Facebook
TwitterDistribution of doses of a volatile organic compound from inhalation of one consumer product, other near -field sources, far-field sources, and aggregate (total) exposure. In this instance, far-field scenarios account for several orders of magnitude of less of the predicted dose compared to near-field scenarios. This dataset is associated with the following publication: Vallero, D. Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus. Sustainability. MDPI AG, Basel, SWITZERLAND, 8(12): 1216, (2016).
Facebook
TwitterExcel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Excel. The dataset can be utilized to understand the population distribution of Excel by age. For example, using this dataset, we can identify the largest age group in Excel.
Key observations
The largest age group in Excel, AL was for the group of age 5 to 9 years years with a population of 77 (15.28%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Excel, AL was the 85 years and over years with a population of 2 (0.40%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spreadsheets targeted at the analysis of GHS safety fingerprints.AbstractOver a 20-year period, the UN developed the Globally Harmonized System (GHS) to address international variation in chemical safety information standards. By 2014, the GHS became widely accepted internationally and has become the cornerstone of OSHA’s Hazard Communication Standard. Despite this progress, today we observe that there are inconsistent results when different sources apply the GHS to specific chemicals, in terms of the GHS pictograms, hazard statements, precautionary statements, and signal words assigned to those chemicals. In order to assess the magnitude of this problem, this research uses an extension of the “chemical fingerprints” used in 2D chemical structure similarity analysis to GHS classifications. By generating a chemical safety fingerprint, the consistency of the GHS information for specific chemicals can be assessed. The problem is the sources for GHS information can differ. For example, the SDS for sodium hydroxide pellets found on Fisher Scientific’s website displays two pictograms, while the GHS information for sodium hydroxide pellets on Sigma Aldrich’s website has only one pictogram. A chemical information tool, which identifies such discrepancies within a specific chemical inventory, can assist in maintaining the quality of the safety information needed to support safe work in the laboratory. The tools for this analysis will be scaled to the size of a moderate large research lab or small chemistry department as a whole (between 1000 and 3000 chemical entities) so that labelling expectations within these universes can be established as consistently as possible.Most chemists are familiar with programs such as excel and google sheets which are spreadsheet programs that are used by many chemists daily. Though a monadal programming approach with these tools, the analysis of GHS information can be made possible for non-programmers. This monadal approach employs single spreadsheet functions to analyze the data collected rather than long programs, which can be difficult to debug and maintain. Another advantage of this approach is that the single monadal functions can be mixed and matched to meet new goals as information needs about the chemical inventory evolve over time. These monadal functions will be used to converts GHS information into binary strings of data called “bitstrings”. This approach is also used when comparing chemical structures. The binary approach make data analysis more manageable, as GHS information comes in a variety of formats such as pictures or alphanumeric strings which are difficult to compare on their face. Bitstrings generated using the GHS information can be compared using an operator such as the tanimoto coefficent to yield values from 0 for strings that have no similarity to 1 for strings that are the same. Once a particular set of information is analyzed the hope is the same techniques could be extended to more information. For example, if GHS hazard statements are analyzed through a spreadsheet approach the same techniques with minor modifications could be used to tackle more GHS information such as pictograms.Intellectual Merit. This research indicates that the use of the cheminformatic technique of structural fingerprints can be used to create safety fingerprints. Structural fingerprints are binary bit strings that are obtained from the non-numeric entity of 2D structure. This structural fingerprint allows comparison of 2D structure through the use of the tanimoto coefficient. The use of this structural fingerprint can be extended to safety fingerprints, which can be created by converting a non-numeric entity such as GHS information into a binary bit string and comparing data through the use of the tanimoto coefficient.Broader Impact. Extension of this research can be applied to many aspects of GHS information. This research focused on comparing GHS hazard statements, but could be further applied to other bits of GHS information such as pictograms and GHS precautionary statements. Another facet of this research is allowing the chemist who uses the data to be able to compare large dataset using spreadsheet programs such as excel and not need a large programming background. Development of this technique will also benefit the Chemical Health and Safety community and Chemical Information communities by better defining the quality of GHS information available and providing a scalable and transferable tool to manipulate this information to meet a variety of other organizational needs.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.
Facebook
TwitterMachine learning dataset created as part of my 4th year dissertation at Abertay University.
Dataset consists of:
20,175 phishing websites from PhishTank and PhishStats.
49,524 benign websites from Alexa top 1 million websites.
Dataset is formed into two separate parts. An excel spreadsheet and accompanying txt file of the first page scraped from the URL. Additional information for the website such as the amount of redirects a request made and the WHOIS information of the site was gathered also.
The dataset was collected over a 38 day period. LightGBM was found to work best with the dataset. With a larger dataset models on this framework will be very accurate.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period.
A Microsoft Excel workbook is provided that tabulates best models for each downscaled climate dataset and for all downscaled climate datasets considered together. Best models were identified based on how well the models capture the climatology and interannual variability of four climate extreme indices using the Model Clima ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Spreadsheet tools for engineers : Excel 5.0 version. It features 7 columns including author, publication date, language, and book publisher.
Facebook
TwitterThe Home Office has changed the format of the published data tables for a number of areas (asylum and resettlement, entry clearance visas, extensions, citizenship, returns, detention, and sponsorship). These now include summary tables, and more detailed datasets (available on a separate page, link below). A list of all available datasets on a given topic can be found in the ‘Contents’ sheet in the ‘summary’ tables. Information on where to find historic data in the ‘old’ format is in the ‘Notes’ page of the ‘summary’ tables.
The Home Office intends to make these changes in other areas in the coming publications. If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
Immigration statistics, year ending September 2020
Immigration Statistics Quarterly Release
Immigration Statistics User Guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/602bab69e90e070562513e35/asylum-summary-dec-2020-tables.xlsx">Asylum and resettlement summary tables, year ending December 2020 (MS Excel Spreadsheet, 359 KB)
Detailed asylum and resettlement datasets
https://assets.publishing.service.gov.uk/media/602bab8fe90e070552b33515/sponsorship-summary-dec-2020-tables.xlsx">Sponsorship summary tables, year ending December 2020 (MS Excel Spreadsheet, 67.7 KB)
https://assets.publishing.service.gov.uk/media/602bf8708fa8f50384219401/visas-summary-dec-2020-tables.xlsx">Entry clearance visas summary tables, year ending December 2020 (MS Excel Spreadsheet, 70.3 KB)
Detailed entry clearance visas datasets
https://assets.publishing.service.gov.uk/media/602bac148fa8f5037f5d849c/passenger-arrivals-admissions-summary-dec-2020-tables.xlsx">Passenger arrivals (admissions) summary tables, year ending December 2020 (MS Excel Spreadsheet, 70.6 KB)
Detailed Passengers initially refused entry at port datasets
https://assets.publishing.service.gov.uk/media/602bac3d8fa8f50383c41f7c/extentions-summary-dec-2020-tables.xlsx">Extensions summary tables, year ending December 2020 (MS Excel Spreadsheet, 41.5 KB)
<a href="https://www.gov.uk/governmen
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset for post-survey data (after required LinkedIn assignment); provided in Excel spreadsheet (.xlsx).
Facebook
TwitterThis dataset was created by Ayo Apata
Sample credentialing data.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides a comprehensive list of 567 file extensions along with their descriptions, meticulously scraped from a Wikipedia page. It serves as a valuable resource for developers, researchers, and anyone interested in understanding various file types and their purposes.
The dataset contains the following columns: - File Extension: The extension of the file (e.g., .txt, .jpg). - Description: A brief description of what the file extension is used for.
This dataset can be used for various purposes, including: - Building applications that need to recognize and handle different file types. - Educating and training individuals on file extensions and their uses. - Conducting research on file formats and their prevalence in different domains.
File Extensions, Data Description, CSV, Web Scraping, Beautiful Soup, Wikipedia, Data Analysis, Development, Research
| File Extension | Description |
|---|---|
| .txt | Plain text file |
| .jpg | JPEG image file |
| Portable Document Format file | |
| .doc | Microsoft Word document file |
| .xlsx | Microsoft Excel spreadsheet file |
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset was created and deposited onto the University of Sheffield Online Research Data repository (ORDA) on 23-Jun-2023 by Dr. Matthew S. Hanchard, Research Associate at the University of Sheffield iHuman Institute.
The dataset forms part of three outputs from a project titled ‘Fostering cultures of open qualitative research’ which ran from January 2023 to June 2023:
· Fostering cultures of open qualitative research: Dataset 1 – Survey Responses · Fostering cultures of open qualitative research: Dataset 2 – Interview Transcripts · Fostering cultures of open qualitative research: Dataset 3 – Coding Book
The project was funded with £13,913.85 Research England monies held internally by the University of Sheffield - as part of their ‘Enhancing Research Cultures’ scheme 2022-2023.
The dataset aligns with ethical approval granted by the University of Sheffield School of Sociological Studies Research Ethics Committee (ref: 051118) on 23-Jan-2021.This includes due concern for participant anonymity and data management.
ORDA has full permission to store this dataset and to make it open access for public re-use on the basis that no commercial gain will be made form reuse. It has been deposited under a CC-BY-NC license.
This dataset comprises one spreadsheet with N=91 anonymised survey responses .xslx format. It includes all responses to the project survey which used Google Forms between 06-Feb-2023 and 30-May-2023. The spreadsheet can be opened with Microsoft Excel, Google Sheet, or open-source equivalents.
The survey responses include a random sample of researchers worldwide undertaking qualitative, mixed-methods, or multi-modal research.
The recruitment of respondents was initially purposive, aiming to gather responses from qualitative researchers at research-intensive (targetted Russell Group) Universities. This involved speculative emails and a call for participant on the University of Sheffield ‘Qualitative Open Research Network’ mailing list. As result, the responses include a snowball sample of scholars from elsewhere.
The spreadsheet has two tabs/sheets: one labelled ‘SurveyResponses’ contains the anonymised and tidied set of survey responses; the other, labelled ‘VariableMapping’, sets out each field/column in the ‘SurveyResponses’ tab/sheet against the original survey questions and responses it relates to.
The survey responses tab/sheet includes a field/column labelled ‘RespondentID’ (using randomly generated 16-digit alphanumeric keys) which can be used to connect survey responses to interview participants in the accompanying ‘Fostering cultures of open qualitative research: Dataset 2 – Interview transcripts’ files.
A set of survey questions gathering eligibility criteria detail and consent are not listed with in this dataset, as below. All responses provide in the dataset gained a ‘Yes’ response to all the below questions (with the exception of one question, marked with an asterisk (*) below):
· I am aged 18 or over · I have read the information and consent statement and above. · I understand how to ask questions and/or raise a query or concern about the survey. · I agree to take part in the research and for my responses to be part of an open access dataset. These will be anonymised unless I specifically ask to be named. · I understand that my participation does not create a legally binding agreement or employment relationship with the University of Sheffield · I understand that I can withdraw from the research at any time. · I assign the copyright I hold in materials generated as part of this project to The University of Sheffield. · * I am happy to be contacted after the survey to take part in an interview.
The project was undertaken by two staff: Co-investigator: Dr. Itzel San Roman Pineda ORCiD ID: 0000-0002-3785-8057 i.sanromanpineda@sheffield.ac.uk
Postdoctoral Research Assistant Principal Investigator (corresponding dataset author): Dr. Matthew Hanchard ORCiD ID: 0000-0003-2460-8638 m.s.hanchard@sheffield.ac.uk Research Associate iHuman Institute, Social Research Institutes, Faculty of Social Science
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
List of companies available in India with some additional details.
This dataset contain a list of companies along with additional details like (name, type, average rating, review count, company age, company headquarters and number of employee working on that company). The whole list of company is web scrapped from the website AmbitionBox.com.
Data Source: https://www.ambitionbox.com/list-of-companies This dataset wouldn't be made without data available at ambitionbox.com. So a big thanks to the whole team of ambitionbox from the whole kaggle community.
My intension to create this dataset was to enlist the companies available in India and do some analysis on that.
Facebook
Twitter(Fig 2 tab) Cell counts at designated times as measured by trypan blue exclusion. (Fig 3 tab) Normalized mRNA counts from NanoString array of T cells at day 29 of co-culture (top), surface phenotype of CAR+ T cells (middle), and multiparameter memory phenotype of T cells (bottom). (Fig 4 tab) MFI of IFNγ staining of CAR+ T cells following 6 hour co-culture with target cells. (Fig 5 tab) 4-hour chromium release assay of T cells co-cultured with target cells. (Fig 6 tab) BLI flux kinetics of Kasumi2-ffLuc-mKate cells following challenge with CAR+ T cells (top) and days of mouse euthanasia (bottom). (XLSX)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excel sheet of the collected data
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Egypt number dataset can be a great element for direct marketing nationwide right now. Also, this Egypt number dataset has thousands of active mobile numbers that help to increase sales in the company. Most importantly, you can develop your business by bringing many trustworthy B2C customers. Likewise, clients can send you a fast response whether they need it or not. Furthermore, this Egypt number dataset is a very essential tool for telemarketing. In other words, you get all these 95% valid leads at a very cheap price from us. Most importantly, our List To Data website still follows the full GDPR rules strictly. In addition, the return on investment (ROI) will give you satisfaction from the business. Egypt phone data is a very powerful contact database that you can get in your budget. Moreover, the Egypt phone data is very beneficial for fast business growth through direct marketing. In fact, our List To Data assures you that we give verified numbers at an affordable cost. As such, you can say that it brings you more profit than your expense. Additionally, the Egypt phone data has all the details like name, age, gender, location, and business. Anyway, people can connect with the largest group of consumers quickly through this. However, people can use these cell phone numbers without any worry. Thus, buy it from us as our experts are ready to present the most satisfactory service. Egypt phone number list is very helpful for any business and marketing. People can use this Egypt phone number list to develop their telemarketing. They can easily reach consumers through direct calls or SMS. In other words, we gather all the database and recheck it, so you should buy our packages right now. Furthermore, you can believe this correct directory to maximize your company’s growth rapidly. Also, we deliver the Egypt phone number list in an Excel and CSV file. Actually, the country’s mobile number library will help you in getting more profit than investment. Similarly, the List To Data expert team is ready to help you 24 hours with any necessary details that can help your business. Hence, buy this telemarketing lead at a very reasonable price to expand sales through B2C customers.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains data from four Norwegian Red Lists. Data included are the Red List Categories, reasons for change, and threats. These data were used to evaluate metrics for quantifying the contributions of different threats to Red Lists, described by Sandvik & Pedersen (2023).
The dataset contains six files:
The excel workbooks contain the same information as the respective csv and pdf files combined.
Columns, abbreviations etc. are explained in the excel and pdf files.
Data were derived from the following sources, all published by the Norwegian Biodiversity Information Centre:
R code to analyse the dataset and reproduce the results of the paper is available on Zenodo via doi:10.5281/zenodo.7843806.
Facebook
TwitterSpreadsheet used to calculate Highway Site characteristics (Drainage area, slope and impervious fraction) for the Stochastic Empirical Loading Dilution Model (SELDM) . The spreadsheet was used in conjunction with the SELDM simulations used in the publication: Stonewall, A.J., and Granato, G.E., 2018, Assessing potential effects of highway and urban runoff on receiving streams in total maximum daily load watersheds in Oregon using the Stochastic Empirical Loading and Dilution Model: U.S. Geological Survey Scientific Investigations Report 2019-5053, 116 p., https://doi.org/10.3133/sir20195053.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel township population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Excel township. The dataset can be utilized to understand the population distribution of Excel township by age. For example, using this dataset, we can identify the largest age group in Excel township.
Key observations
The largest age group in Excel Township, Minnesota was for the group of age 50-54 years with a population of 27 (10.04%), according to the 2021 American Community Survey. At the same time, the smallest age group in Excel Township, Minnesota was the 15-19 years with a population of 7 (2.60%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel township Population by Age. You can refer the same here
Facebook
TwitterDistribution of doses of a volatile organic compound from inhalation of one consumer product, other near -field sources, far-field sources, and aggregate (total) exposure. In this instance, far-field scenarios account for several orders of magnitude of less of the predicted dose compared to near-field scenarios. This dataset is associated with the following publication: Vallero, D. Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus. Sustainability. MDPI AG, Basel, SWITZERLAND, 8(12): 1216, (2016).