Facebook
TwitterExcel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
Facebook
TwitterThe annual Retail store data CD-ROM is an easy-to-use tool for quickly discovering retail trade patterns and trends. The current product presents results from the 1999 and 2000 Annual Retail Store and Annual Retail Chain surveys. This product contains numerous cross-classified data tables using the North American Industry Classification System (NAICS). The data tables provide access to a wide range of financial variables, such as revenues, expenses, inventory, sales per square footage (chain stores only) and the number of stores. Most data tables contain detailed information on industry (as low as 5-digit NAICS codes), geography (Canada, provinces and territories) and store type (chains, independents, franchises). The electronic product also contains survey metadata, questionnaires, information on industry codes and definitions, and the list of retail chain store respondents.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Facebook
TwitterThe link for the Excel project to download can be found on GitHub here.
It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt="">
The link for the Tableau adjusted dashboard can be found here.
A screenshot of the interactive Excel dashboard is also included below for ease.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
PROJECT OBJECTIVE
We are a part of XYZ Co Pvt Ltd company who is in the business of organizing the sports events at international level. Countries nominate sportsmen from different departments and our team has been given the responsibility to systematize the membership roster and generate different reports as per business requirements.
Questions (KPIs)
TASK 1: STANDARDIZING THE DATASET
TASK 2: DATA FORMATING
TASK 3: SUMMARIZE DATA - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1) • Create a PIVOT table in the worksheet ANALYSIS, starting at cell B3,with the following details:
TASK 4: SUMMARIZE DATA - EXCEL FUNCTIONS (Use SPORTSMEN worksheet after attempting TASK 1)
• Create a SUMMARY table in the worksheet ANALYSIS,starting at cell G4, with the following details:
TASK 5: GENERATE REPORT - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1)
• Create a PIVOT table report in the worksheet REPORT, starting at cell A3, with the following information:
Process
Facebook
TwitterThe intention is to collect data for the calendar year 2009 (or the nearest year for which each business keeps its accounts. The survey is considered a one-off survey, although for accurate NAs, such a survey should be conducted at least every five years to enable regular updating of the ratios, etc., needed to adjust the ongoing indicator data (mainly VAGST) to NA concepts. The questionnaire will be drafted by FSD, largely following the previous BAS, updated to current accounting terminology where necessary. The questionnaire will be pilot tested, using some accountants who are likely to complete a number of the forms on behalf of their business clients, and a small sample of businesses. Consultations will also include Ministry of Finance, Ministry of Commerce, Industry and Labour, Central Bank of Samoa (CBS), Samoa Tourism Authority, Chamber of Commerce, and other business associations (hotels, retail, etc.).
The questionnaire will collect a number of items of information about the business ownership, locations at which it operates and each establishment for which detailed data can be provided (in the case of complex businesses), contact information, and other general information needed to clearly identify each unique business. The main body of the questionnaire will collect data on income and expenses, to enable value added to be derived accurately. The questionnaire will also collect data on capital formation, and will contain supplementary pages for relevant industries to collect volume of production data for selected commodities and to collect information to enable an estimate of value added generated by key tourism activities.
The principal user of the data will be FSD which will incorporate the survey data into benchmarks for the NA, mainly on the current published production measure of GDP. The information on capital formation and other relevant data will also be incorporated into the experimental estimates of expenditure on GDP. The supplementary data on volumes of production will be used by FSD to redevelop the industrial production index which has recently been transferred under the SBS from the CBS. The general information about the business ownership, etc., will be used to update the Business Register.
Outputs will be produced in a number of formats, including a printed report containing descriptive information of the survey design, data tables, and analysis of the results. The report will also be made available on the SBS website in “.pdf” format, and the tables will be available on the SBS website in excel tables. Data by region may also be produced, although at a higher level of aggregation than the national data. All data will be fully confidentialised, to protect the anonymity of all respondents. Consideration may also be made to provide, for selected analytical users, confidentialised unit record files (CURFs).
A high level of accuracy is needed because the principal purpose of the survey is to develop revised benchmarks for the NA. The initial plan was that the survey will be conducted as a stratified sample survey, with full enumeration of large establishments and a sample of the remainder.
v01: This is the first version of the documentation. Basic raw data, obtained from data entry.
The scope of the 2009 BAS is all employing businesses in the private sector other than those involved in agricultural activities.
Included are:
· Non-governmental organizations (NGOs, not-for profit organizations, etc.);
· Government Public Bodies
Excluded are:
· Non-employing units (e.g., market sellers);
· Government ministries, constitutional offices and those public bodies involved in public administration and included in the Central Government Budget Sector;
· Agricultural units (unless large scale/commercial - if the Agriculture census only covers household activities);
· “Non-resident” bodies such as international agencies, diplomatic missions (e.g., high commissions and embassies, UNDP, FAO, WHO);
The survey coverage is of all businesses in scope as defined above. Statistical units relevant to the survey are the enterprise and the establishment. The enterprise is an institutional unit and generally corresponds to legal entities such as a company, cooperative, partnership or sole proprietorship. The establishment is an institutional unit or part of an institutional unit, which engages in one, or predominantly one, type of economic activity. Sufficient data must be available to derive or meaningfully estimate value added in order to recognize an establishment. The main statistical unit from which data will be collected in the survey is the establishment. For most businesses there will be a one-to-one relationship between the enterprise and the establishment, i.e., simple enterprises will comprise only one establishment. The purpose of collecting data from establishments (rather than from enterprises) is to enable the most accurate industry estimates of value added possible.
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
The Superstore Sales Data dataset, available in an Excel format as "Superstore.xlsx," is a comprehensive collection of sales and customer-related information from a retail superstore. This dataset comprises* three distinct tables*, each providing specific insights into the store's operations and customer interactions.
Facebook
TwitterDetailed chemical, station (source and documentation, sample locations), and texture data are provided for sediments in Long Island Sound and New York Bight. The sediment data are provided as spreadsheet (Microsoft Excel) and tab-delimited files on the web site. These data are in the form of sections within the web site, which provides extensive supporting data, interpretive diagrams, and discussion. The data were obtained from a variety of sources: published reports, theses, unpublished data from agencies and organizations in the Long Island Sound and New York Bight area and Federal agencies such as the U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, NOAA, National Status and Trends Benthic Surveillance program, and the U.S. Geological Survey.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
File List ECO101_sample_data.xls ECO101_sample_data.txt SAS_Code.rtf
Please note that ESA cannot guarantee the availability of Excel files in perpetuity as it is proprietary software. Thus, the data file here is also supplied as a tab-delimited ASCII file, and the other Excel workbook sheets are provided below in the description section. Description -- TABLE: Please see in attached file. --
Facebook
TwitterThis dataset contains X-ray diffraction (XRD) data taken from wells and outcrops as part of the DOE GTO supported Utah FORGE project located near Roosevelt Hot Springs. It contains an Excel spreadsheet with the XRD data, a text file with sample site names, types, and locations in UTM, Zone 12, NAD83 coordinates, and a GIS shapefile of the sample locations with attributes. This is an Excel spreadsheet containing X-ray diffraction data from the Utah FORGE project. Please download the accompanying text file and/or GIS shapefile for location/sample site information.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1.Introduction
Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.
One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.
This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.
Please cite the following papers when using this dataset:
I. Siniosoglou, K. Xouveroudis, V. Argyriou, T. Lagkas, S. K. Goudos, K. E. Psannis and P. Sarigiannidis, "Evaluating the Effect of Volatile Federated Timeseries on Modern DNNs: Attention over Long/Short Memory," in the 12th International Conference on Circuits and Systems Technologies (MOCAST 2023), April 2023, Accepted
The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.
3.1 Data Collection
The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.
The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.
Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.
It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.
The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).
File
Period
Number of Samples (days)
product 1 2020.xlsx
01/01/2020–31/12/2020
363
product 1 2021.xlsx
01/01/2021–31/12/2021
364
product 1 2022.xlsx
01/01/2022–31/12/2022
365
product 2 2020.xlsx
01/01/2020–31/12/2020
363
product 2 2021.xlsx
01/01/2021–31/12/2021
364
product 2 2022.xlsx
01/01/2022–31/12/2022
365
product 3 2020.xlsx
01/01/2020–31/12/2020
363
product 3 2021.xlsx
01/01/2021–31/12/2021
364
product 3 2022.xlsx
01/01/2022–31/12/2022
365
product 4 2020.xlsx
01/01/2020–31/12/2020
363
product 4 2021.xlsx
01/01/2021–31/12/2021
364
product 4 2022.xlsx
01/01/2022–31/12/2022
364
product 5 2020.xlsx
01/01/2020–31/12/2020
363
product 5 2021.xlsx
01/01/2021–31/12/2021
364
product 5 2022.xlsx
01/01/2022–31/12/2022
365
product 6 2020.xlsx
01/01/2020–31/12/2020
362
product 6 2021.xlsx
01/01/2021–31/12/2021
364
product 6 2022.xlsx
01/01/2022–31/12/2022
365
product 7 2020.xlsx
01/01/2020–31/12/2020
362
product 7 2021.xlsx
01/01/2021–31/12/2021
364
product 7 2022.xlsx
01/01/2022–31/12/2022
365
3.2 Dataset Overview
The following table enumerates and explains the features included across all of the included files.
Feature
Description
Unit
Day
day of the month
-
Month
Month
-
Year
Year
-
daily_unit_sales
Daily sales - the amount of products, measured in units, that during that specific day were sold
units
previous_year_daily_unit_sales
Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year
units
percentage_difference_daily_unit_sales
The percentage difference between the two above values
%
daily_unit_sales_kg
The amount of products, measured in kilograms, that during that specific day were sold
kg
previous_year_daily_unit_sales_kg
Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year
kg
percentage_difference_daily_unit_sales_kg
The percentage difference between the two above values
kg
daily_unit_returns_kg
The percentage of the products that were shipped to selling points and were returned
%
previous_year_daily_unit_returns_kg
The percentage of the products that were shipped to selling points and were returned the previous year
%
points_of_distribution
The amount of sales representatives through which the product was sold to the market for this year
previous_year_points_of_distribution
The amount of sales representatives through which the product was sold to the market for the same day for the previous year
Table 1 – Dataset Feature Description
4.1 Dataset Structure
The provided dataset has the following structure:
Where:
Name
Type
Property
Readme.docx
Report
A File that contains the documentation of the Dataset.
product X
Folder
A folder containing the data of a product X.
product X YYYY.xlsx
Data file
An excel file containing the sales data of product X for year YYYY.
Table 2 - Dataset File Description
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 957406 (TERMINET).
References
[1] MEVGAL is a Greek dairy production company
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a compilation of logs and data from Well 52-21 in the Roosevelt Hot Springs area in Utah. This well is also in the Utah FORGE study area. The file is in a compressed .zip format and there is a data inventory table (Excel spreadsheet) in the root folder that is a guide to the data that is accessible in subfolders.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excel Table providing the collected data, together with a Excel-based tool to extract specific parts of the data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Files contain 5000 samples of AWARE characterization factors, as well as sampled independent data used in their calculations and selected intermediate results.
AWARE is a consensus-based method development to assess water use in LCA. It was developed by the WULCA UNEP/SETAC working group. Its characterization factors represent the relative Available WAter REmaining per area in a watershed, after the demand of humans and aquatic ecosystems has been met. It assesses the potential of water deprivation, to either humans or ecosystems, building on the assumption that the less water remaining available per area, the more likely another user will be deprived.
The code used to generate the samples can be found here: https://github.com/PascalLesage/aware_cf_calculator/
Samples were updated from v1.0 in 2020 to include model uncertainty associated with the choice of WaterGap as the global hydrological model (GHM).
The following datasets are supplied:
1) AWARE_characterization_factor_samples.zip
Actual characterization factors resulting from the Monte Carlo Simulation. Contains 4 zip files:
* monthly_cf.zip: contains 116,484 arrays of 5000 monthly characterization factor samples for each of 9707 watershed and for each month, in csv format. Names are cf_.csv, where is the watershed id and is the first three letters of the month ('jan', 'feb', etc.).
* average_agri_cf.zip: contains 9707 arrays of 5000 annual average, agricultural use, characterization factor samples for each watershed, in csv format. Names are cf_average_agri_.csv.
* average_non_agri_cf.zip: contains 9707 arrays of 5000 annual average, non-agricultural use, characterization factor samples for each watershed, in csv format. Names are cf_average_non_agri_.csv.
* average_unknown_cf.zip: contains 9707 arrays of 5000 annual average, unspecified use, characterization factor samples for each watershed, in csv format. Names are cf_average_unknown_.csv..
2) AWARE_base_data.xlsx
Excel file with the deterministic data, per watershed and per month, for each of the independent variables used in the calculation of AWARE characterization factors. Specifically, it includes:
Monthly irrigation
Description: irrigation water, per month, per basin
Unit: m3/month
Location in Excel doc: Irrigation
File name once imported: irrigation.pickle
table shape: (11050, 12)
Non-irrigation hwc: electricity, domestic, livestock, manufacturing
Description: non-irrigation uses of water
Unit: m3/year
Location in Excel doc: hwc_non_irrigation
File name once imported: electricity.pickle, domestic.pickle,
livestock.pickle, manufacturing.pickle
table shape: 3 x (11050,)
avail_delta
Description: Difference between "pristine" natural availability
reported in PastorXNatAvail and natural availability calculated
from "Actual availability as received from WaterGap - after
human consumption" (Avail!W:AH) plus HWC.
This should be added to calculated water availability to
get the water availability used for the calculation of EWR
Unit: m3/month
Location in Excel doc: avail_delta
File name once imported: avail_delta.pickle
table shape: (11050, 12)
avail_net
Description: Actual availability as received from WaterGap - after human consumption
Unit: m3/month
Location in Excel doc: avail_net
File name once imported: avail_net.pickle
table shape: (11050, 12)
pastor
Description: fraction of PRISTINE water availability that should be reserved for environment
Unit: unitless
Location in Excel doc: pastor
File name once imported: pastor.pickle
table shape: (11050, 12)
area
Description: area
Unit: m2
Location in Excel doc: area
File name once imported: area.pickle
table shape: (11050,)
It also includes:
information (k values) on the distributions used for each variable (uncertainty tab)
information (k values) on the model uncertainty (model uncertainty tab)
two filters used to exclude watersheds that are either in Greenland (polar filter) or without data from the Pastor et al. (2014) method (122 cells), representing small coastal cells with no direct overlap (pastor filter). (filters tab)
3) independent_variable_samples.zip
Samples for each of the independent variables used in the calculation of characterization factors. Only random variables are contained. For all watershed or watershed-months without samples, the Monte Carlo simulation used the deterministic values found in the AWARE_base_data.xlsx file.
The files are in csv format. The first column contains the watershed id (BAS34S_ID) if the data is annual or the (BAS34S_ID, month) for data with a monthly resolution. the other 5000 columns contain the sampled data.
The names of the files are .
4) intermediate_variables.zip
Contains results of intermediate calculations, used in the calculation of characterization factors. The zip file contains 3 zip files:
* AMD_world_over_AMD_i.zip: contains 116,484 arrays (for each watershed-month) of 5000 calculated values of the ratio between the AMD (Availability Minus Demand) for the watershed-month and AMD_glo, the world weighted AMD average. Format is csv.
* AMD_world.zip: contains one array of 5000 calculated values of the world average AMD. Format is csv.
* HWC.zip: contains 116,484 arrays (for each watershed-month) of 5000 calculated values of the total Human Water Consumption. Format is csv.
5) watershedBAS34S_ID.zip
Contains the GIS files to link the watershed ids (BAS34S_ID) to actual spatial data.
Facebook
TwitterThe term ‘till’ refers to the underlying parent material of the zone of biologic soil. To date, more than 15,000 till samples have been collected from shovel test pits across New Brunswick and analyzed for a wide suite of chemical elements. These data are of importance for understanding mineral potential but also have applications in forestry, agriculture, and land use decision making.This layer can be used in conjunction with TillSampleSites1986_2014, TillSampleSites, and TillGrainSize, which will provide additional information about the sample location, and the sample properties.Results that are below detection limit have been given a value that is half of the detection limit. It is important to use the DETECTION_LIMIT field in conjunction with the VALUE field to identify results that are below the detection limit.Till geochemical samples were systematically collected throughout New Brunswick. Samples collected before the year 2000 were located using compass and pacing. Samples collected from 2000 to present were located using handheld GPS or GPS-enable tablets. A soil (till) sample was collected at each site. Samples were processed (dried and sieved) at New Brunswick Geological Survey facilities in Fredericton and then sent to commercial analytical labs for geochemical analysis. The resulting data were compiled in Microsoft Excel spreadsheets and in an Oracle database.To determine the date that a sample was collected, please refer to the TillSampleSites1986_2014 and TillSampleSites feature classes.
Facebook
TwitterOn 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/68f0f810e8e4040c38a3cf96/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 143 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/68f0ffd528f6872f1663ef77/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.12 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/68f20a3e06e6515f7914c71c/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 197 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/68f20a552f0fc56403a3cfef/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 443 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/68f100492f0fc56403a3cf94/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables
<span class="gem
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.
Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.
Facebook
TwitterList of the previous tables relating to returns from June 2023 onwards. Most tables published on returns as part of the Immigration system statistics release contain a time series of data, so are not available here. Previous tables are available here if they contain data that would be otherwise lost when publishing a new release, for example tables without a timeseries.
For summary tables published prior to June 2023, please see previous editions of the Immigration system statistics quarterly release.
https://assets.publishing.service.gov.uk/media/69147266b49cc44345161673/returns-summary-jun-2025-tables.ods">Returns summary tables, year ending June 2025 (ODS, 53.5 KB)
https://assets.publishing.service.gov.uk/media/68a5d0069dc94e840696a3d4/returns-summary-mar-2025-tables.xlsx">Returns summary tables, year ending March 2025 (MS Excel Spreadsheet, 109 KB)
https://assets.publishing.service.gov.uk/media/681c6362155568d3da1d2a0d/returns-summary-dec-2024-tables.ods">Returns summary tables, year ending December 2024 (ODS, 58 KB)
https://assets.publishing.service.gov.uk/media/67bf0e42b0bb6528ee866af6/returns-summary-sep-24-tables.ods">Returns summary tables, year ending September 2024 (ODS, 56 KB)
https://assets.publishing.service.gov.uk/media/6731db642cccb48648badad5/returns-summary-jun-24-tables.ods">Returns summary tables, year ending June 2024 (ODS, 55.9 KB)
https://assets.publishing.service.gov.uk/media/66bef1cc3cc0741b92314729/returns-summary-mar-24-tables.ods">Returns summary tables, year ending March 2024 (ODS, 46.8 KB)
https://assets.publishing.service.gov.uk/media/664608fd993111924d9d3689/returns-summary-dec-2023-tables.ods">Returns summary tables, year ending December 2023 (ODS, 45.7 KB)
https://assets.publishing.service.gov.uk/media/65ddd899f1cab3001afc4786/returns-summary-sep-2023-tables.ods">Returns summary tables, year ending September 2023 (ODS, 46.3 KB)
https://assets.publishing.service.gov.uk/media/655bb0cdd03a8d001207fd1a/returns-summary-jun-2023-tables.ods">Returns summary tables, year ending June 2023 (ODS, 46.2 KB)
Immigration system statistics data tables
"https://www.gov.uk/government/collections/immigration-statistics-quarterly-release">Immigration system statistics quarterly re
Facebook
TwitterExcel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).