Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Project Description:
Title: Pandas Data Manipulation and File Conversion
Overview: This project aims to demonstrate the basic functionalities of Pandas, a powerful data manipulation library in Python. In this project, we will create a DataFrame, perform some data manipulation operations using Pandas, and then convert the DataFrame into both Excel and CSV formats.
Key Objectives:
Tools and Libraries Used:
Project Implementation:
DataFrame Creation:
Data Manipulation:
File Conversion:
to_excel() function.to_csv() function.Expected Outcome:
Upon completion of this project, you will have gained a fundamental understanding of how to work with Pandas DataFrames, perform basic data manipulation tasks, and convert DataFrames into different file formats. This knowledge will be valuable for data analysis, preprocessing, and data export tasks in various data science and analytics projects.
Conclusion:
The Pandas library offers powerful tools for data manipulation and file conversion in Python. By completing this project, you will have acquired essential skills that are widely applicable in the field of data science and analytics. You can further extend this project by exploring more advanced Pandas functionalities or integrating it into larger data processing pipelines.in this data we add number of data and make that data a data frame.and save in single excel file as different sheet name and then convert that excel file in csv file .
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excel file containing additional data too large to fit in a PDF, CUT&RUN–RNAseq merge analyses.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
About Datasets:
Domain : Finance Project: Bank loan of customers Datasets: Finance_1.xlsx & Finance_2.xlsx Dataset Type: Excel Data Dataset Size: Each Excel file has 39k+ records
KPI's: 1. Year wise loan amount Stats 2. Grade and sub grade wise revolving balance 3. Total Payment for Verified Status Vs Total Payment for Non Verified Status 4. State wise loan status 5. Month wise loan status 6. Get more insights based on your understanding of the data
Process: 1. Understanding the problem 2. Data Collection 3. Data Cleaning 4. Exploring and analyzing the data 5. Interpreting the results
This data contains Power Query, Power Pivot, Merge data, Clustered Bar Chart, Clustered Column Chart, Line Chart, 3D Pie chart, Dashboard, slicers, timeline, formatting techniques.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The SMARTDEST DATASET WP3 v1.0 includes data at sub-city level for 7 cities: Amsterdam, Barcelona, Edinburgh, Lisbon, Ljubljana, Turin, and Venice. It is made up of information extracted from public sources at the local level (mostly, city council open data portals) or volunteered geographic information, that is, geospatial content generated by non-professionals using mapping systems available on the Internet (e.g., Geofabrik). Details on data sources and variables are included in a ‘metadata’ spreadsheet in the excel file. The same excel file contains 5 additional spreadsheets. The first one, labelled #1, was used to perform the analysis on the determinants of the geographical spread of tourism supply in SMARTDEST case study’s cities (in the main document D3.3, section 4.1), The second one (labelled #2) offers information that would allow to replicate the analysis on tourism-led population decline reported in section 4.3. As for spreadsheets named #3-AMS, #4-BCN, and #5-EDI, they refer to data sources and variables used to run follow-up analyses discussed in section 5.1, with the objective of digging into the causes of depopulation in Amsterdam, Barcelona, and Edinburgh, respectively. The column ‘row’ can be used to merge the excel file with the shapefile ‘db_task3.3_SmartDest’. Data are available at the buurt level in Amsterdam (an administrative unit roughly corresponding to a neighbourhood), census tract level in Barcelona and Ljubljana, for data zones in Edinburgh, statistical zones in Turin, and località in Venice.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
2008 Population & demographic census data for Israel, at the level of settlements and lower .
Data provided at the sub-settlement level (i.e neighborhoods). Variable names (in Hebrew and English) and data dictionary provided in XLS files. 2008 statistical area names provided (along with top roads/neighborhoods per settlement). Excel data needs cleaning/merging from multiple sub-pages.
Data from Israel Central Bureau of Statistics (CBS): http://www.cbs.gov.il/census/census/pnimi_page.html?id_topic=12
Photo by Me (Dan Ofer).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Health and Nutrition Examination Survey (NHANES) provides data and have considerable potential to study the health and environmental exposure of the non-institutionalized US population. However, as NHANES data are plagued with multiple inconsistencies, processing these data is required before deriving new insights through large-scale analyses. Thus, we developed a set of curated and unified datasets by merging 614 separate files and harmonizing unrestricted data across NHANES III (1988-1994) and Continuous (1999-2018), totaling 135,310 participants and 5,078 variables. The variables conveydemographics (281 variables),dietary consumption (324 variables),physiological functions (1,040 variables),occupation (61 variables),questionnaires (1444 variables, e.g., physical activity, medical conditions, diabetes, reproductive health, blood pressure and cholesterol, early childhood),medications (29 variables),mortality information linked from the National Death Index (15 variables),survey weights (857 variables),environmental exposure biomarker measurements (598 variables), andchemical comments indicating which measurements are below or above the lower limit of detection (505 variables).csv Data Record: The curated NHANES datasets and the data dictionaries includes 23 .csv files and 1 excel file.The curated NHANES datasets involves 20 .csv formatted files, two for each module with one as the uncleaned version and the other as the cleaned version. The modules are labeled as the following: 1) mortality, 2) dietary, 3) demographics, 4) response, 5) medications, 6) questionnaire, 7) chemicals, 8) occupation, 9) weights, and 10) comments."dictionary_nhanes.csv" is a dictionary that lists the variable name, description, module, category, units, CAS Number, comment use, chemical family, chemical family shortened, number of measurements, and cycles available for all 5,078 variables in NHANES."dictionary_harmonized_categories.csv" contains the harmonized categories for the categorical variables.“dictionary_drug_codes.csv” contains the dictionary for descriptors on the drugs codes.“nhanes_inconsistencies_documentation.xlsx” is an excel file that contains the cleaning documentation, which records all the inconsistencies for all affected variables to help curate each of the NHANES modules.R Data Record: For researchers who want to conduct their analysis in the R programming language, only cleaned NHANES modules and the data dictionaries can be downloaded as a .zip file which include an .RData file and an .R file.“w - nhanes_1988_2018.RData” contains all the aforementioned datasets as R data objects. We make available all R scripts on customized functions that were written to curate the data.“m - nhanes_1988_2018.R” shows how we used the customized functions (i.e. our pipeline) to curate the original NHANES data.Example starter codes: The set of starter code to help users conduct exposome analysis consists of four R markdown files (.Rmd). We recommend going through the tutorials in order.“example_0 - merge_datasets_together.Rmd” demonstrates how to merge the curated NHANES datasets together.“example_1 - account_for_nhanes_design.Rmd” demonstrates how to conduct a linear regression model, a survey-weighted regression model, a Cox proportional hazard model, and a survey-weighted Cox proportional hazard model.“example_2 - calculate_summary_statistics.Rmd” demonstrates how to calculate summary statistics for one variable and multiple variables with and without accounting for the NHANES sampling design.“example_3 - run_multiple_regressions.Rmd” demonstrates how run multiple regression models with and without adjusting for the sampling design.
Facebook
TwitterAnalyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:
1- Data Import and Transformation:
2- Data Quality Assessment:
3- Calculating COGS:
4- Discount Analysis:
5- Sales Metrics:
6- Visualization:
7- Report Generation:
Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
This study has exploited the daily weather records of Seungjeongwon Ilgi from the NIKH database. Seungjeongwon Ilgi (http://sjw.history.go.kr/main.do) is a daily record of the Seungjeongwon, the Royal Secretariat of the Joseon Dynasty of Korea. These diaries span from 1623 to 1910 and generally involve daily weather records in the entry header. Their observational site would be located in Seoul (N37°35′, E126°59′). We have exploited the weather records from the NIKH database and classified the daily weather using text mining method. We have also converted the report dates from the traditional lunisolar calendar to the Gregorian calendar, to better contextualise our data into the contemporary daily measurements.
Data
We provide different formats (csv, xlsx, json) to facilitate the usage of data. The main contents of data are listed as below.
Import Data
# Python
# CSV file
import pandas as pd
data=pd.read_csv('~/SJWilgi_Seoul_Weather_YR1623_1910.csv',encoding="utf-8")
# JSON file
data=pd.read_json('~/SJWilgi_Seoul_Weather_YR1623_1910.json',encoding="utf-8")
# Excel file
data=pd.read_excel('~/SJWilgi_Seoul_Weather_YR1623_1910.xlsx') # Excel file
# R
# CSV file
library(readr)
data<- read_csv("~/SJWilgi_Seoul_Weather_YR1623_1910.csv")
# Excel file
library(readxl)
data <- read_excel("~/SJWilgi_Seoul_Weather_YR1623_1910.xlsx")
Facebook
TwitterObjective Daily COVID-19 data reported by the World Health Organization (WHO) may provide the basis for political ad hoc decisions including travel restrictions. Data reported by countries, however, is heterogeneous and metrics to evaluate its quality are scarce. In this work, we analyzed COVID-19 case counts provided by WHO and developed tools to evaluate country-specific reporting behaviors. Methods In this retrospective cross-sectional study, COVID-19 data reported daily to WHO from 3rd January 2020 until 14th June 2021 were analyzed. We proposed the concepts of binary reporting rate and relative reporting behavior and performed descriptive analyses for all countries with these metrics. We developed a score to evaluate the consistency of incidence and binary reporting rates. Further, we performed spectral clustering of the binary reporting rate and relative reporting behavior to identify salient patterns in these metrics. Results Our final analysis included 222 countries and regions...., Data collection COVID-19 data was downloaded from WHO. Using a public repository, we have added the countries' full names to the WHO data set using the two-letter abbreviations for each country to merge both data sets. The provided COVID-19 data covers January 2020 until June 2021. We uploaded the final data set used for the analyses of this paper. Data processing We processed data using a Jupyter Notebook with a Python kernel and publically available external libraries. This upload contains the required Jupyter Notebook (reporting_behavior.ipynb) with all analyses and some additional work, a README, and the conda environment yml (env.yml)., Any text editor including Microsoft Excel and their free alternatives can open the uploaded CSV file. Any web browser and some code editors (like the freely available Visual Studio Code) can show the uploaded Jupyter Notebook if the required Python environment is set up correctly.
Facebook
TwitterThe following data shows riding information for members vs casual riders at the company Cyclistic(made up name). This is a dataset used as a case study for the google data analytics certificate.
The Changes Done to the Data in Excel: - Removed all duplicated (none were found) - Added a ride_length column by subtracting ended_at by started_at using the following formula "=C2-B2" and then turned that type into a Time, 37:30:55 - Added a day_of_week column using the following formula "=WEEKDAY(B2,1)" to display the day the ride took place on, 1= sunday through 7=saturday. - There was data that can be seen as ########, that data was left the same with no changes done to it, this data simply represents negative data and should just be looked at as 0.
Processing the Data in RStudio: - Installed required packages such as tidyverse for data import and wrangling, lubridate for date functions and ggplot for visualization. - Step 1: I read the csv files into R to collect the data - Step 2: Made sure the data all contained the same column names because I want to merge them into one - Step 3: Renamed all column names to make sure they align, then merged them into one combined data - Step 4: More data cleaning and analyzing - Step 5: Once my data was cleaned and clearly telling a story, I began to visualize it. The visualizations done can be seen below.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is sourced from the Census 2011 and shows the population and population density by council area. Raw data sourced from http://www.scotlandscensus.gov.uk/en/censusresults/downloadablefiles.html and then manipulated in excel to merge a number of tables. The resulting data was joined to a shapefile of Scottish Council areas from sharegeo (http://www.sharegeo.ac.uk/handle/10672/305). Both sources should be attributed as the sources of the base data. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2012-12-19 and migrated to Edinburgh DataShare on 2017-02-21.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Project Description:
Title: Pandas Data Manipulation and File Conversion
Overview: This project aims to demonstrate the basic functionalities of Pandas, a powerful data manipulation library in Python. In this project, we will create a DataFrame, perform some data manipulation operations using Pandas, and then convert the DataFrame into both Excel and CSV formats.
Key Objectives:
Tools and Libraries Used:
Project Implementation:
DataFrame Creation:
Data Manipulation:
File Conversion:
to_excel() function.to_csv() function.Expected Outcome:
Upon completion of this project, you will have gained a fundamental understanding of how to work with Pandas DataFrames, perform basic data manipulation tasks, and convert DataFrames into different file formats. This knowledge will be valuable for data analysis, preprocessing, and data export tasks in various data science and analytics projects.
Conclusion:
The Pandas library offers powerful tools for data manipulation and file conversion in Python. By completing this project, you will have acquired essential skills that are widely applicable in the field of data science and analytics. You can further extend this project by exploring more advanced Pandas functionalities or integrating it into larger data processing pipelines.in this data we add number of data and make that data a data frame.and save in single excel file as different sheet name and then convert that excel file in csv file .