72 datasets found
  1. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  2. S

    Annual Retail Store Data, 2000 [Canada] [Excel]

    • dataverse.scholarsportal.info
    • borealisdata.ca
    pdf, xls
    Updated Nov 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scholars Portal Dataverse (2021). Annual Retail Store Data, 2000 [Canada] [Excel] [Dataset]. https://dataverse.scholarsportal.info/dataset.xhtml;jsessionid=1283d69ee2dd528c9011fe4a2fe3?persistentId=hdl%3A10864%2F11351&version=&q=&fileTypeGroupFacet=&fileAccess=&fileTag=%22Tables%22&fileSortField=&fileSortOrder=
    Explore at:
    xls(2165760), xls(29696), xls(2920448), pdf(76787), pdf(158404), xls(34816), xls(2754048), pdf(81084), pdf(71183), xls(34304), xls(625664), xls(2707968), xls(695808), pdf(70673), pdf(72585), xls(576512), xls(609792), xls(28672), pdf(60236), pdf(30338), pdf(87181), pdf(84140), pdf(92012), xls(610304), pdf(74439), xls(2471424), pdf(73788), xls(30208), pdf(74478), pdf(53645)Available download formats
    Dataset updated
    Nov 17, 2021
    Dataset provided by
    Scholars Portal Dataverse
    Area covered
    Canada, Canada
    Description

    The annual Retail store data CD-ROM is an easy-to-use tool for quickly discovering retail trade patterns and trends. The current product presents results from the 1999 and 2000 Annual Retail Store and Annual Retail Chain surveys. This product contains numerous cross-classified data tables using the North American Industry Classification System (NAICS). The data tables provide access to a wide range of financial variables, such as revenues, expenses, inventory, sales per square footage (chain stores only) and the number of stores. Most data tables contain detailed information on industry (as low as 5-digit NAICS codes), geography (Canada, provinces and territories) and store type (chains, independents, franchises). The electronic product also contains survey metadata, questionnaires, information on industry codes and definitions, and the list of retail chain store respondents.

  3. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  4. Scooter Sales - Excel Project

    • kaggle.com
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ann Truong (2023). Scooter Sales - Excel Project [Dataset]. https://www.kaggle.com/datasets/bvanntruong/scooter-sales-excel-project
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Kaggle
    Authors
    Ann Truong
    Description

    The link for the Excel project to download can be found on GitHub here. It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt=""> The link for the Tableau adjusted dashboard can be found here.

    A screenshot of the interactive Excel dashboard is also included below for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">

  5. Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  6. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  7. SPORTS_DATA_ANALYSIS_ON_EXCEL

    • kaggle.com
    zip
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nil kamal Saha (2024). SPORTS_DATA_ANALYSIS_ON_EXCEL [Dataset]. https://www.kaggle.com/datasets/nilkamalsaha/sports-data-analysis-on-excel
    Explore at:
    zip(1203633 bytes)Available download formats
    Dataset updated
    Dec 12, 2024
    Authors
    Nil kamal Saha
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    PROJECT OBJECTIVE

    We are a part of XYZ Co Pvt Ltd company who is in the business of organizing the sports events at international level. Countries nominate sportsmen from different departments and our team has been given the responsibility to systematize the membership roster and generate different reports as per business requirements.

    Questions (KPIs)

    TASK 1: STANDARDIZING THE DATASET

    • Populate the FULLNAME consisting of the following fields ONLY, in the prescribed format: PREFIX FIRSTNAME LASTNAME.{Note: All UPPERCASE)
    • Get the COUNTRY NAME to which these sportsmen belong to. Make use of LOCATION sheet to get the required data
    • Populate the LANGUAGE_!poken by the sportsmen. Make use of LOCTION sheet to get the required data
    • Generate the EMAIL ADDRESS for those members, who speak English, in the prescribed format :lastname.firstnamel@xyz .org {Note: All lowercase) and for all other members, format should be lastname.firstname@xyz.com (Note: All lowercase)
    • Populate the SPORT LOCATION of the sport played by each player. Make use of SPORT sheet to get the required data

    TASK 2: DATA FORMATING

    • Display MEMBER IDas always 3 digit number {Note: 001,002 ...,D2D,..etc)
    • Format the BIRTHDATE as dd mmm'yyyy (Prescribed format example: 09 May' 1986)
    • Display the units for the WEIGHT column (Prescribed format example: 80 kg)
    • Format the SALARY to show the data In thousands. If SALARY is less than 100,000 then display data with 2 decimal places else display data with one decimal place. In both cases units should be thousands (k) e.g. 87670 -> 87.67 k and 12 250 -> 123.2 k

    TASK 3: SUMMARIZE DATA - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1) • Create a PIVOT table in the worksheet ANALYSIS, starting at cell B3,with the following details:

    • In COLUMNS; Group : GENDER.
    • In ROWS; Group : COUNTRY (Note: use COUNTRY NAMES).
    • In VALUES; calculate the count of candidates from each COUNTRY and GENDER type, Remove GRAND TOTALs.

    TASK 4: SUMMARIZE DATA - EXCEL FUNCTIONS (Use SPORTSMEN worksheet after attempting TASK 1)

    • Create a SUMMARY table in the worksheet ANALYSIS,starting at cell G4, with the following details:

    • Starting from range RANGE H4; get the distinct GENDER. Use remove duplicates option and transpose the data.
    • Starting from range RANGE GS; get the distinct COUNTRY (Note: use COUNTRY NAMES).
    • In the cross table,get the count of candidates from each COUNTRY and GENDER type.

    TASK 5: GENERATE REPORT - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1)

    • Create a PIVOT table report in the worksheet REPORT, starting at cell A3, with the following information:

    • Change the report layout to TABULAR form.
    • Remove expand and collapse buttons.
    • Remove GRAND TOTALs.
    • Allow user to filter the data by SPORT LOCATION.

    Process

    • Verify data for any missing values and anomalies, and sort out the same.
    • Made sure data is consistent and clean with respect to data type, data format and values used.
    • Created pivot tables according to the questions asked.
  8. P

    Samoa Business Activity Survey 2009

    • pacificdata.org
    pdf
    Updated Jul 2, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ['Samoa Bureau of Statistics'] (2019). Samoa Business Activity Survey 2009 [Dataset]. https://pacificdata.org/data/dataset/groups/spc_wsm_2009_bas_v01_m
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 2, 2019
    Dataset provided by
    Samoa Bureau of Statistics
    Time period covered
    Jan 1, 2009 - Dec 31, 2009
    Description

    The intention is to collect data for the calendar year 2009 (or the nearest year for which each business keeps its accounts. The survey is considered a one-off survey, although for accurate NAs, such a survey should be conducted at least every five years to enable regular updating of the ratios, etc., needed to adjust the ongoing indicator data (mainly VAGST) to NA concepts. The questionnaire will be drafted by FSD, largely following the previous BAS, updated to current accounting terminology where necessary. The questionnaire will be pilot tested, using some accountants who are likely to complete a number of the forms on behalf of their business clients, and a small sample of businesses. Consultations will also include Ministry of Finance, Ministry of Commerce, Industry and Labour, Central Bank of Samoa (CBS), Samoa Tourism Authority, Chamber of Commerce, and other business associations (hotels, retail, etc.).

    The questionnaire will collect a number of items of information about the business ownership, locations at which it operates and each establishment for which detailed data can be provided (in the case of complex businesses), contact information, and other general information needed to clearly identify each unique business. The main body of the questionnaire will collect data on income and expenses, to enable value added to be derived accurately. The questionnaire will also collect data on capital formation, and will contain supplementary pages for relevant industries to collect volume of production data for selected commodities and to collect information to enable an estimate of value added generated by key tourism activities.

    The principal user of the data will be FSD which will incorporate the survey data into benchmarks for the NA, mainly on the current published production measure of GDP. The information on capital formation and other relevant data will also be incorporated into the experimental estimates of expenditure on GDP. The supplementary data on volumes of production will be used by FSD to redevelop the industrial production index which has recently been transferred under the SBS from the CBS. The general information about the business ownership, etc., will be used to update the Business Register.

    Outputs will be produced in a number of formats, including a printed report containing descriptive information of the survey design, data tables, and analysis of the results. The report will also be made available on the SBS website in “.pdf” format, and the tables will be available on the SBS website in excel tables. Data by region may also be produced, although at a higher level of aggregation than the national data. All data will be fully confidentialised, to protect the anonymity of all respondents. Consideration may also be made to provide, for selected analytical users, confidentialised unit record files (CURFs).

    A high level of accuracy is needed because the principal purpose of the survey is to develop revised benchmarks for the NA. The initial plan was that the survey will be conducted as a stratified sample survey, with full enumeration of large establishments and a sample of the remainder.

    v01: This is the first version of the documentation. Basic raw data, obtained from data entry.

    The scope of the 2009 BAS is all employing businesses in the private sector other than those involved in agricultural activities.

    Included are:
    · Non-governmental organizations (NGOs, not-for profit organizations, etc.);
    · Government Public Bodies

    Excluded are:
    · Non-employing units (e.g., market sellers);
    · Government ministries, constitutional offices and those public bodies involved in public administration and included in the Central Government Budget Sector;
    · Agricultural units (unless large scale/commercial - if the Agriculture census only covers household activities);
    · “Non-resident” bodies such as international agencies, diplomatic missions (e.g., high commissions and embassies, UNDP, FAO, WHO);

    The survey coverage is of all businesses in scope as defined above. Statistical units relevant to the survey are the enterprise and the establishment. The enterprise is an institutional unit and generally corresponds to legal entities such as a company, cooperative, partnership or sole proprietorship. The establishment is an institutional unit or part of an institutional unit, which engages in one, or predominantly one, type of economic activity. Sufficient data must be available to derive or meaningfully estimate value added in order to recognize an establishment. The main statistical unit from which data will be collected in the survey is the establishment. For most businesses there will be a one-to-one relationship between the enterprise and the establishment, i.e., simple enterprises will comprise only one establishment. The purpose of collecting data from establishments (rather than from enterprises) is to enable the most accurate industry estimates of value added possible.

    • Collection start: 2009
    • Collection end: 2009
  9. Superstore Dataset

    • kaggle.com
    zip
    Updated Sep 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivam Amrutkar (2023). Superstore Dataset [Dataset]. https://www.kaggle.com/datasets/yesshivam007/superstore-dataset
    Explore at:
    zip(2119716 bytes)Available download formats
    Dataset updated
    Sep 25, 2023
    Authors
    Shivam Amrutkar
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    The Superstore Sales Data dataset, available in an Excel format as "Superstore.xlsx," is a comprehensive collection of sales and customer-related information from a retail superstore. This dataset comprises* three distinct tables*, each providing specific insights into the store's operations and customer interactions.

  10. d

    Data tables for the Long Island Sound and New York Bight database

    • catalog.data.gov
    • data.usgs.gov
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Data tables for the Long Island Sound and New York Bight database [Dataset]. https://catalog.data.gov/dataset/data-tables-for-the-long-island-sound-and-new-york-bight-database
    Explore at:
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Long Island, New York/New Jersey Bight, Long Island Sound
    Description

    Detailed chemical, station (source and documentation, sample locations), and texture data are provided for sediments in Long Island Sound and New York Bight. The sediment data are provided as spreadsheet (Microsoft Excel) and tab-delimited files on the web site. These data are in the form of sections within the web site, which provides extensive supporting data, interpretive diagrams, and discussion. The data were obtained from a variety of sources: published reports, theses, unpublished data from agencies and organizations in the Long Island Sound and New York Bight area and Federal agencies such as the U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, NOAA, National Status and Trends Benthic Surveillance program, and the U.S. Geological Survey.

  11. f

    Supplement 1. Sample data, metadata, and SAS code.

    • wiley.figshare.com
    html
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Everett Weber (2023). Supplement 1. Sample data, metadata, and SAS code. [Dataset]. http://doi.org/10.6084/m9.figshare.3521543.v1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Wiley
    Authors
    Everett Weber
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    File List ECO101_sample_data.xls ECO101_sample_data.txt SAS_Code.rtf

    Please note that ESA cannot guarantee the availability of Excel files in perpetuity as it is proprietary software. Thus, the data file here is also supplied as a tab-delimited ASCII file, and the other Excel workbook sheets are provided below in the description section. Description -- TABLE: Please see in attached file. --

  12. w

    Roosevelt Hot Springs X-Ray Diffraction Data Master FORGE XRD data...

    • data.wu.ac.at
    Updated Mar 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HarvestMaster (2018). Roosevelt Hot Springs X-Ray Diffraction Data Master FORGE XRD data table.xlsx [Dataset]. https://data.wu.ac.at/schema/geothermaldata_org/ZWIwM2ExMjEtMmQ1Zi00NTEyLTg4MTctMTdkZGVlZWZiMDFi
    Explore at:
    Dataset updated
    Mar 6, 2018
    Dataset provided by
    HarvestMaster
    Area covered
    f19808dbfd9334cf7c59e8ef933dfc01c97ce545
    Description

    This dataset contains X-ray diffraction (XRD) data taken from wells and outcrops as part of the DOE GTO supported Utah FORGE project located near Roosevelt Hot Springs. It contains an Excel spreadsheet with the XRD data, a text file with sample site names, types, and locations in UTM, Zone 12, NAD83 coordinates, and a GIS shapefile of the sample locations with attributes. This is an Excel spreadsheet containing X-ray diffraction data from the Utah FORGE project. Please download the accompanying text file and/or GIS shapefile for location/sample site information.

  13. Z

    Dairy Supply Chain Sales Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dimitris Iatropoulos; Konstantinos Georgakidis; Ilias Siniosoglou; Christos Chaschatzis; Anna Triantafyllou; Athanasios Liatifis; Dimitrios Pliatsios; Thomas Lagkas; Vasileios Argyriou; Panagiotis Sarigiannidis (2024). Dairy Supply Chain Sales Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7853252
    Explore at:
    Dataset updated
    Jul 12, 2024
    Authors
    Dimitris Iatropoulos; Konstantinos Georgakidis; Ilias Siniosoglou; Christos Chaschatzis; Anna Triantafyllou; Athanasios Liatifis; Dimitrios Pliatsios; Thomas Lagkas; Vasileios Argyriou; Panagiotis Sarigiannidis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1.Introduction

    Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.

    One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.

    This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.

    1. Citation

    Please cite the following papers when using this dataset:

    I. Siniosoglou, K. Xouveroudis, V. Argyriou, T. Lagkas, S. K. Goudos, K. E. Psannis and P. Sarigiannidis, "Evaluating the Effect of Volatile Federated Timeseries on Modern DNNs: Attention over Long/Short Memory," in the 12th International Conference on Circuits and Systems Technologies (MOCAST 2023), April 2023, Accepted

    1. Dataset Modalities

    The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.

    3.1 Data Collection

    The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.

    The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.

    Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.

    It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.

    The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).

    File

    Period

    Number of Samples (days)

    product 1 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 1 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 1 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 2 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 2 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 2 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 3 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 3 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 3 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 4 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 4 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 4 2022.xlsx

    01/01/2022–31/12/2022

    364

    product 5 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 5 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 5 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 6 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 6 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 6 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 7 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 7 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 7 2022.xlsx

    01/01/2022–31/12/2022

    365

    3.2 Dataset Overview

    The following table enumerates and explains the features included across all of the included files.

    Feature

    Description

    Unit

    Day

    day of the month

    -

    Month

    Month

    -

    Year

    Year

    -

    daily_unit_sales

    Daily sales - the amount of products, measured in units, that during that specific day were sold

    units

    previous_year_daily_unit_sales

    Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year

    units

    percentage_difference_daily_unit_sales

    The percentage difference between the two above values

    %

    daily_unit_sales_kg

    The amount of products, measured in kilograms, that during that specific day were sold

    kg

    previous_year_daily_unit_sales_kg

    Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year

    kg

    percentage_difference_daily_unit_sales_kg

    The percentage difference between the two above values

    kg

    daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned

    %

    previous_year_daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned the previous year

    %

    points_of_distribution

    The amount of sales representatives through which the product was sold to the market for this year

    previous_year_points_of_distribution

    The amount of sales representatives through which the product was sold to the market for the same day for the previous year

    Table 1 – Dataset Feature Description

    1. Structure and Format

    4.1 Dataset Structure

    The provided dataset has the following structure:

    Where:

    Name

    Type

    Property

    Readme.docx

    Report

    A File that contains the documentation of the Dataset.

    product X

    Folder

    A folder containing the data of a product X.

    product X YYYY.xlsx

    Data file

    An excel file containing the sales data of product X for year YYYY.

    Table 2 - Dataset File Description

    1. Acknowledgement

    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 957406 (TERMINET).

    References

    [1] MEVGAL is a Greek dairy production company

  14. A

    Well 52-21 Logs and Data: Roosevelt Hot Spring Area, Utah (Utah FORGE)

    • data.amerigeoss.org
    • opendata.utah.gov
    • +1more
    application/unknown
    Updated Mar 3, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2016). Well 52-21 Logs and Data: Roosevelt Hot Spring Area, Utah (Utah FORGE) [Dataset]. https://data.amerigeoss.org/he/dataset/well-52-21-logs-and-data-roosevelt-hot-spring-area-utah-utah-forge
    Explore at:
    application/unknownAvailable download formats
    Dataset updated
    Mar 3, 2016
    Dataset provided by
    United States
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Utah
    Description

    This is a compilation of logs and data from Well 52-21 in the Roosevelt Hot Springs area in Utah. This well is also in the Utah FORGE study area. The file is in a compressed .zip format and there is a data inventory table (Excel spreadsheet) in the root folder that is a guide to the data that is accessible in subfolders.

  15. Excel Table providing the collected data, together with a Excel-based tool...

    • plos.figshare.com
    xlsx
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clara M Bögerl; Frederik B Laun; Armin M Nagel; Sebastian Bickelhaupt; Michael Uder; Jannis Hanspach (2025). Excel Table providing the collected data, together with a Excel-based tool to extract specific parts of the data. [Dataset]. http://doi.org/10.1371/journal.pone.0316611.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Clara M Bögerl; Frederik B Laun; Armin M Nagel; Sebastian Bickelhaupt; Michael Uder; Jannis Hanspach
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel Table providing the collected data, together with a Excel-based tool to extract specific parts of the data.

  16. Z

    Data from: AWARE characterization factor samples

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    • +1more
    Updated Dec 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lesage, Pascal; Boulay, Anne-Marie; Pfister, Stefan (2020). AWARE characterization factor samples [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3406507
    Explore at:
    Dataset updated
    Dec 26, 2020
    Dataset provided by
    IFU, ETH Zurich
    CIRAIG, Polytechnique Montreal
    Authors
    Lesage, Pascal; Boulay, Anne-Marie; Pfister, Stefan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Files contain 5000 samples of AWARE characterization factors, as well as sampled independent data used in their calculations and selected intermediate results.

    AWARE is a consensus-based method development to assess water use in LCA. It was developed by the WULCA UNEP/SETAC working group. Its characterization factors represent the relative Available WAter REmaining per area in a watershed, after the demand of humans and aquatic ecosystems has been met. It assesses the potential of water deprivation, to either humans or ecosystems, building on the assumption that the less water remaining available per area, the more likely another user will be deprived.

    The code used to generate the samples can be found here: https://github.com/PascalLesage/aware_cf_calculator/

    Samples were updated from v1.0 in 2020 to include model uncertainty associated with the choice of WaterGap as the global hydrological model (GHM).

    The following datasets are supplied:

    1) AWARE_characterization_factor_samples.zip

    Actual characterization factors resulting from the Monte Carlo Simulation. Contains 4 zip files:

    * monthly_cf.zip: contains 116,484 arrays of 5000 monthly characterization factor samples for each of 9707 watershed and for each month, in csv format. Names are cf_.csv, where is the watershed id and is the first three letters of the month ('jan', 'feb', etc.).
    
    
    * average_agri_cf.zip: contains 9707 arrays of 5000 annual average, agricultural use, characterization factor samples for each watershed, in csv format. Names are cf_average_agri_.csv.
    
    
    * average_non_agri_cf.zip: contains 9707 arrays of 5000 annual average, non-agricultural use, characterization factor samples for each watershed, in csv format. Names are cf_average_non_agri_.csv.
    
    
    * average_unknown_cf.zip: contains 9707 arrays of 5000 annual average, unspecified use, characterization factor samples for each watershed, in csv format. Names are cf_average_unknown_.csv..
    

    2) AWARE_base_data.xlsx

    Excel file with the deterministic data, per watershed and per month, for each of the independent variables used in the calculation of AWARE characterization factors. Specifically, it includes:

      Monthly irrigation
        Description: irrigation water, per month, per basin
        Unit: m3/month
        Location in Excel doc: Irrigation
        File name once imported: irrigation.pickle
        table shape: (11050, 12)
    
    
      Non-irrigation hwc: electricity, domestic, livestock, manufacturing
        Description: non-irrigation uses of water
        Unit: m3/year
        Location in Excel doc: hwc_non_irrigation
        File name once imported: electricity.pickle, domestic.pickle,
          livestock.pickle, manufacturing.pickle
        table shape: 3 x (11050,)
    
    
      avail_delta
        Description: Difference between "pristine" natural availability
          reported in PastorXNatAvail and natural availability calculated
          from "Actual availability as received from WaterGap - after
          human consumption" (Avail!W:AH) plus HWC.
          This should be added to calculated water availability to
          get the water availability used for the calculation of EWR
        Unit: m3/month
        Location in Excel doc: avail_delta
        File name once imported: avail_delta.pickle
        table shape: (11050, 12)
    
    
      avail_net
        Description: Actual availability as received from WaterGap - after human consumption
        Unit: m3/month
        Location in Excel doc: avail_net
        File name once imported: avail_net.pickle
        table shape: (11050, 12)
    
    
      pastor
        Description: fraction of PRISTINE water availability that should be reserved for environment
        Unit: unitless
        Location in Excel doc: pastor
        File name once imported: pastor.pickle
        table shape: (11050, 12)
    
    
      area
        Description: area
        Unit: m2
        Location in Excel doc: area
        File name once imported: area.pickle
        table shape: (11050,)
    

    It also includes:

    • information (k values) on the distributions used for each variable (uncertainty tab)

    • information (k values) on the model uncertainty (model uncertainty tab)

    • two filters used to exclude watersheds that are either in Greenland (polar filter) or without data from the Pastor et al. (2014) method (122 cells), representing small coastal cells with no direct overlap (pastor filter). (filters tab)

    3) independent_variable_samples.zip

    Samples for each of the independent variables used in the calculation of characterization factors. Only random variables are contained. For all watershed or watershed-months without samples, the Monte Carlo simulation used the deterministic values found in the AWARE_base_data.xlsx file.

    The files are in csv format. The first column contains the watershed id (BAS34S_ID) if the data is annual or the (BAS34S_ID, month) for data with a monthly resolution. the other 5000 columns contain the sampled data.

    The names of the files are .

    4) intermediate_variables.zip

    Contains results of intermediate calculations, used in the calculation of characterization factors. The zip file contains 3 zip files:

    * AMD_world_over_AMD_i.zip: contains 116,484 arrays (for each watershed-month) of 5000 calculated values of the ratio between the AMD (Availability Minus Demand) for the watershed-month and AMD_glo, the world weighted AMD average. Format is csv.
    * AMD_world.zip: contains one array of 5000 calculated values of the world average AMD. Format is csv.
    
    
    * HWC.zip: contains 116,484 arrays (for each watershed-month) of 5000 calculated values of the total Human Water Consumption. Format is csv.
    

    5) watershedBAS34S_ID.zip

    Contains the GIS files to link the watershed ids (BAS34S_ID) to actual spatial data.

  17. a

    Antimony

    • hub.arcgis.com
    Updated Apr 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NB Dept of Natural Resources (2023). Antimony [Dataset]. https://hub.arcgis.com/datasets/6c60be65f2e04554bdcca9c7c5e9c17e
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    NB Dept of Natural Resources
    Area covered
    Description

    The term ‘till’ refers to the underlying parent material of the zone of biologic soil. To date, more than 15,000 till samples have been collected from shovel test pits across New Brunswick and analyzed for a wide suite of chemical elements. These data are of importance for understanding mineral potential but also have applications in forestry, agriculture, and land use decision making.This layer can be used in conjunction with TillSampleSites1986_2014, TillSampleSites, and TillGrainSize, which will provide additional information about the sample location, and the sample properties.Results that are below detection limit have been given a value that is half of the detection limit. It is important to use the DETECTION_LIMIT field in conjunction with the VALUE field to identify results that are below the detection limit.Till geochemical samples were systematically collected throughout New Brunswick. Samples collected before the year 2000 were located using compass and pacing. Samples collected from 2000 to present were located using handheld GPS or GPS-enable tablets. A soil (till) sample was collected at each site. Samples were processed (dried and sieved) at New Brunswick Geological Survey facilities in Fredericton and then sent to commercial analytical labs for geochemical analysis. The resulting data were compiled in Microsoft Excel spreadsheets and in an Oracle database.To determine the date that a sample was collected, please refer to the TillSampleSites1986_2014 and TillSampleSites feature classes.

  18. w

    Fire statistics data tables

    • gov.uk
    • s3.amazonaws.com
    Updated Oct 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2025). Fire statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire-statistics-data-tables
    Explore at:
    Dataset updated
    Oct 23, 2025
    Dataset provided by
    GOV.UK
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.

    This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.

    MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.

    If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Fire statistics guidance
    Fire statistics incident level datasets

    Incidents attended

    https://assets.publishing.service.gov.uk/media/68f0f810e8e4040c38a3cf96/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 143 KB) Previous FIRE0101 tables

    https://assets.publishing.service.gov.uk/media/68f0ffd528f6872f1663ef77/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.12 MB) Previous FIRE0102 tables

    https://assets.publishing.service.gov.uk/media/68f20a3e06e6515f7914c71c/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 197 KB) Previous FIRE0103 tables

    https://assets.publishing.service.gov.uk/media/68f20a552f0fc56403a3cfef/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 443 KB) Previous FIRE0104 tables

    Dwelling fires attended

    https://assets.publishing.service.gov.uk/media/68f100492f0fc56403a3cf94/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables

    <span class="gem

  19. Orange dataset table

    • figshare.com
    xlsx
    Updated Mar 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rui Simões (2022). Orange dataset table [Dataset]. http://doi.org/10.6084/m9.figshare.19146410.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 4, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Rui Simões
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.

    Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.

  20. Returns summary: previous data tables

    • gov.uk
    Updated Nov 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2025). Returns summary: previous data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/returns-summary-previous-data-tables
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    List of the previous tables relating to returns from June 2023 onwards. Most tables published on returns as part of the Immigration system statistics release contain a time series of data, so are not available here. Previous tables are available here if they contain data that would be otherwise lost when publishing a new release, for example tables without a timeseries.

    For summary tables published prior to June 2023, please see previous editions of the Immigration system statistics quarterly release.

    Previous tables

    https://assets.publishing.service.gov.uk/media/69147266b49cc44345161673/returns-summary-jun-2025-tables.ods">Returns summary tables, year ending June 2025 (ODS, 53.5 KB)

    https://assets.publishing.service.gov.uk/media/68a5d0069dc94e840696a3d4/returns-summary-mar-2025-tables.xlsx">Returns summary tables, year ending March 2025 (MS Excel Spreadsheet, 109 KB)

    https://assets.publishing.service.gov.uk/media/681c6362155568d3da1d2a0d/returns-summary-dec-2024-tables.ods">Returns summary tables, year ending December 2024 (ODS, 58 KB)

    https://assets.publishing.service.gov.uk/media/67bf0e42b0bb6528ee866af6/returns-summary-sep-24-tables.ods">Returns summary tables, year ending September 2024 (ODS, 56 KB)

    https://assets.publishing.service.gov.uk/media/6731db642cccb48648badad5/returns-summary-jun-24-tables.ods">Returns summary tables, year ending June 2024 (ODS, 55.9 KB)

    https://assets.publishing.service.gov.uk/media/66bef1cc3cc0741b92314729/returns-summary-mar-24-tables.ods">Returns summary tables, year ending March 2024 (ODS, 46.8 KB)

    https://assets.publishing.service.gov.uk/media/664608fd993111924d9d3689/returns-summary-dec-2023-tables.ods">Returns summary tables, year ending December 2023 (ODS, 45.7 KB)

    https://assets.publishing.service.gov.uk/media/65ddd899f1cab3001afc4786/returns-summary-sep-2023-tables.ods">Returns summary tables, year ending September 2023 (ODS, 46.3 KB)

    https://assets.publishing.service.gov.uk/media/655bb0cdd03a8d001207fd1a/returns-summary-jun-2023-tables.ods">Returns summary tables, year ending June 2023 (ODS, 46.2 KB)

    Related content

    Immigration system statistics data tables

    "https://www.gov.uk/government/collections/immigration-statistics-quarterly-release">Immigration system statistics quarterly re

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
Organization logo

18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry.

Explore at:
Dataset updated
Aug 17, 2024
Dataset provided by
United States Environmental Protection Agencyhttp://www.epa.gov/
Description

Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

Search
Clear search
Close search
Google apps
Main menu