39 datasets found
  1. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  2. Excel dataset

    • kaggle.com
    zip
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pinky Verma (2023). Excel dataset [Dataset]. https://www.kaggle.com/datasets/pinkyverma0256/excel-dataset
    Explore at:
    zip(13123 bytes)Available download formats
    Dataset updated
    Jun 29, 2023
    Authors
    Pinky Verma
    Description

    Dataset

    This dataset was created by Pinky Verma

    Contents

  3. a

    Employee Travel 2020 (Excel)

    • hub.arcgis.com
    • opendata-sudbury.opendata.arcgis.com
    Updated Nov 3, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Greater Sudbury (2020). Employee Travel 2020 (Excel) [Dataset]. https://hub.arcgis.com/documents/44f0c4499d0e42218429732628aa128f
    Explore at:
    Dataset updated
    Nov 3, 2020
    Dataset authored and provided by
    City of Greater Sudbury
    Description

    Download Employee Travel Excel SheetThis dataset contains information about the employee travel expenses for the year 2020. Details are provided on the employee (name, title, department), the travel (dates, location, purpose) and the cost (expenses, recoveries). Expenses are broken down in separate tabs by Quarter (Q1, Q2, Q3 and Q4). Updated quarterly when expenses are prepared. Expenses for other years are available in separate datasets.

  4. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  5. excel sample data

    • kaggle.com
    zip
    Updated Dec 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aziza Afrin (2022). excel sample data [Dataset]. https://www.kaggle.com/datasets/azizaafrin/excel-sample-data
    Explore at:
    zip(5046 bytes)Available download formats
    Dataset updated
    Dec 14, 2022
    Authors
    Aziza Afrin
    Description

    Dataset

    This dataset was created by Aziza Afrin

    Contents

  6. Enterprise Survey 2009-2019, Panel Data - Slovenia

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Aug 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (WBG) (2020). Enterprise Survey 2009-2019, Panel Data - Slovenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3762
    Explore at:
    Dataset updated
    Aug 6, 2020
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    European Bank for Reconstruction and Developmenthttp://ebrd.com/
    European Investment Bankhttp://eib.org/
    Time period covered
    2008 - 2019
    Area covered
    Slovenia
    Description

    Abstract

    The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.

    The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.

    Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.

    For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.

    For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).

    Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).

    For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.

    For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.

    Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.

    For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

    For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.

    For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.

    Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.

  7. RAW Data Excel and SPSS

    • figshare.com
    xlsx
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jamil Ahmed (2024). RAW Data Excel and SPSS [Dataset]. http://doi.org/10.6084/m9.figshare.27101149.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Jamil Ahmed
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This cross-sectional study aimed to determine the prevalence of obesity and perceived barriers to weight loss in 1453 Bahraini adults who had used any intervention to lose weight in the past year. We found a high prevalence (78.2%) of overweight and obesity. Females were more likely to have obesity compared to males (81.4% vs. 66.7%). Older individuals aged 36-45 were 3.37 times, and 45 or older were 3.56 times more likely to have obesity. Married participants had higher odds of obesity compared to single participants (OR=1.79). Participants with obesity were more likely to be unemployed compared to students (OR=1.49). The most common contributing factors to weight gain were lack of physical activity (29.5%) and unhealthy diet (29.2%). Participants with obesity were more likely to have relied on dieting (OR=2.53) or exercise (OR=1.47) for weight loss and used medication (OR=5.23). This study highlights the complex relationship between sociodemographic factors, lifestyle behaviors, and obesity and sustaining weight loss.

  8. g

    Employee Vehicle Personal Use 2020 (Excel)

    • opendata.greatersudbury.ca
    • hub.arcgis.com
    Updated Aug 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Greater Sudbury (2020). Employee Vehicle Personal Use 2020 (Excel) [Dataset]. https://opendata.greatersudbury.ca/documents/8ad1b3ec2c254d06af9db35db0f6b6a7
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset authored and provided by
    City of Greater Sudbury
    Description

    Download Employee Vehicle Personal Use Excel SheetThis dataset lists the employee name and taxable benefit for personal use of City of Greater Sudbury Vehicle as travel expenses for the year 2020. Expenses are broken down in separate tabs by Quarter (Q1, Q2, Q3 and Q4). Data for other years is available in separate datasets. Updated quarterly when expenses are prepared.

  9. Data on Bike Buyers by using MS EXCEL

    • kaggle.com
    zip
    Updated Mar 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umasri (2022). Data on Bike Buyers by using MS EXCEL [Dataset]. https://www.kaggle.com/datasets/unica02/data-on-bike-buyers-by-using-ms-excel
    Explore at:
    zip(6808899 bytes)Available download formats
    Dataset updated
    Mar 25, 2022
    Authors
    Umasri
    Description

    The dataset includes customer id,Martial Status,Gender,Income,Children,Education,Occupation,Home Owner,Cars,Commute Distance,Region,Age,Purchased Bike. Blog

  10. Scooter Sales - Excel Project

    • kaggle.com
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ann Truong (2023). Scooter Sales - Excel Project [Dataset]. https://www.kaggle.com/datasets/bvanntruong/scooter-sales-excel-project
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Kaggle
    Authors
    Ann Truong
    Description

    The link for the Excel project to download can be found on GitHub here. It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt=""> The link for the Tableau adjusted dashboard can be found here.

    A screenshot of the interactive Excel dashboard is also included below for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">

  11. d

    GP Practice Prescribing Presentation-level Data - July 2014

    • digital.nhs.uk
    csv, zip
    Updated Oct 31, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). GP Practice Prescribing Presentation-level Data - July 2014 [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/practice-level-prescribing-data
    Explore at:
    csv(1.4 GB), zip(257.7 MB), csv(1.7 MB), csv(275.8 kB)Available download formats
    Dataset updated
    Oct 31, 2014
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jul 1, 2014 - Jul 31, 2014
    Area covered
    United Kingdom
    Description

    Warning: Large file size (over 1GB). Each monthly data set is large (over 4 million rows), but can be viewed in standard software such as Microsoft WordPad (save by right-clicking on the file name and selecting 'Save Target As', or equivalent on Mac OSX). It is then possible to select the required rows of data and copy and paste the information into another software application, such as a spreadsheet. Alternatively, add-ons to existing software, such as the Microsoft PowerPivot add-on for Excel, to handle larger data sets, can be used. The Microsoft PowerPivot add-on for Excel is available from Microsoft http://office.microsoft.com/en-gb/excel/download-power-pivot-HA101959985.aspx Once PowerPivot has been installed, to load the large files, please follow the instructions below. Note that it may take at least 20 to 30 minutes to load one monthly file. 1. Start Excel as normal 2. Click on the PowerPivot tab 3. Click on the PowerPivot Window icon (top left) 4. In the PowerPivot Window, click on the "From Other Sources" icon 5. In the Table Import Wizard e.g. scroll to the bottom and select Text File 6. Browse to the file you want to open and choose the file extension you require e.g. CSV Once the data has been imported you can view it in a spreadsheet. What does the data cover? General practice prescribing data is a list of all medicines, dressings and appliances that are prescribed and dispensed each month. A record will only be produced when this has occurred and there is no record for a zero total. For each practice in England, the following information is presented at presentation level for each medicine, dressing and appliance, (by presentation name): - the total number of items prescribed and dispensed - the total net ingredient cost - the total actual cost - the total quantity The data covers NHS prescriptions written in England and dispensed in the community in the UK. Prescriptions written in England but dispensed outside England are included. The data includes prescriptions written by GPs and other non-medical prescribers (such as nurses and pharmacists) who are attached to GP practices. GP practices are identified only by their national code, so an additional data file - linked to the first by the practice code - provides further detail in relation to the practice. Presentations are identified only by their BNF code, so an additional data file - linked to the first by the BNF code - provides the chemical name for that presentation.

  12. marketing excel.xlsx

    • figshare.com
    xlsx
    Updated Mar 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Callie Hall (2017). marketing excel.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.4725535.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 5, 2017
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Callie Hall
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a spreadsheet of 1 of 10 companies in the shoe industry. Highlighting COGS, Total Revenue, Market share and Industry share.

  13. New 1000 Sales Records Data 2

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Calvin Oko Mensah (2023). New 1000 Sales Records Data 2 [Dataset]. https://www.kaggle.com/datasets/calvinokomensah/new-1000-sales-records-data-2
    Explore at:
    zip(49305 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    Calvin Oko Mensah
    Description

    This is a dataset downloaded off excelbianalytics.com created off of random VBA logic. I recently performed an extensive exploratory data analysis on it and I included new columns to it, namely: Unit margin, Order year, Order month, Order weekday and Order_Ship_Days which I think can help with analysis on the data. I shared it because I thought it was a great dataset to practice analytical processes on for newbies like myself.

  14. Superstore Dataset

    • kaggle.com
    zip
    Updated Sep 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivam Amrutkar (2023). Superstore Dataset [Dataset]. https://www.kaggle.com/datasets/yesshivam007/superstore-dataset
    Explore at:
    zip(2119716 bytes)Available download formats
    Dataset updated
    Sep 25, 2023
    Authors
    Shivam Amrutkar
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    The Superstore Sales Data dataset, available in an Excel format as "Superstore.xlsx," is a comprehensive collection of sales and customer-related information from a retail superstore. This dataset comprises* three distinct tables*, each providing specific insights into the store's operations and customer interactions.

  15. m

    XRD data set

    • figshare.manchester.ac.uk
    xlsx
    Updated Jul 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Parlett (2021). XRD data set [Dataset]. http://doi.org/10.48420/14912841.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 6, 2021
    Dataset provided by
    University of Manchester
    Authors
    Christopher Parlett
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All low angle XRD raw data

  16. Massive Bank dataset ( 1 Million+ rows)

    • kaggle.com
    zip
    Updated Feb 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    K S ABISHEK (2023). Massive Bank dataset ( 1 Million+ rows) [Dataset]. https://www.kaggle.com/datasets/ksabishek/massive-bank-dataset-1-million-rows
    Explore at:
    zip(32471013 bytes)Available download formats
    Dataset updated
    Feb 21, 2023
    Authors
    K S ABISHEK
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Greetings , fellow analysts !

    (NOTE : This is a random dataset generated using python. It bears no resemblance to any real entity in the corporate world. Any resemblance is a matter of coincidence.)

    REC-SSEC Bank is a govt-aided bank operating in the Indian Peninsula. They have regional branches in over 40+ regions of the country. You have been provided with a massive excel sheet containing the transaction details, the total transaction amount and their location and total transaction count.

    The dataset is described as follows :

    1. Date - The date on which the transaction took place. 2.Domain - Where or which type of Business entity made the transaction. 3.Location - Where the data is collected from 4.Value - Total value of transaction
    2. Count of transaction .

    For example , in the very first row , the data can be read as : " On the first of January, 2022 , 1932 transactions of summing upto INR 365554 from Bhuj were reported " NOTE : There are about 2750 transactions every single day. All of this has been given to you.

    The bank wants you to answer the following questions :

    1. What is the average transaction value everyday for each domain over the year.
    2. What is the average transaction value for every city/location over the year
    3. The bank CEO , Mr: Hariharan , wants to promote the ease of transaction for the highest active domain. If the domains could be sorted into a priority, what would be the priority list ?
    4. What's the average transaction count for each city ?
  17. Sort & Filter

    • kaggle.com
    zip
    Updated May 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjana Murthy (2024). Sort & Filter [Dataset]. https://www.kaggle.com/datasets/sanjanamurthy392/sort-and-filter
    Explore at:
    zip(529390 bytes)Available download formats
    Dataset updated
    May 1, 2024
    Authors
    Sanjana Murthy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Sanjana Murthy

    Released under CC BY-NC-SA 4.0

    Contents

    This data contains Sort & Filter functions

  18. Blinkit dataset

    • kaggle.com
    zip
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mukesh gadri (2024). Blinkit dataset [Dataset]. https://www.kaggle.com/datasets/mukeshgadri/blinkit-dataset
    Explore at:
    zip(695160 bytes)Available download formats
    Dataset updated
    Jul 18, 2024
    Authors
    mukesh gadri
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    In the case study titled "Blinkit: Grocery Product Analysis," a dataset called 'Grocery Sales' contains 12 columns with information on sales of grocery items across different outlets. Using Tableau, you as a data analyst can uncover customer behavior insights, track sales trends, and gather feedback. These insights will drive operational improvements, enhance customer satisfaction, and optimize product offerings and store layout. Tableau enables data-driven decision-making for positive outcomes at Blinkit.

    The table Grocery Sales is a .CSV file and has the following columns, details of which are as follows:

    • Item_Identifier: A unique ID for each product in the dataset. • Item_Weight: The weight of the product. • Item_Fat_Content: Indicates whether the product is low fat or not. • Item_Visibility: The percentage of the total display area in the store that is allocated to the specific product. • Item_Type: The category or type of product. • Item_MRP: The maximum retail price (list price) of the product. • Outlet_Identifier: A unique ID for each store in the dataset. • Outlet_Establishment_Year: The year in which the store was established. • Outlet_Size: The size of the store in terms of ground area covered. • Outlet_Location_Type: The type of city or region in which the store is located. • Outlet_Type: Indicates whether the store is a grocery store or a supermarket. • Item_Outlet_Sales: The sales of the product in the particular store. This is the outcome variable that we want to predict.

  19. Dirty Data Sample

    • kaggle.com
    zip
    Updated Feb 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shiva Vashishtha (2022). Dirty Data Sample [Dataset]. https://www.kaggle.com/datasets/shivavashishtha/dirty-data-sample
    Explore at:
    zip(52182 bytes)Available download formats
    Dataset updated
    Feb 22, 2022
    Authors
    Shiva Vashishtha
    Description

    Dataset

    This dataset was created by Shiva Vashishtha

    Contents

  20. HR Analytics Dataset

    • kaggle.com
    zip
    Updated Oct 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    anshika2301 (2023). HR Analytics Dataset [Dataset]. https://www.kaggle.com/datasets/anshika2301/hr-analytics-dataset
    Explore at:
    zip(213690 bytes)Available download formats
    Dataset updated
    Oct 27, 2023
    Authors
    anshika2301
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    HR analytics, also referred to as people analytics, workforce analytics, or talent analytics, involves gathering together, analyzing, and reporting HR data. It is the collection and application of talent data to improve critical talent and business outcomes. It enables your organization to measure the impact of a range of HR metrics on overall business performance and make decisions based on data. They are primarily responsible for interpreting and analyzing vast datasets.

    Download the data CSV files here ; https://drive.google.com/drive/folders/18mQalCEyZypeV8TJeP3SME_R6qsCS2Og

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
Organization logo

18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry.

Explore at:
Dataset updated
Aug 17, 2024
Dataset provided by
United States Environmental Protection Agencyhttp://www.epa.gov/
Description

Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

Search
Clear search
Close search
Google apps
Main menu