The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data organization for the figures in the document: Figure 3A LineOutWithSun_SSAzi_135to225_green_Correct_ROI5_INFO.xls Figure 3b LineOutWithSun_SSAzi_m45to45_green_Correct_ROI5_INFO.xls Figure 4 fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Correct_ROI5_INFO.xls fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Sim_Correct_ROI5_INFO.xls Figure 5a LineOut_Camera_Elevation_SqAzi_m180to0_green_Sim_Correct_ROI5_INFO.xls LineOut_Camera_Elevation_SqAzi_m180to0_green_Correct_ROI5_INFO.xls Figure 5b LineOut_Camera_Elevation_SqAzi_0to180_green_Correct_ROI5_INFO.xls LineOut_Camera_Elevation_SqAzi_0to180_green_Sim_Correct_ROI5_INFO.xls Figure 6a LineOutColor_SqAzi_m180to0_CP_20to50_Correct_ROI5_INFO.xls Figure 6b LineOutROI_SqAzi_m180to0_CP_20to50_green_Correct_INFO.xls Figure 7 fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Correct_ROI5_INFO.xls LineOut_MeshAoPDif_Camera_Elevation_SqAzi_0to180_green_Correct_ROI5_INFO.xls LineOut_MeshAoPDif_Camera_Elevation_SqAzi_m180to0_green_Correct_ROI5_INFO.xls
With a step-by-step approach, learn to prepare Excel files, data worksheets, and individual data columns for data analysis; practice conditional formatting and creating pivot tables/charts; go over basic principles of Research Data Management as they might apply to an Excel project. Avec une approche étape par étape, apprenez à préparer pour l’analyse des données des fichiers Excel, des feuilles de calcul de données et des colonnes de données individuelles; pratiquez la mise en forme conditionnelle et la création de tableaux croisés dynamiques ou de graphiques; passez en revue les principes de base de la gestion des données de recherche tels qu’ils pourraient s’appliquer à un projet Excel.
Students use small mammal data from the National Ecological Observatory Network to understand necessary steps of data management from data collection to data analysis by re-organising excel sheets in an R-compatible format and doing basic analysis in R
Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 3.0 Combined Fee, Designation, Easement feature class (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to remove overlaps, avoiding overestimation in protected area statistics and to support user needs. A Python scripted process ("PADUS3_0_CreateVectorAnalysisFileScript.zip") associated with this data release prioritized overlapping designations (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation status (e.g. GAP Status Code 1 over 2), public access values (in the order of Closed, Restricted, Open, Unknown), and geodatabase load order (records are deliberately organized in the PAD-US full inventory with fee owned lands loaded before overlapping management designations, and easements). The Vector Analysis File ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") associated item of PAD-US 3.0 Spatial Analysis and Statistics ( https://doi.org/10.5066/P9KLBB5D ) was clipped to the Census state boundary file to define the extent and serve as a common denominator for statistical summaries. Boundaries of interest to stakeholders (State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative) were incorporated into separate geodatabase feature classes to support various data summaries ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip") and Comma-separated Value (CSV) tables ("PADUS3_0SummaryStatistics_TabularData_CSV.zip") summarizing "PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip" are provided as an alternative format and enable users to explore and download summary statistics of interest (Comma-separated Table [CSV], Microsoft Excel Workbook [.XLSX], Portable Document Format [.PDF] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). In addition, a "flattened" version of the PAD-US 3.0 combined file without other extent boundaries ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") allow for other applications that require a representation of overall protection status without overlapping designation boundaries. The "PADUS3_0VectorAnalysis_State_Clip_CENSUS2020" feature class ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.gdb") is the source of the PAD-US 3.0 raster files (associated item of PAD-US 3.0 Spatial Analysis and Statistics, https://doi.org/10.5066/P9KLBB5D ). Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types represented in some manner, while work continues to maintain updates and improve data quality (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, changes in protected area status between versions of the PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://www.fgdc.gov/ngda-reports/NGDA_Datasets.html ), agencies are the best source of their lands data.
This dataset contains the valuation template the researcher can use to retrieve real-time Excel stock price and stock price in Google Sheets. The dataset is provided by Finsheet, the leading financial data provider for spreadsheet users. To get more financial data, visit the website and explore their function. For instance, if a researcher would like to get the last 30 years of income statement for Meta Platform Inc, the syntax would be =FS_EquityFullFinancials("FB", "ic", "FY", 30) In addition, this syntax will return the latest stock price for Caterpillar Inc right in your spreadsheet. =FS_Latest("CAT") If you need assistance with any of the function, feel free to reach out to their customer support team. To get starter, install their Excel and Google Sheets add-on.
GSA, the nation's largest public real estate organization, provides workspace for over one million federal workers. These employees, along with government property, are housed in space owned by the federal government and in leased properties including buildings, land, antenna sites, etc. across the country.
The Data Crunch handout series, developed at the Research Data Service Center at the University of Bonn, concisely describes various aspects of research data management (RDM) and is aimed at all researchers and interested parties who want to expand their knowledge of RDM.In the "DIY: FAIR Spreadsheet" handout a summary of best practices, the do's and dont's when working with spreadsheets and examples of helpful resources are provided. ---------------------- The Data Crunch "DIY: FAIR Spreadsheet" handout was created by Ewa E. Bres from the Research Data Service Center.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Spreadsheet Software Market Size And Forecast
Spreadsheet Software Market size was valued at USD 10.05 Billion in 2023 and is expected to reach USD 14.55 Billion by 2031, with a CAGR of 7.8% from 2024-2031.
Global Spreadsheet Software Market Drivers
The market drivers for the Spreadsheet Software Market can be influenced by various factors. These may include:
Increasing Data Volume: As organizations generate and collect more data, the need for efficient data analysis and management tools, such as spreadsheet software, grows. Rising Demand for Data Visualization: Users increasingly seek sophisticated tools to visualize data for better insights. Spreadsheet software can provide charts and graphs, making data interpretation easier.
Global Spreadsheet Software Market Restraints
Several factors can act as restraints or challenges for the Spreadsheet Software Market, These may include:
Market Saturation: Many organizations already use established spreadsheet software such as Microsoft Excel or Google Sheets. The reliance on these platforms can make it difficult for new entrants or alternative solutions to capture market share. High Competition: The market is highly competitive, with numerous players offering similar features and functionalities. This can lead to price wars and reduced profit margins for software providers.
This Excel file contains a comprehensive list of fields in the DIEM dataset along with detailed descriptions for each. The information is organized across multiple sheets within the workbook. You can navigate between sheets by selecting them from the list at the bottom of the Excel window. The first sheet contains a readme text. The second sheet provides the list of fields and detailed descriptions for the DIEM Microdata, which includes data at the household level. The subsequent four sheets contain the list of fields and their descriptions for the four DIEM aggregated datasets, each corresponding to a specific DIEM thematic area:
Income, Shocks and Needs thematic area Crop Production thematic area Livestock Production thematic area Food Security thematic area
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data files for F1000Research manuscript submission “DataUp: A tool to help researchers describe and share tabular data”. Authors: C Strasser, J Kunze, S Abrams, P Cruse. Submitted December 2013. readme.txt has description of all files in this fileset.
The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs — Evaluation Report for ATDM Program," https://rosap.ntl.bts.gov/view/dot/32520 and FHWA-JPO-16-373, "Analysis, modeling, and simulation (AMS) testbed development and evaluation to support dynamic mobility applications (DMA) and active transportation and demand management (ATDM) programs : Dallas testbed analysis plan," https://rosap.ntl.bts.gov/view/dot/32106 The files in this zip file are specifically related to the Dallas Testbed. The compressed zip files total 2.2 GB in size. The files have been uploaded as-is; no further documentation was supplied by NTL. All located .docx files were converted to .pdf document files which are an open, archival format. These pdfs were then added to the zip file alongside the original .docx files. These files can be unzipped using any zip compression/decompression software. This zip file contains files in the following formats: .pdf document files which can be read using any pdf reader; .cvs text files which can be read using any text editor; .txt text files which can be read using any text editor; .docx document files which can be read in Microsoft Word and some other word processing programs; . xlsx spreadsheet files which can be read in Microsoft Excel and some other spreadsheet programs; .dat data files which may be text or multimedia; as well as GIS or mapping files in the fowlling formats: .mxd, .dbf, .prj, .sbn, .shp., .shp.xml; which may be opened in ArcGIS or other GIS software. [software requirements] These files were last accessed in 2017.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global spreadsheet editor market is experiencing robust growth, driven by the increasing digitization of businesses and the rising demand for efficient data management solutions across various industries. The market, estimated at $50 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 10% from 2025 to 2033, reaching approximately $130 billion by 2033. This growth is fueled by several factors, including the expanding adoption of cloud-based spreadsheet editors offering enhanced collaboration and accessibility features, the increasing need for data analysis and visualization tools within organizations of all sizes (Large Enterprises and SMBs), and the integration of spreadsheet software with other business applications through APIs offered by companies like Zapier. The free segment holds a significant market share, particularly among individual users and small businesses, while the paid segment, which offers advanced features and support, contributes substantially to overall market revenue. Key players such as Microsoft, Google, and LibreOffice dominate the market, but emerging players are continually introducing innovative features and pricing models to gain a competitive edge. Significant regional variations exist. North America currently holds the largest market share due to high technology adoption and a well-established digital infrastructure, followed by Europe and Asia-Pacific. However, the Asia-Pacific region is anticipated to experience the fastest growth in the forecast period due to rapid technological advancements and increasing internet penetration across countries like India and China. Growth restraints include security concerns related to cloud storage, the cost of implementation and training for complex software, and the increasing competition from specialized data analysis tools. Despite these challenges, the consistent demand for streamlined data management across diverse sectors ensures the continued expansion of the spreadsheet editor market in the coming years. The market’s evolution reflects a shift towards user-friendly, feature-rich, and collaborative solutions that are seamlessly integrated into broader business ecosystems.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global big data technology market size was valued at approximately $162 billion in 2023 and is projected to reach around $471 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 12.6% during the forecast period. The growth of this market is primarily driven by the increasing demand for data analytics and insights to enhance business operations, coupled with advancements in AI and machine learning technologies.
One of the principal growth factors of the big data technology market is the rapid digital transformation across various industries. Businesses are increasingly recognizing the value of data-driven decision-making processes, leading to the widespread adoption of big data analytics. Additionally, the proliferation of smart devices and the Internet of Things (IoT) has led to an exponential increase in data generation, necessitating robust big data solutions to analyze and extract meaningful insights. Organizations are leveraging big data to streamline operations, improve customer engagement, and gain a competitive edge.
Another significant growth driver is the advent of advanced technologies like artificial intelligence (AI) and machine learning (ML). These technologies are being integrated into big data platforms to enhance predictive analytics and real-time decision-making capabilities. AI and ML algorithms excel at identifying patterns within large datasets, which can be invaluable for predictive maintenance in manufacturing, fraud detection in banking, and personalized marketing in retail. The combination of big data with AI and ML is enabling organizations to unlock new revenue streams, optimize resource utilization, and improve operational efficiency.
Moreover, regulatory requirements and data privacy concerns are pushing organizations to adopt big data technologies. Governments worldwide are implementing stringent data protection regulations, like the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States. These regulations necessitate robust data management and analytics solutions to ensure compliance and avoid hefty fines. As a result, organizations are investing heavily in big data platforms that offer secure and compliant data handling capabilities.
As organizations continue to navigate the complexities of data management, the role of Big Data Professional Services becomes increasingly critical. These services offer specialized expertise in implementing and managing big data solutions, ensuring that businesses can effectively harness the power of their data. Professional services encompass a range of offerings, including consulting, system integration, and managed services, tailored to meet the unique needs of each organization. By leveraging the knowledge and experience of big data professionals, companies can optimize their data strategies, streamline operations, and achieve their business objectives more efficiently. The demand for these services is driven by the growing complexity of big data ecosystems and the need for seamless integration with existing IT infrastructure.
Regionally, North America holds a dominant position in the big data technology market, primarily due to the early adoption of advanced technologies and the presence of key market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, driven by increasing digitalization, the rapid growth of industries such as e-commerce and telecommunications, and supportive government initiatives aimed at fostering technological innovation.
The big data technology market is segmented into software, hardware, and services. The software segment encompasses data management software, analytics software, and data visualization tools, among others. This segment is expected to witness substantial growth due to the increasing demand for data analytics solutions that can handle vast amounts of data. Advanced analytics software, in particular, is gaining traction as organizations seek to gain deeper insights and make data-driven decisions. Companies are increasingly adopting sophisticated data visualization tools to present complex data in an easily understandable format, thereby enhancing decision-making processes.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global spreadsheet software market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions and the rising demand for data analysis tools across various industries. The market, estimated at $50 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching approximately $150 billion by the end of the forecast period. This growth is fueled by several key factors. Firstly, the increasing reliance on data-driven decision-making across businesses, irrespective of size, necessitates efficient data management and analysis capabilities provided by spreadsheet software. Secondly, the proliferation of cloud-based spreadsheet applications offers enhanced collaboration, accessibility, and scalability, making them attractive to organizations of all sizes. Finally, continuous advancements in features like advanced analytics, data visualization, and integration with other business applications enhance the overall utility and appeal of these tools. Major players like Microsoft, Google, and Zoho are continuously innovating, adding new features and improving user experience to maintain their market leadership. However, the market also faces challenges. Security concerns related to data storage and access in cloud-based solutions, and the need for continuous training and upskilling to leverage advanced features, pose limitations to wider adoption. Despite these challenges, the long-term outlook for the spreadsheet software market remains positive. The increasing digitization of businesses and the expanding adoption of big data analytics will propel demand for sophisticated spreadsheet tools. The emergence of niche players focusing on specific industry needs and specialized functionalities will also contribute to market expansion. Competition will remain fierce among established players and newcomers, prompting innovation and improvement in the overall product offerings. The market will witness consolidation through mergers and acquisitions, and a shift towards subscription-based models, further driving market growth and shaping the competitive landscape. The geographic distribution of the market will see continued growth in developing economies, driven by increasing internet penetration and smartphone adoption.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘1.15 Insurance Services Organization (summary)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/0905a875-5513-4591-aeaf-370103dc476a on 11 February 2022.
--- Dataset description provided by original source is as follows ---
ISO is an independent advisory organization that collects information on a community's building-code adoption and enforcement services in order to provide a ranking for insurance companies. ISO assigns a Building Code Effectiveness Classification from 1 to 10 based on the data collected. Class 1 represents exemplary commitment to building-code enforcement.
Municipalities with better rankings are lower risk, and their residents' insurance rates can reflect that. The prospect of minimizing catastrophe-related damage and ultimately lowering insurance costs gives communities an incentive to enforce their building codes rigorously.
This page provides data for the Insurance Services Organization (ISO) performance measure.
This data includes residential and commercial building code enforcement ratings for the City of Tempe.
The performance measure dashboard is available at 1.15 Insurance Services Organization (ISO) Rating
Additional Information
Source: Insurance Service Organization Rating
Contact: Chris Thompson
Contact E-Mail: Christopher_Thompson@tempe.gov
Data Source Type: Excel
Preparation Method: Information added to Excel spreadsheet from rating report
Publish Frequency: Every 5 Years
Publish Method: Manual
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset resulted from conducting focus groups with scientists from five disciplines (atmospheric and earth science, chemistry, computer science, ecology, and neuroscience) about data management to lead into a discussion of what features they think are necessary to include in data repository systems and services to help them implement the data sharing and preservation parts of their data management plans. Participants identified metadata quality control and training as problem areas in data management. Participants discussed several desired repository features, including: metadata control, data traceability, security, stable infrastructure, and data use restrictions. Our dataset includes five anonymized focus group transcripts in .pdf file format (one for each focus group with scientists from each discipline), our codebook as a spreadsheet in excel file format (.xlsx), and coded segments of our transcript text to visualize our data analysis in an excel spreadsheet in excel file format (.xlsx).
Associated with all model outputs and options
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global graph database market size was valued at USD 1.5 billion in 2023 and is projected to reach USD 8.5 billion by 2032, growing at a CAGR of 21.2% from 2024 to 2032. The substantial growth of this market is driven primarily by increasing data complexity, advancements in data analytics technologies, and the rising need for more efficient database management systems.
One of the primary growth factors for the graph database market is the exponential increase in data generation. As organizations generate vast amounts of data from various sources such as social media, e-commerce platforms, and IoT devices, the need for sophisticated data management and analysis tools becomes paramount. Traditional relational databases struggle to handle the complexity and interconnectivity of this data, leading to a shift towards graph databases which excel in managing such intricate relationships.
Another significant driver is the growing adoption of artificial intelligence (AI) and machine learning (ML) technologies. These technologies rely heavily on connected data for predictive analytics and decision-making processes. Graph databases, with their inherent ability to model relationships between data points effectively, provide a robust foundation for AI and ML applications. This synergy between AI/ML and graph databases further accelerates market growth.
Additionally, the increasing prevalence of personalized customer experiences across industries like retail, finance, and healthcare is fueling demand for graph databases. Businesses are leveraging graph databases to analyze customer behaviors, preferences, and interactions in real-time, enabling them to offer tailored recommendations and services. This enhanced customer experience translates to higher customer satisfaction and retention, driving further adoption of graph databases.
From a regional perspective, North America currently holds the largest market share due to early adoption of advanced technologies and the presence of key market players. However, significant growth is also anticipated in the Asia-Pacific region, driven by rapid digital transformation, increasing investments in IT infrastructure, and growing awareness of the benefits of graph databases. Europe is also expected to witness steady growth, supported by stringent data management regulations and a strong focus on data privacy and security.
The graph database market can be segmented into two primary components: software and services. The software segment holds the largest market share, driven by extensive adoption across various industries. Graph database software is designed to create, manage, and query graph databases, offering features such as scalability, high performance, and efficient handling of complex data relationships. The growth in this segment is propelled by continuous advancements and innovations in graph database technologies. Companies are increasingly investing in research and development to enhance the capabilities of their graph database software products, catering to the evolving needs of their customers.
On the other hand, the services segment is also witnessing substantial growth. This segment includes consulting, implementation, and support services provided by vendors to help organizations effectively deploy and manage graph databases. As businesses recognize the benefits of graph databases, the demand for expert services to ensure successful implementation and integration into existing systems is rising. Additionally, ongoing support and maintenance services are crucial for the smooth operation of graph databases, driving further growth in this segment.
The increasing complexity of data and the need for specialized expertise to manage and analyze it effectively are key factors contributing to the growth of the services segment. Organizations often lack the in-house skills required to harness the full potential of graph databases, prompting them to seek external assistance. This trend is particularly evident in large enterprises, where the scale and complexity of data necessitate robust support services.
Moreover, the services segment is benefiting from the growing trend of outsourcing IT functions. Many organizations are opting to outsource their database management needs to specialized service providers, allowing them to focus on their core business activities. This shift towards outsourcing is further bolstering the demand for graph database services, driving market growth.
The harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.
----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:
Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
The survey has six main objectives. These objectives are:
The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.
National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.
1- Household/family. 2- Individual/person.
The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
Sample survey data [ssd]
----> Design:
Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.
----> Sample frame:
Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.
----> Sampling Stages:
In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.
Face-to-face [f2f]
----> Preparation:
The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.
----> Questionnaire Parts:
The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job
Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.
Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days
Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.
----> Raw Data:
Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.
----> Harmonized Data:
Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).
The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel