Facebook
TwitterExcel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
Facebook
TwitterThis dataset was created by Aziza Afrin
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
File List Supplement1.xls (md5: 4202b5bccb5ee828f646f50530394c47)
Please be advised that the ESA cannot guarantee the forward migration of proprietary file formats such as Excel (.xls) documents.
Description
SupplementA.xls is an Excel spreadsheet containing 5 sheets with example calculations. The first 4 sheets (labeled Model 1 - Model 4) contain calculations for models considered in APPLICATION TO YELLOWSTONE BISON:
Model 1: Makes no assumptions about equality of survival rates for different age classes.
Model 2: Assumes survival rates are equal for ages 0–1, 2–3, 4–5, 6–7, 8–9, 10–11, 12–13.
Model 3: Assumes survival rates are equal for ages 0–1, 2–3, 4–5, 6–11, 12–13.
Model 4: Assumes survival rates are equal for ages 0–13.
The last sheet (labeled 3 Years) contains calculations for a hypothetical example with 3 age classes and 3 years of data, and no assumptions about equality of survival rates.
Facebook
TwitterThe link for the Excel project to download can be found on GitHub here.
It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt="">
The link for the Tableau adjusted dashboard can be found here.
A screenshot of the interactive Excel dashboard is also included below for ease.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">
Facebook
TwitterThe documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Excel. The dataset can be utilized to understand the population distribution of Excel by age. For example, using this dataset, we can identify the largest age group in Excel.
Key observations
The largest age group in Excel, AL was for the group of age 5 to 9 years years with a population of 77 (15.28%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Excel, AL was the 85 years and over years with a population of 2 (0.40%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel Population by Age. You can refer the same here
Facebook
TwitterDownload Employee Travel Excel SheetThis dataset contains information about the employee travel expenses for the year 2021. Details are provided on the employee (name, title, department), the travel (dates, location, purpose) and the cost (expenses, recoveries). Expenses are broken down in separate tabs by Quarter (Q1, Q2, Q3 and Q4). Updated quarterly when expenses are prepared. Expenses for other years are available in separate datasets.
Facebook
TwitterThe following datafiles contain detailed information about vehicles in the UK, which would be too large to use as structured tables. They are provided as simple CSV text files that should be easier to use digitally.
Data tables containing aggregated information about vehicles in the UK are also available.
We welcome any feedback on the structure of our new datafiles, their usability, or any suggestions for improvements, please contact vehicles statistics.
CSV files can be used either as a spreadsheet (using Microsoft Excel or similar spreadsheet packages) or digitally using software packages and languages (for example, R or Python).
When using as a spreadsheet, there will be no formatting, but the file can still be explored like our publication tables. Due to their size, older software might not be able to open the entire file.
df_VEH0120_GB: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1077520/df_VEH0120_GB.csv">Vehicles at the end of the quarter by licence status, body type, make, generic model and model: Great Britain (CSV, 37.6 MB)
Scope: All registered vehicles in Great Britain; from 1994 Quarter 4 (end December)
Schema: BodyType, Make, GenModel, Model, LicenceStatus, [number of vehicles; one column per quarter]
df_VEH0120_UK: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1077521/df_VEH0120_UK.csv">Vehicles at the end of the quarter by licence status, body type, make, generic model and model: United Kingdom (CSV, 20.8 MB)
Scope: All registered vehicles in the United Kingdom; from 2014 Quarter 3 (end September)
Schema: BodyType, Make, GenModel, Model, LicenceStatus, [number of vehicles; one column per quarter]
df_VEH0160_GB: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1077522/df_VEH0160_GB.csv">Vehicles registered for the first time by body type, make, generic model and model: Great Britain (CSV, 17.1 MB)
Scope: All vehicles registered for the first time in Great Britain; from 2001 Quarter 1 (January to March)
Schema: BodyType, Make, GenModel, Model, [number of vehicles; one column per quarter]
df_VEH0160_UK: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1077523/df_VEH0160_UK.csv">Vehicles registered for the first time by body type, make, generic model and model: United Kingdom (CSV, 4.93 MB)
Scope: All vehicles registered for the first time in the United Kingdom; from 2014 Quarter 3 (July to September)
Schema: BodyType, Make, GenModel, Model, [number of vehicles; one column per quarter]
df_VEH0124: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1077524/df_VEH0124.csv">Vehicles at the end of the quarter by licence status, body type, make, generic model, model, year of first use and year of manufacture: United Kingdom (CSV, 28.2 MB)
Scope: All licensed vehicles in the United Kingdom; 2021 Quarter 4 (end December) only
Schema: BodyType, Make, GenModel, Model, YearFirstUsed, YearManufacture, Licensed (number of vehicles), SORN (number of vehicles)
df_VEH0220: <a class="govu
Facebook
TwitterDownload Employee Vehicle Personal Use Excel SheetThis dataset lists the employee name and taxable benefit for personal use of City of Greater Sudbury Vehicle as travel expenses for the year 2020. Expenses are broken down in separate tabs by Quarter (Q1, Q2, Q3 and Q4). Data for other years is available in separate datasets. Updated quarterly when expenses are prepared.
Facebook
TwitterThe dataset includes customer id,Martial Status,Gender,Income,Children,Education,Occupation,Home Owner,Cars,Commute Distance,Region,Age,Purchased Bike. Blog
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Single-Family Portfolio Snapshot consists of a monthly data table and a report generator (Excel pivot table) that can be used to quickly create new reports of interest to the user from the data records. The data records themselves are loan level records using all of the categorical variables highlighted on the report generator table. Users may download and save the Excel file that contains the data records and the pivot table.The report generator sheet consists of an Excel pivot table that gives individual users some ability to analyze monthly trends on dimensions of interest to them. There are six choice dimensions: property state, property county, loan purpose, loan type, property product type, and downpayment source.Each report generator selection variable has an associated drop-down menu that is accessed by clicking once on the associated arrows. Only single selections can be made from each menu. For example, users must choose one state or all states, one county or all counties. If a county is chosen that does not correspond with the selected state, the result will be null values.The data records include each report generator choice variable plus the property zip code, originating mortgagee (lender) number, sponsor-lender name, sponsor number, nonprofit gift provider tax identification number, interest rate, and FHA insurance endorsement year and month. The report generator only provides output for the dollar amount of loans. Users who desire to analyze other data that are available on the data table, for example, interest rates or sponsor number, must first download the Excel file. See the data definitions (PDF in top folder) for details on each data element.Files switch from .zip to excel in August 2017.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excel sheet of the data
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Separate sheet highlights genes of interest encoding surface markers and transcription factors. Analysis includes means, standard deviation, CoV, and Mac:DC expression ratios. CoV, coefficient of variance; DC, dendritic cell; Mac, macrophage; MPS, mononuclear phagocyte system. (XLSX)
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Warning: Large file size (over 1GB). Each monthly data set is large (over 4 million rows), but can be viewed in standard software such as Microsoft WordPad (save by right-clicking on the file name and selecting 'Save Target As', or equivalent on Mac OSX). It is then possible to select the required rows of data and copy and paste the information into another software application, such as a spreadsheet. Alternatively, add-ons to existing software, such as the Microsoft PowerPivot add-on for Excel, to handle larger data sets, can be used. The Microsoft PowerPivot add-on for Excel is available from Microsoft http://office.microsoft.com/en-gb/excel/download-power-pivot-HA101959985.aspx Once PowerPivot has been installed, to load the large files, please follow the instructions below. Note that it may take at least 20 to 30 minutes to load one monthly file. 1. Start Excel as normal 2. Click on the PowerPivot tab 3. Click on the PowerPivot Window icon (top left) 4. In the PowerPivot Window, click on the "From Other Sources" icon 5. In the Table Import Wizard e.g. scroll to the bottom and select Text File 6. Browse to the file you want to open and choose the file extension you require e.g. CSV Once the data has been imported you can view it in a spreadsheet. What does the data cover? General practice prescribing data is a list of all medicines, dressings and appliances that are prescribed and dispensed each month. A record will only be produced when this has occurred and there is no record for a zero total. For each practice in England, the following information is presented at presentation level for each medicine, dressing and appliance, (by presentation name): - the total number of items prescribed and dispensed - the total net ingredient cost - the total actual cost - the total quantity The data covers NHS prescriptions written in England and dispensed in the community in the UK. Prescriptions written in England but dispensed outside England are included. The data includes prescriptions written by GPs and other non-medical prescribers (such as nurses and pharmacists) who are attached to GP practices. GP practices are identified only by their national code, so an additional data file - linked to the first by the practice code - provides further detail in relation to the practice. Presentations are identified only by their BNF code, so an additional data file - linked to the first by the BNF code - provides the chemical name for that presentation.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Excel sheet with data of the original research 'Evaluation of simple and cost-effective hematological inflammatory biomarkers in type 2 diabetes and their correlation with glycemic control'
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the framework of Articles 23 and 33 of Regulation (EC) No 178/2002 EFSA has received from the European Commission a mandate (M-2010-0374) to collect all available data on the occurrence of chemical contaminants in food and feed. These data are used in EFSA’s scientific opinions and reports on contaminants in food and feed.
This data providers package provides the data collection configuration and supporting materials for reporting Chemical Contaminants in SSD1. These are to be used for the official data reporting phase.
The package includes:
The Standard Sample Description Version 2 XSD schema definition for CONTAMINANTS reporting.
The general and CONTAMINANTS SSD1 specific business rules applied for the automatic validation of the submitted datasets.
Excel Mapping tool to convert excel files after mapping into XML document.
Please follow the instructions below for the correct use of the mapping tool to avoid compromising its functionalities:
Download and save the MS Excel® Standard Sample Description file to your computer (do not open the file before saving and do not change the file name)
Download and save the file MS Excel® Simplified Reporting Format (do not open the file before saving)
Keep both Excel files in the same folder
Open both Excel files and enable the macros
Keep both files open in the same Excel instance when filling in the data
Guidance on how to run the validation report after submitting data to the DCF.
Facebook
TwitterThis dataset was created by Pinky Verma
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Health and Nutrition Examination Survey (NHANES) provides data and have considerable potential to study the health and environmental exposure of the non-institutionalized US population. However, as NHANES data are plagued with multiple inconsistencies, processing these data is required before deriving new insights through large-scale analyses. Thus, we developed a set of curated and unified datasets by merging 614 separate files and harmonizing unrestricted data across NHANES III (1988-1994) and Continuous (1999-2018), totaling 135,310 participants and 5,078 variables. The variables conveydemographics (281 variables),dietary consumption (324 variables),physiological functions (1,040 variables),occupation (61 variables),questionnaires (1444 variables, e.g., physical activity, medical conditions, diabetes, reproductive health, blood pressure and cholesterol, early childhood),medications (29 variables),mortality information linked from the National Death Index (15 variables),survey weights (857 variables),environmental exposure biomarker measurements (598 variables), andchemical comments indicating which measurements are below or above the lower limit of detection (505 variables).csv Data Record: The curated NHANES datasets and the data dictionaries includes 23 .csv files and 1 excel file.The curated NHANES datasets involves 20 .csv formatted files, two for each module with one as the uncleaned version and the other as the cleaned version. The modules are labeled as the following: 1) mortality, 2) dietary, 3) demographics, 4) response, 5) medications, 6) questionnaire, 7) chemicals, 8) occupation, 9) weights, and 10) comments."dictionary_nhanes.csv" is a dictionary that lists the variable name, description, module, category, units, CAS Number, comment use, chemical family, chemical family shortened, number of measurements, and cycles available for all 5,078 variables in NHANES."dictionary_harmonized_categories.csv" contains the harmonized categories for the categorical variables.“dictionary_drug_codes.csv” contains the dictionary for descriptors on the drugs codes.“nhanes_inconsistencies_documentation.xlsx” is an excel file that contains the cleaning documentation, which records all the inconsistencies for all affected variables to help curate each of the NHANES modules.R Data Record: For researchers who want to conduct their analysis in the R programming language, only cleaned NHANES modules and the data dictionaries can be downloaded as a .zip file which include an .RData file and an .R file.“w - nhanes_1988_2018.RData” contains all the aforementioned datasets as R data objects. We make available all R scripts on customized functions that were written to curate the data.“m - nhanes_1988_2018.R” shows how we used the customized functions (i.e. our pipeline) to curate the original NHANES data.Example starter codes: The set of starter code to help users conduct exposome analysis consists of four R markdown files (.Rmd). We recommend going through the tutorials in order.“example_0 - merge_datasets_together.Rmd” demonstrates how to merge the curated NHANES datasets together.“example_1 - account_for_nhanes_design.Rmd” demonstrates how to conduct a linear regression model, a survey-weighted regression model, a Cox proportional hazard model, and a survey-weighted Cox proportional hazard model.“example_2 - calculate_summary_statistics.Rmd” demonstrates how to calculate summary statistics for one variable and multiple variables with and without accounting for the NHANES sampling design.“example_3 - run_multiple_regressions.Rmd” demonstrates how run multiple regression models with and without adjusting for the sampling design.
Facebook
TwitterExcel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).