89 datasets found
  1. f

    UC_vs_US Statistic Analysis.xlsx

    • figshare.com
    xlsx
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

    Tagging scheme:
    Aligned (AL) - A concept is represented as a class in both models, either
    

    with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

    All the calculations and information provided in the following sheets
    

    originate from that raw data.

    Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
    

    including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

    Sheet 3 (Size-Ratio):
    

    The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

    Sheet 4 (Overall):
    

    Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

    For sheet 4 as well as for the following four sheets, diverging stacked bar
    

    charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

    Sheet 5 (By-Notation):
    

    Model correctness and model completeness is compared by notation - UC, US.

    Sheet 6 (By-Case):
    

    Model correctness and model completeness is compared by case - SIM, HOS, IFA.

    Sheet 7 (By-Process):
    

    Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

    Sheet 8 (By-Grade):
    

    Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

  2. Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  3. d

    Protected Areas Database of the United States (PAD-US) 3.0 Vector Analysis...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Protected Areas Database of the United States (PAD-US) 3.0 Vector Analysis and Summary Statistics [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-3-0-vector-analysis-and-summary-stati
    Explore at:
    Dataset updated
    Oct 22, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 3.0 Combined Fee, Designation, Easement feature class (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to remove overlaps, avoiding overestimation in protected area statistics and to support user needs. A Python scripted process ("PADUS3_0_CreateVectorAnalysisFileScript.zip") associated with this data release prioritized overlapping designations (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation status (e.g. GAP Status Code 1 over 2), public access values (in the order of Closed, Restricted, Open, Unknown), and geodatabase load order (records are deliberately organized in the PAD-US full inventory with fee owned lands loaded before overlapping management designations, and easements). The Vector Analysis File ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") associated item of PAD-US 3.0 Spatial Analysis and Statistics ( https://doi.org/10.5066/P9KLBB5D ) was clipped to the Census state boundary file to define the extent and serve as a common denominator for statistical summaries. Boundaries of interest to stakeholders (State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative) were incorporated into separate geodatabase feature classes to support various data summaries ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip") and Comma-separated Value (CSV) tables ("PADUS3_0SummaryStatistics_TabularData_CSV.zip") summarizing "PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip" are provided as an alternative format and enable users to explore and download summary statistics of interest (Comma-separated Table [CSV], Microsoft Excel Workbook [.XLSX], Portable Document Format [.PDF] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). In addition, a "flattened" version of the PAD-US 3.0 combined file without other extent boundaries ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") allow for other applications that require a representation of overall protection status without overlapping designation boundaries. The "PADUS3_0VectorAnalysis_State_Clip_CENSUS2020" feature class ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.gdb") is the source of the PAD-US 3.0 raster files (associated item of PAD-US 3.0 Spatial Analysis and Statistics, https://doi.org/10.5066/P9KLBB5D ). Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types represented in some manner, while work continues to maintain updates and improve data quality (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, changes in protected area status between versions of the PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://www.fgdc.gov/ngda-reports/NGDA_Datasets.html ), agencies are the best source of their lands data.

  4. q

    Exploring Marine Primary Productivity with Descriptive Statistics and...

    • qubeshub.org
    Updated Sep 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marina McLeod; Jennifer Olson; Wendy Houston (2021). Exploring Marine Primary Productivity with Descriptive Statistics and Graphing in Excel [Dataset]. http://doi.org/10.25334/9H0T-9M45
    Explore at:
    Dataset updated
    Sep 2, 2021
    Dataset provided by
    QUBES
    Authors
    Marina McLeod; Jennifer Olson; Wendy Houston
    Description

    In this activity, students use real water chemistry data and descriptive statistics in Excel to examine primary productivity in an urban estuary of the Salish Sea. They will consider how actual data do or do not support expected annual trends.

  5. f

    Microsoft Excel spreadsheet of model coefficient estimates and summary...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Nov 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lieberman, Daniel E.; Sibson, Benjamin E.; Harris, Alexandra R.; Yegian, Andrew K.; Ojiambo, Robert M.; Uwimana, Aimable; Nuhu, Assuman; Anderson, Dennis E.; Thomas, Alec (2024). Microsoft Excel spreadsheet of model coefficient estimates and summary statistics. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001413145
    Explore at:
    Dataset updated
    Nov 4, 2024
    Authors
    Lieberman, Daniel E.; Sibson, Benjamin E.; Harris, Alexandra R.; Yegian, Andrew K.; Ojiambo, Robert M.; Uwimana, Aimable; Nuhu, Assuman; Anderson, Dennis E.; Thomas, Alec
    Description

    Microsoft Excel spreadsheet of model coefficient estimates and summary statistics.

  6. Descriptive statistics and reliability tests.

    • plos.figshare.com
    xls
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charanjit Kaur; Pei P. Tan; Nurjannah Nurjannah; Ririn Yuniasih (2025). Descriptive statistics and reliability tests. [Dataset]. http://doi.org/10.1371/journal.pone.0312306.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 3, 2025
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Charanjit Kaur; Pei P. Tan; Nurjannah Nurjannah; Ririn Yuniasih
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data is becoming increasingly ubiquitous today, and data literacy has emerged an essential skill in the workplace. Therefore, it is necessary to equip high school students with data literacy skills in order to prepare them for further learning and future employment. In Indonesia, there is a growing shift towards integrating data literacy in the high school curriculum. As part of a pilot intervention project, academics from two leading Universities organised data literacy boot camps for high school students across various cities in Indonesia. The boot camps aimed at increasing participants’ awareness of the power of analytical and exploration skills, which in turn, would contribute to creating independent and data-literate students. This paper explores student participants’ self-perception of their data literacy as a result of the skills acquired from the boot camps. Qualitative and quantitative data were collected through student surveys and a focus group discussion, and were used to analyse student perception post-intervention. The findings indicate that students became more aware of the usefulness of data literacy and its application in future studies and work after participating in the boot camp. Of the materials delivered at the boot camps, students found the greatest benefit in learning basic statistical concepts and applying them through the use of Microsoft Excel as a tool for basic data analysis. These findings provide valuable policy recommendations that educators and policymakers can use as guidelines for effective data literacy teaching in high schools.

  7. f

    S1 Data -

    • datasetcatalog.nlm.nih.gov
    Updated Nov 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Opare-Lokko, Edwina Beryl Addo; Aweh, Benjamin; Kumbet, Sonny John; Damagum, Fatima Mohammed; Ephraim, Onyenwe Chibuike; Mensah-Bonsu, Magdalene; Oseni, Tijani Idris Ahmad; Namisango, Eve; Olawumi, AbdulGafar Lekan (2023). S1 Data - [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001085526
    Explore at:
    Dataset updated
    Nov 16, 2023
    Authors
    Opare-Lokko, Edwina Beryl Addo; Aweh, Benjamin; Kumbet, Sonny John; Damagum, Fatima Mohammed; Ephraim, Onyenwe Chibuike; Mensah-Bonsu, Magdalene; Oseni, Tijani Idris Ahmad; Namisango, Eve; Olawumi, AbdulGafar Lekan
    Description

    BackgroundMental health disorders among adolescents is on the rise globally. Patients seldom present to mental health physicians, for fear of stigmatization, and due to the dearth of mental health physicians. They are mostly picked during consultations with Family Physicians. This study seeks to identify the common mental health disorders seen by family Physicians in Family Medicine Clinics in Nigeria and Ghana.MethodsA descriptive cross-sectional study involving 302 Physicians practicing in Family Medicine Clinics in Nigeria and Ghana, who were randomly selected for the study. Data were collected using self-administered semi-structured questionnaire, and were entered into excel spreadsheet before analysing with IBM-SPSS version 22. Descriptive statistics using frequencies and percentages was used to describe variables.ResultsOf the 302 Physicians recruited for the study, only 233 completed the study, in which 168 (72.1%) practiced in Nigeria and 65 (27.9%) in Ghana. They were mostly in urban communities (77.3%) and tertiary health facilities (65.2%). Over 90% of Family Medicine practitioners attended to adolescents with mental health issues with over 70% of them seeing at least 2 adolescents with mental health issues every year. The burden of mental health disorder was 16% and the common mental health disorders seen were depression (59.2%), Bipolar Affective Disorder (55.8%), Epilepsy (51.9%) and Substance Abuse Disorder (44.2%).ConclusionFamily Physicians in Nigeria and Ghana attend to a good number of adolescents with mental health disorders in their clinics. There is the need for Family Physicians to have specialized training and retraining to be able to recognize and treat adolescent mental health disorders. This will help to reduce stigmatization and improve the management of the disease thus, reducing the burden.

  8. s

    Citation Trends for "An Excel program for calculating and plotting...

    • shibatadb.com
    Updated May 15, 1994
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yubetsu (1994). Citation Trends for "An Excel program for calculating and plotting receiver-operator characteristic (ROC) curves, histograms and descriptive statistics" [Dataset]. https://www.shibatadb.com/article/MVPHyofs
    Explore at:
    Dataset updated
    May 15, 1994
    Dataset authored and provided by
    Yubetsu
    License

    https://www.shibatadb.com/license/data/proprietary/v1.0/license.txthttps://www.shibatadb.com/license/data/proprietary/v1.0/license.txt

    Time period covered
    1995 - 2023
    Variables measured
    New Citations per Year
    Description

    Yearly citation counts for the publication titled "An Excel program for calculating and plotting receiver-operator characteristic (ROC) curves, histograms and descriptive statistics".

  9. Canaan Valley NWR forest inventory factory database used to generate...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Canaan Valley NWR forest inventory factory database used to generate statistics and summary Excel-based reports [Dataset]. https://catalog.data.gov/dataset/canaan-valley-nwr-forest-inventory-factory-database-used-to-generate-statistics-and-summar
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Description

    Canaan Valley NWR forest inventory factory database used to generate statistics and summary Excel-based reports

  10. d

    Excel Spreadsheet of the Descriptive Logs of Cores Collected in the Nauset...

    • catalog.data.gov
    • search.dataone.org
    • +3more
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Excel Spreadsheet of the Descriptive Logs of Cores Collected in the Nauset Marsh area in August, 2006 [Dataset]. https://catalog.data.gov/dataset/excel-spreadsheet-of-the-descriptive-logs-of-cores-collected-in-the-nauset-marsh-area-in-a
    Explore at:
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Nauset Marsh Trail
    Description

    In order to test hypotheses about groundwater flow under and into estuaries and the Atlantic Ocean, geophysical surveys, geophysical probing, submarine groundwater sampling, and sediment coring were conducted by U.S. Geological Survey (USGS) scientists at Cape Cod National Seashore (CCNS) from 2004 through 2006. Coastal resource managers at CCNS and elsewhere are concerned about nutrients that are entering coastal waters via submarine groundwater discharge, which are contributing to eutrophication and harmful algal blooms. The research carried out as part of the study described here was designed, in part, to help refine assumptions required by earlier versions of models about the nature of submarine groundwater flow and discharge at CCNS. This study was conducted in four phases, with a variety of field techniques and equipment employed in each phase. Phase 1 consisted of continuous resistivity profiling (CRP) surveys of the entire study area conducted in 2004. Phase 2 consisted of CRP ground-truthing via resistivity probe measurements and submarine groundwater sampling from hydraulically-drive piezometers using a barge in the Salt Pond/Nauset Marsh area in 2005. Phase 3 consisted of supplemental detailed CRP surveys in the Salt Pond/Nauset Marsh area in 2006. Finally, Phase 4 consisted of sediment coring and porewater extraction in the Salt Pond/Nauset Marsh area later in 2006 to supplement the 2005 sampling.

  11. Data from: Student Academic Performance Dataset

    • kaggle.com
    Updated Oct 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hackathon data (2025). Student Academic Performance Dataset [Dataset]. https://www.kaggle.com/datasets/aryancodes12fyds/student-academic-performance-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 6, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Hackathon data
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    📘 Description

    The Student Academic Performance Dataset contains detailed academic and lifestyle information of 250 students, created to analyze how various factors — such as study hours, sleep, attendance, stress, and social media usage — influence their overall academic outcomes and GPA.

    This dataset is synthetic but realistic, carefully generated to reflect believable academic patterns and relationships. It’s perfect for learning data analysis, statistics, and visualization using Excel, Python, or R.

    The data includes 12 attributes, primarily numerical, ensuring that it’s suitable for a wide range of analytical tasks — from basic descriptive statistics (mean, median, SD) to correlation and regression analysis.

    📊 Key Features

    🧮 250 rows and 12 columns

    💡 Mostly numerical — great for Excel-based statistical functions

    🔍 No missing values — ready for direct use

    📈 Balanced and realistic — ideal for clear visualizations and trend analysis

    🎯 Suitable for:

    Descriptive statistics

    Correlation & regression

    Data visualization projects

    Dashboard creation (Excel, Tableau, Power BI)

    💡 Possible Insights to Explore

    How do study hours impact GPA?

    Is there a relationship between stress levels and performance?

    Does social media usage reduce study efficiency?

    Do students with higher attendance achieve better grades?

    ⚙️ Data Generation Details

    Each record represents a unique student.

    GPA is calculated using a weighted formula based on midterm and final scores.

    Relationships are designed to be realistic — for example:

    Higher study hours → higher scores and GPA

    Higher stress → slightly lower sleep hours

    Excessive social media time → reduced academic performance

    ⚠️ Disclaimer

    This dataset is synthetically generated using statistical modeling techniques and does not contain any real student data. It is intended purely for educational, analytical, and research purposes.

  12. f

    Descriptive statistics of variables in the model.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jun 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wei, Xin; Zhong, Yaping; Wang, Tiantian (2024). Descriptive statistics of variables in the model. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001464794
    Explore at:
    Dataset updated
    Jun 25, 2024
    Authors
    Wei, Xin; Zhong, Yaping; Wang, Tiantian
    Description

    ObjectivesThe objective of this study was to examine the impact of athletes achieving excellence at different ages (excellent age) on their subsequent performance development. The aim was to deepen understanding of the interplay among talent, training, and athletes’ performance development. Additionally, the study aimed to provide insights for athletics coaches to better identify talent and devise more effective personalized long-term training plans.DesignThis was a cross-sectional study.MethodA hierarchical linear model was employed to analyze the correlation between excellent age and subsequent performance development in a cohort of 775 elite track and field athletes. This analysis was expanded upon by the application of a general linear regression model, which was used to explore the relationship between excellent age and peak age, peak performance, as well as the growth in performance during adulthood.ResultsAs athletes reached excellence at later ages, their peak performance exhibited a U-shaped pattern(p <0.001), initially decreasing and then rising. Simultaneously, their peak age became increasingly advanced(p <0.001), with a progressively larger performance improvement during adulthood(p <0.001). In various disciplines, excellent age is negatively correlated with peak performance for speed athletes(p = 0.025), exhibiting a U-shaped pattern for endurance athletes(p = 0.024), and showing no significant correlation for fast-power athletes(p = 0.916).ConclusionsAthletes who achieve excellence either early or later often show more remarkable future developments. However, there are significant distinctions in the age at which these athletes reach their peak performance and the pace of improvement leading up to it. Those who excel early may possess greater innate athletic talent, whereas those who excel later may exhibit superior training adaptability. Consequently, an athlete’s early performance can predict his/her future performance trajectory, offering support for individualized long-term training plans. In summary, the age at which athletes achieve excellence may bring different advantages to their future athletic performance and development. This implies that we should harness these differences to uncover each athlete’s maximum potential.

  13. q

    Measures of Center and Measures of Spread -Lesson (Biology Application)

    • qubeshub.org
    Updated Sep 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Divya Ajinth; Sheela Vemu; Irene Corriette (2025). Measures of Center and Measures of Spread -Lesson (Biology Application) [Dataset]. http://doi.org/10.25334/KQ62-HV25
    Explore at:
    Dataset updated
    Sep 8, 2025
    Dataset provided by
    QUBES
    Authors
    Divya Ajinth; Sheela Vemu; Irene Corriette
    Description

    This instructional activity introduces students to the application of statistical tools for analyzing biological data, with a focus on measures of center (mean, median, mode) and measures of spread (range, quartiles, standard deviation). Using real-world biological contexts. students learn how to summarize datasets, identify trends, and evaluate variability. The activity integrates the use of MS Excel and TI-84 Plus graphing calculators to calculate descriptive statistics and interpret results. By engaging with authentic biological data, students develop quantitative reasoning skills that enhance their ability to detect patterns, recognize variability, and draw meaningful conclusions about biological systems

  14. f

    Hook & drawing data

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rawlings, Bruce (2025). Hook & drawing data [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0002071628
    Explore at:
    Dataset updated
    Mar 18, 2025
    Authors
    Rawlings, Bruce
    Description

    Data on children's performance on the hook task when offered the opportunity to draw potential solutions beforehand. For each Excel datasheet, there is a readme sheet that provides a description of each variable.The Rmd file for hook_drawing_performance is associated with the Hook_drawing_data excel doc. This is largely descriptive statistics, including on on children's' overall success rates, first and second attempt success rates, and corresponding latency to succeed analysis.

  15. AHRQ Social Determinants of Health Database (Beta Version) - Archived

    • datalumos.org
    • openicpsr.org
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AHRQ (2025). AHRQ Social Determinants of Health Database (Beta Version) - Archived [Dataset]. http://doi.org/10.3886/E220327V2
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    Agency for Healthcare Research and Qualityhttp://www.ahrq.gov/
    Authors
    AHRQ
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This archived SDOH Database (beta version) is available for reference. The most recent version of the SDOH Database replaces the beta version and is available on the main page. To ensure consistency in variable names and construction, analyses should not combine data from the beta version and the updated database.Download DataThe SDOH Data Source Documentation (PDF, 1.5 MB) file contains information for researchers about the structure and contents of the database and descriptions of each data source used to populate the database.The Variable Codebook (XLSX, 494 KB) Excel file provides descriptive statistics for each SDOH variable by year.***Microdata: YesLevel of Analysis: Local - Tract, CountyVariables Present: Separate DocumentFile Layout: .xslxCodebook: Yes Methods: YesWeights (with appropriate documentation): YesPublications: NoAggregate Data: Yes

  16. Z

    Excel data collection template on descriptive political representation in...

    • data-staging.niaid.nih.gov
    • zenodo.org
    • +1more
    Updated Oct 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vintila, Daniela; Morales, Laura; Vincent-Mory, Claire (2024). Excel data collection template on descriptive political representation in national parliaments of the projects Pathways to Power and InclusiveParl adapted for the ActEU project [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_13859868
    Explore at:
    Dataset updated
    Oct 3, 2024
    Dataset provided by
    Consejo Superior de Investigaciones Científicas
    University of Liège
    Institut d'Etudes Politiques de Paris
    Authors
    Vintila, Daniela; Morales, Laura; Vincent-Mory, Claire
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This file contains the empty data collection template and variable and value labels to code biographical data on legislators for WP4 in the ActEU project. It is an abbreviated version of the codebooks produced by the Pathways to Power project and by the InclusiveParl project.

  17. d

    Data from: Cross-sectional study of Facebook addiction in a sample of...

    • search.dataone.org
    • data.niaid.nih.gov
    • +2more
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alok Atreya; Samata Nepal; Prakash Thapa (2025). Cross-sectional study of Facebook addiction in a sample of Nepalese population [Dataset]. http://doi.org/10.5061/dryad.83bk3j9pv
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Alok Atreya; Samata Nepal; Prakash Thapa
    Time period covered
    Oct 5, 2020
    Area covered
    Nepal
    Description

    Background: Facebook addiction is said to occur when an individual spends an excessive amount of time on Facebook, disrupting one’s daily activities and social life. The present study aimed to find out the level of Facebook addiction in the Nepalese context and briefly discuss the crimes associated with its unintended use. Methods: A descriptive cross-sectional study was conducted in the Department of Forensic Medicine of Lumbini Medical College. The study instrument was the Bergen Facebook Addiction Scale typed into a Google Form and sent randomly to Facebook contacts of the authors. The responses were downloaded in a Microsoft Excel spreadsheet and analyzed using Statistical Package for Social Sciences version 16. Results: The study consisted of 103 Nepalese participants, of which 54 (52.42%) were males and 49 females (47.58%). There were 11 participants (10.68%) who had more than one Facebook account. When different approaches were applied it was observed that 8.73% (n=9) to 39.80% (...

  18. Immigration statistics data tables, year ending December 2020

    • gov.uk
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2021). Immigration statistics data tables, year ending December 2020 [Dataset]. https://www.gov.uk/government/statistical-data-sets/immigration-statistics-data-tables-year-ending-december-2020
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    The Home Office has changed the format of the published data tables for a number of areas (asylum and resettlement, entry clearance visas, extensions, citizenship, returns, detention, and sponsorship). These now include summary tables, and more detailed datasets (available on a separate page, link below). A list of all available datasets on a given topic can be found in the ‘Contents’ sheet in the ‘summary’ tables. Information on where to find historic data in the ‘old’ format is in the ‘Notes’ page of the ‘summary’ tables.

    The Home Office intends to make these changes in other areas in the coming publications. If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.

    Related content

    Immigration statistics, year ending September 2020
    Immigration Statistics Quarterly Release
    Immigration Statistics User Guide
    Publishing detailed data tables in migration statistics
    Policy and legislative changes affecting migration to the UK: timeline
    Immigration statistics data archives

    Asylum and resettlement

    https://assets.publishing.service.gov.uk/media/602bab69e90e070562513e35/asylum-summary-dec-2020-tables.xlsx">Asylum and resettlement summary tables, year ending December 2020 (MS Excel Spreadsheet, 359 KB)

    Detailed asylum and resettlement datasets

    Sponsorship

    https://assets.publishing.service.gov.uk/media/602bab8fe90e070552b33515/sponsorship-summary-dec-2020-tables.xlsx">Sponsorship summary tables, year ending December 2020 (MS Excel Spreadsheet, 67.7 KB)

    Detailed sponsorship datasets

    Entry clearance visas granted outside the UK

    https://assets.publishing.service.gov.uk/media/602bf8708fa8f50384219401/visas-summary-dec-2020-tables.xlsx">Entry clearance visas summary tables, year ending December 2020 (MS Excel Spreadsheet, 70.3 KB)

    Detailed entry clearance visas datasets

    Passenger arrivals (admissions)

    https://assets.publishing.service.gov.uk/media/602bac148fa8f5037f5d849c/passenger-arrivals-admissions-summary-dec-2020-tables.xlsx">Passenger arrivals (admissions) summary tables, year ending December 2020 (MS Excel Spreadsheet, 70.6 KB)

    Detailed Passengers initially refused entry at port datasets

    Extensions

    https://assets.publishing.service.gov.uk/media/602bac3d8fa8f50383c41f7c/extentions-summary-dec-2020-tables.xlsx">Extensions summary tables, year ending December 2020 (MS Excel Spreadsheet, 41.5 KB)

    <a href="https://www.gov.uk/governmen

  19. d

    2.20 Employee Vertical Diversity (summary)

    • catalog.data.gov
    • open.tempe.gov
    • +8more
    Updated Nov 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). 2.20 Employee Vertical Diversity (summary) [Dataset]. https://catalog.data.gov/dataset/2-20-employee-vertical-diversity-summary-0c1c3
    Explore at:
    Dataset updated
    Nov 8, 2025
    Dataset provided by
    City of Tempe
    Description

    It is important to identify any barriers in recruitment, hiring, and employee retention practices that might discourage any segment of our population from applying for positions or continuing employment at the City of Tempe. This information will provide better awareness for outreach efforts and other strategies to attract, hire, and retain a diverse workforce.This page provides data for the Employee Vertical Diversity performance measure. The performance measure dashboard is available at 2.20 Employee Vertical Diversity. Additional InformationSource:PeopleSoft HCM, Maricopa County Labor Market Census DataContact: Lawrence LaVictoireContact E-Mail: lawrence_lavicotoire@tempe.govData Source Type: Excel, PDFPreparation Method: PeopleSoft query and PDF are moved to a pre-formatted Excel spreadsheet.Publish Frequency: Every six monthsPublish Method: ManualData Dictionary

  20. Market survey 2019 rawdata

    • figshare.com
    txt
    Updated May 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Markus Niederer (2019). Market survey 2019 rawdata [Dataset]. http://doi.org/10.6084/m9.figshare.8143031.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 17, 2019
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Markus Niederer
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Raw data and descriptive statistic data of the market survey performed with the Add-In XLSTAT 2009.1.02 is provided as Excel-file (CSV). The data include file name, sample name, area, calculated N2O amounts, test result and statistical values.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1

UC_vs_US Statistic Analysis.xlsx

Explore at:
xlsxAvailable download formats
Dataset updated
Jul 9, 2020
Dataset provided by
Utrecht University
Authors
F. (Fabiano) Dalpiaz
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either

with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

All the calculations and information provided in the following sheets

originate from that raw data.

Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,

including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

Sheet 3 (Size-Ratio):

The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

Sheet 4 (Overall):

Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

For sheet 4 as well as for the following four sheets, diverging stacked bar

charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

Sheet 5 (By-Notation):

Model correctness and model completeness is compared by notation - UC, US.

Sheet 6 (By-Case):

Model correctness and model completeness is compared by case - SIM, HOS, IFA.

Sheet 7 (By-Process):

Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

Sheet 8 (By-Grade):

Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

Search
Clear search
Close search
Google apps
Main menu