribution to the data source (TMDb).

    This description provides a clear and detailed overview, helping potential users understand the dataset's content, origin, and potential applications.

  5. Space Missions

    • kaggle.com
    Updated Apr 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monis Amir (2024). Space Missions [Dataset]. https://www.kaggle.com/datasets/monisamir/space-missions/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 30, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Monis Amir
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    I found this Interesting Dataset on Maven Analytics about Space Missions and decided to work on it. The Dataset comes with the Data of Space Missions from 1957 to 2022. It consist of Date, Location, Rocket Name, Rocket Status, Mission Name, Mission Status, and the Company Launch the Mission. 🚀

    Firstly, I ensure Data quality by meticulously Cleaning and Preparing it for Analysis. Then, I create Pivot Tables to Summarize and Analyze the Data from different angles. Next, I dive into Visualization, leveraging Tools to Transform complex Datasets into Clear, Actionable Insights. After Creating the Visuals, I Delve Deeper to Uncover Valuable Trends and Patterns, Empowering informed Decision-Making Insights. Every step, from Cleaning the Data to Visualization to Extracting Insights, is essential in Unlocking the True Power of Data-Driven Strategies. 📊 📈

    ACTIONABLE DATA-DRIVEN INSIGHTS FROM THIS DASHBOARD:

    1. THE NUMBER OF SPACE MISSIONS BY YEAR IS INCREASING. This suggests that there is a Growing Interest in Space Exploration. Businesses and Organizations Involved in Space Exploration could take Advantage of this Trend by Developing New Products and Services.
    2. THE OVERALL SUCCESS RATE OF SPACE MISSIONS IS INCREASING. This could be due to a Number of Factors, such as Improvements in Technology and Engineering. Companies Involved in Space Exploration can Leverage this Information to Market their Services to Potential Customers.
    3. (RVSN USSR) IS THE COMPANY WITH THE MOST TOTAL MISSIONS. As of 2022, they have Launched 1777 Missions. This suggests that they are a Leader in the Space Exploration Industry. Other Companies Looking to Enter the Space Exploration Industry may want to Study (RVSN USSR)'s Business Model.
    4. ARIANESPACE HAS THE HIGHEST SUCCESS RATE OF ANY COMPANY LISTED ON THE DATASET AT 96.25%. This suggests that they are a Reliable Provider of Space Launch Services. Companies Looking to Launch Satellites or other Spacecraft into Orbit may want to consider Using Arianespace's Services.
    5. THE MAJORITY OF SPACE MISSIONS (4162) HAVE BEEN SUCCESSFUL. This is a Positive Sign for the Future of Space Exploration. It suggests that Space Missions are Becoming more Routine and Less Risky. This could lead to an Increase in the Number of Private Companies and Organizations Involved in Space Exploration.

    Overall, the Data in this Dashboard suggests that Space Exploration is a Growing Industry with a Bright Future. Companies and Organizations that are Involved in Space Exploration can take Advantage of this Trend by Developing New Products and Services. 🚀 📊

    TOOL USED: Microsoft Excel

    DataAnalytics #DataScience #DataAnalyst #DataVisualization #BusinessIntelligence #DataAnalysis #DataStorytelling #DataDrivenDecisions #DataDriven

  6. g

    IP Australia - [Superseded] Intellectual Property Government Open Data 2019...

    • gimi9.com
    Updated Jul 20, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). IP Australia - [Superseded] Intellectual Property Government Open Data 2019 | gimi9.com [Dataset]. https://gimi9.com/dataset/au_intellectual-property-government-open-data-2019
    Explore at:
    Dataset updated
    Jul 20, 2018
    Description

    What is IPGOD? The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has derived information about the applicants who filed these IP rights, to allow for research and analysis at the regional, business and individual level. This is the 2019 release of IPGOD. # How do I use IPGOD? IPGOD is large, with millions of data points across up to 40 tables, making them too large to open with Microsoft Excel. Furthermore, analysis often requires information from separate tables which would need specialised software for merging. We recommend that advanced users interact with the IPGOD data using the right tools with enough memory and compute power. This includes a wide range of programming and statistical software such as Tableau, Power BI, Stata, SAS, R, Python, and Scalar. # IP Data Platform IP Australia is also providing free trials to a cloud-based analytics platform with the capabilities to enable working with large intellectual property datasets, such as the IPGOD, through the web browser, without any installation of software. IP Data Platform # References The following pages can help you gain the understanding of the intellectual property administration and processes in Australia to help your analysis on the dataset. * Patents * Trade Marks * Designs * Plant Breeder’s Rights # Updates ### Tables and columns Due to the changes in our systems, some tables have been affected. * We have added IPGOD 225 and IPGOD 325 to the dataset! * The IPGOD 206 table is not available this year. * Many tables have been re-built, and as a result may have different columns or different possible values. Please check the data dictionary for each table before use. ### Data quality improvements Data quality has been improved across all tables. * Null values are simply empty rather than '31/12/9999'. * All date columns are now in ISO format 'yyyy-mm-dd'. * All indicator columns have been converted to Boolean data type (True/False) rather than Yes/No, Y/N, or 1/0. * All tables are encoded in UTF-8. * All tables use the backslash \ as the escape character. * The applicant name cleaning and matching algorithms have been updated. We believe that this year's method improves the accuracy of the matches. Please note that the "ipa_id" generated in IPGOD 2019 will not match with those in previous releases of IPGOD.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NisshaaChoudhary (2024). Store Data Analysis using MS excel [Dataset]. https://www.kaggle.com/datasets/nisshaachoudhary/store-data-analysis-using-ms-excel/code
Organization logo

Store Data Analysis using MS excel

Dataset about a store sales perfect for beginner analyst project

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Mar 10, 2024
Dataset provided by
Kagglehttp://kaggle.com/
Authors
NisshaaChoudhary
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Vrinda Store: Interactive Ms Excel dashboardVrinda Store: Interactive Ms Excel dashboard Feb 2024 - Mar 2024Feb 2024 - Mar 2024 The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022?

And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022? And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel Skills: Data Analysis · Data Analytics · ms excel · Pivot Tables

Search
Clear search
Close search
Google apps
Main menu