64 datasets found
  1. d

    Finsheet - Stock Price in Excel and Google Sheet

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Do, Tuan (2023). Finsheet - Stock Price in Excel and Google Sheet [Dataset]. http://doi.org/10.7910/DVN/ZD9XVF
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Do, Tuan
    Description

    This dataset contains the valuation template the researcher can use to retrieve real-time Excel stock price and stock price in Google Sheets. The dataset is provided by Finsheet, the leading financial data provider for spreadsheet users. To get more financial data, visit the website and explore their function. For instance, if a researcher would like to get the last 30 years of income statement for Meta Platform Inc, the syntax would be =FS_EquityFullFinancials("FB", "ic", "FY", 30) In addition, this syntax will return the latest stock price for Caterpillar Inc right in your spreadsheet. =FS_Latest("CAT") If you need assistance with any of the function, feel free to reach out to their customer support team. To get starter, install their Excel and Google Sheets add-on.

  2. Data from: Current and projected research data storage needs of Agricultural...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Current and projected research data storage needs of Agricultural Research Service researchers in 2016 [Dataset]. https://catalog.data.gov/dataset/current-and-projected-research-data-storage-needs-of-agricultural-research-service-researc-f33da
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel

  3. SPORTS_DATA_ANALYSIS_ON_EXCEL

    • kaggle.com
    zip
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nil kamal Saha (2024). SPORTS_DATA_ANALYSIS_ON_EXCEL [Dataset]. https://www.kaggle.com/datasets/nilkamalsaha/sports-data-analysis-on-excel
    Explore at:
    zip(1203633 bytes)Available download formats
    Dataset updated
    Dec 12, 2024
    Authors
    Nil kamal Saha
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    PROJECT OBJECTIVE

    We are a part of XYZ Co Pvt Ltd company who is in the business of organizing the sports events at international level. Countries nominate sportsmen from different departments and our team has been given the responsibility to systematize the membership roster and generate different reports as per business requirements.

    Questions (KPIs)

    TASK 1: STANDARDIZING THE DATASET

    • Populate the FULLNAME consisting of the following fields ONLY, in the prescribed format: PREFIX FIRSTNAME LASTNAME.{Note: All UPPERCASE)
    • Get the COUNTRY NAME to which these sportsmen belong to. Make use of LOCATION sheet to get the required data
    • Populate the LANGUAGE_!poken by the sportsmen. Make use of LOCTION sheet to get the required data
    • Generate the EMAIL ADDRESS for those members, who speak English, in the prescribed format :lastname.firstnamel@xyz .org {Note: All lowercase) and for all other members, format should be lastname.firstname@xyz.com (Note: All lowercase)
    • Populate the SPORT LOCATION of the sport played by each player. Make use of SPORT sheet to get the required data

    TASK 2: DATA FORMATING

    • Display MEMBER IDas always 3 digit number {Note: 001,002 ...,D2D,..etc)
    • Format the BIRTHDATE as dd mmm'yyyy (Prescribed format example: 09 May' 1986)
    • Display the units for the WEIGHT column (Prescribed format example: 80 kg)
    • Format the SALARY to show the data In thousands. If SALARY is less than 100,000 then display data with 2 decimal places else display data with one decimal place. In both cases units should be thousands (k) e.g. 87670 -> 87.67 k and 12 250 -> 123.2 k

    TASK 3: SUMMARIZE DATA - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1) • Create a PIVOT table in the worksheet ANALYSIS, starting at cell B3,with the following details:

    • In COLUMNS; Group : GENDER.
    • In ROWS; Group : COUNTRY (Note: use COUNTRY NAMES).
    • In VALUES; calculate the count of candidates from each COUNTRY and GENDER type, Remove GRAND TOTALs.

    TASK 4: SUMMARIZE DATA - EXCEL FUNCTIONS (Use SPORTSMEN worksheet after attempting TASK 1)

    • Create a SUMMARY table in the worksheet ANALYSIS,starting at cell G4, with the following details:

    • Starting from range RANGE H4; get the distinct GENDER. Use remove duplicates option and transpose the data.
    • Starting from range RANGE GS; get the distinct COUNTRY (Note: use COUNTRY NAMES).
    • In the cross table,get the count of candidates from each COUNTRY and GENDER type.

    TASK 5: GENERATE REPORT - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1)

    • Create a PIVOT table report in the worksheet REPORT, starting at cell A3, with the following information:

    • Change the report layout to TABULAR form.
    • Remove expand and collapse buttons.
    • Remove GRAND TOTALs.
    • Allow user to filter the data by SPORT LOCATION.

    Process

    • Verify data for any missing values and anomalies, and sort out the same.
    • Made sure data is consistent and clean with respect to data type, data format and values used.
    • Created pivot tables according to the questions asked.
  4. 2023 General Payment Data

    • healthdata.gov
    csv, xlsx, xml
    Updated Jul 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenPaymentsData.cms.gov (2024). 2023 General Payment Data [Dataset]. https://healthdata.gov/CMS/2023-General-Payment-Data/rjgu-is5n
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Jul 1, 2024
    Dataset provided by
    Centers for Medicare & Medicaid Services
    Description

    All general (non-research, non-ownership related) payments from the 2023 program year [January 1 – December 31, 2023]

    NOTE: This is a very large file and, depending on your network characteristics and software, may take a long time to download or fail to download. Additionally, the number of rows in the file may be larger than the maximum rows your version of Microsoft Excel supports. If you can't download the file, we recommend engaging your IT support staff. If you are able to download the file but are unable to open it in MS Excel or get a message that the data has been truncated, we recommend trying alternative programs such as MS Access, Universal Viewer, Editpad or any other software your organization has available for large datasets.

  5. Grandpa Golf

    • kaggle.com
    zip
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FletcherKennamer (2023). Grandpa Golf [Dataset]. https://www.kaggle.com/datasets/fletcherkennamer/grandpa-golf
    Explore at:
    zip(5860 bytes)Available download formats
    Dataset updated
    Sep 12, 2023
    Authors
    FletcherKennamer
    Description

    My Grandpa asked if the programs I was using could calculate his Golf League’s handicaps, so I decided to play around with SQL and Google Sheets to see if I could functionally recreate what they were doing.

    The goal is to calculate a player’s handicap, which is the average of the last six months of their scores minus 29. The average is calculated based on how many games they have actually played in the last six months, and the number of scores averaged correlates to total games. For example, Clem played over 20 games so his handicap will be calculated with the maximum possible scores accounted for, that being 8. Schomo only played six games, so the lowest 4 will be used for their average. Handicap is always calculated with the lowest available scores.

    This league uses Excel, so upon receiving the data I converted it into a CSV and uploaded it into bigQuery.

    First thing I did was change column names to best represent what they were and simplify things in the code. It is much easier to remember ‘someone_scores’ than ‘int64_field_number’. It also seemed to confuse SQL less, as int64 can mean something independently. (ALTER TABLE grandpa-golf.grandpas_golf_35.should only need the one RENAME COLUMN int64_field_4 TO schomo_scores;)

    To Find the average of Clem’s scores: SELECT AVG(clem_scores) FROM grandpa-golf.grandpas_golf_35.should only need the one LIMIT 8; RESULT: 43.1

    Remembering that handicap is the average minus 29, the final computation looks like: SELECT AVG(clem_scores) - 29 FROM grandpa-golf.grandpas_golf_35.should only need the one LIMIT 8; RESULT: 14.1

    Find the average of Schomo’s scores: SELECT AVG(schomo_scores) - 29 FROM grandpa-golf.grandpas_golf_35.should only need the one LIMIT 6; RESULT: 10.5

    This data was already automated to calculate a handicap in the league’s excel spreadsheet, so I asked for more data to see if i could recreate those functions.

    Grandpa provided the past three years of league data. The names were all replaced with generic “Golfer 001, Golfer 002, etc”. I had planned on converting this Excel sheet into a CSV and manipulating it in SQL like with the smaller sample, but this did not work.

    Immediately, there were problems. I had initially tried to just convert the file into a CSV and drop it into SQL, but there were functions that did not transfer properly from what was functionally the PDF I had been emailed. So instead of working with SQL, I decided to pull this into google sheets and recreate the functions for this spreadsheet. We only need the most recent 6 months of scores to calculate our handicap, so once I made a working copy I deleted the data from before this time period. Once that was cleaned up, I started working on a function that would pull the working average from these values, which is still determined by how many total values there were. This correlates as follows: for 20 or more scores average the lowest 8, for 15 to 19 scores average the lowest 6, for 6 to 14 scores average the lowest 4 and for 6 or fewer scores average the lowest 2. We also need to ensure that an average value of 0 returns a value of 0 so our handicap calculator works. My formula ended up being:

    =IF(COUNT(E2:AT2)>=20, AVERAGE(SMALL(E2:AT2, ROW(INDIRECT("1:"&8)))), IF(COUNT(E2:AT2)>=15, AVERAGE(SMALL(E2:AT2, ROW(INDIRECT("1:"&6)))), IF(COUNT(E2:AT2)>=6, AVERAGE(SMALL(E2:AT2, ROW(INDIRECT("1:"&4)))), IF(COUNT(E2:AT2)>=1, AVERAGE(SMALL(E2:AT2, ROW(INDIRECT("1:"&2)))), IF(COUNT(E2:AT2)=0, 0, "")))))

    The handicap is just this value minus 29, so for the handicap column the script is relatively simple: =IF(D2=0,0,IF(D2>47,18,D2-29)) This ensures that we will not get a negative value for our handicap, and pulls the basic average from the right place. It also sets the handicap to zero if there are no scores present.

    Now that we have our spreadsheet back in working order with our new scripts, we are functionally done. We have recreated what my Grandpa’s league uses to generate handicaps.

  6. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  7. Commission Model examples

    • kaggle.com
    zip
    Updated Dec 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lamar McMillan (2021). Commission Model examples [Dataset]. https://www.kaggle.com/datasets/lamarmcmillan/commission-model-examples/code
    Explore at:
    zip(13275 bytes)Available download formats
    Dataset updated
    Dec 22, 2021
    Authors
    Lamar McMillan
    Description

    Context

    I am showcasing the financial commissions model on Kaggle. On Excel we can utilize IF statements to chart rates that reward workers based on quotas. By compiling sales on a large or small scale we can easily derive the necessary compensation for workers.

    Content

    The first sheet uses simple IF statements to derive a commission payment for different rates. The Sales company exceeded their quota of $95,000.00, and reached $99,343.00, which is a 104.6% return on investment.

    On sheet 2 there is a detailed breakdown of individual employee rates and their deserved commission. The difference in sheet 2 is the use of nested IF statements, which can get much more complex if not catalogued properly.

    Acknowledgements

    There are two guides on YouTube which I credit heavily for these models here are the links: https://www.youtube.com/watch?v=bkrSVS7-CYo&list=PLQnuraB9JKXdUlDVZtcfG2_sO_uL_XyMm&index=4 https://www.youtube.com/watch?v=0Ahqr6Xdkos&list=PLQnuraB9JKXdUlDVZtcfG2_sO_uL_XyMm&index=12

    Inspiration

    Thanks for reading, and enjoy!

  8. e

    Teimpléad Mapála Excel do Bhuirgí agus Bardaí Londain

    • data.europa.eu
    Updated Apr 24, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (2012). Teimpléad Mapála Excel do Bhuirgí agus Bardaí Londain [Dataset]. https://data.europa.eu/data/datasets/excel-mapping-template-for-london-boroughs-and-wards1?locale=ga
    Explore at:
    Dataset updated
    Apr 24, 2012
    Dataset authored and provided by
    Greater London Authority
    Area covered
    London
    Description

    A free mapping tool that allows you to create a thematic map of London without any specialist GIS skills or software - all you need is Microsoft Excel. Templates are available for London’s Boroughs and Wards. Full instructions are contained within the spreadsheets.

    Macros

    The tool works in any version of Excel. But the user MUST ENABLE MACROS, for the features to work. There a some restrictions on functionality in the ward maps in Excel 2003 and earlier - full instructions are included in the spreadsheet.

    To check whether the macros are enabled in Excel 2003 click Tools, Macro, Security and change the setting to Medium. Then you have to re-start Excel for the changes to take effect. When Excel starts up a prompt will ask if you want to enable macros - click yes.

    In Excel 2007 and later, it should be set by default to the correct setting, but if it has been changed, click on the Windows Office button in the top corner, then Excel options (at the bottom), Trust Centre, Trust Centre Settings, and make sure it is set to 'Disable all macros with notification'. Then when you open the spreadsheet, a prompt labelled 'Options' will appear at the top for you to enable macros.

    To create your own thematic borough maps in Excel using the ward map tool as a starting point, read these instructions. You will need to be a confident Excel user, and have access to your boundaries as a picture file from elsewhere. The mapping tools created here are all fully open access with no passwords.

    Copyright notice: If you publish these maps, a copyright notice must be included within the report saying: "Contains Ordnance Survey data © Crown copyright and database rights."

    NOTE: Excel 2003 users must 'ungroup' the map for it to work.

  9. Create your own mapping templates - Excel Add-In

    • ckan.publishing.service.gov.uk
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). Create your own mapping templates - Excel Add-In [Dataset]. https://ckan.publishing.service.gov.uk/dataset/create-your-own-mapping-templates-excel-add-in
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    With this add in it is possible to create map templates from GIS files in KML format, and create choropleths with them. Providing you have access to KML format map boundary files, it is possible to create your own quick and easy choropleth maps in Excel. The KML format files can be converted from 'shape' files. Many shape files are available to download for free from the web, including from Ordnance Survey and the London Datastore. Standard mapping packages such as QGIS (free to download) and ArcGIS can convert the files to KML format. A sample of a KML file (London wards) can be downloaded from this page, so that users can easily test the tool out. Macros must be enabled for the tool to function. When creating the map using the Excel tool, the 'unique ID' should normally be the area code, the 'Name' should be the area name and then if required and there is additional data in the KML file, further 'data' fields can be added. These columns will appear below and to the right of the map. If not, data can be added later on next to the codes and names. In the add-in version of the tool the final control, 'Scale (% window)' should not normally be changed. With the default value 0.5, the height of the map is set to be half the total size of the user's Excel window. To run a choropleth, select the menu option 'Run Choropleth' to get this form. To specify the colour ramp for the choropleth, the user needs to enter the number of boxes into which the range is to be divided, and the colours for the high and low ends of the range, which is done by selecting coloured option boxes as appropriate. If wished, hit the 'Swap' button to change which colours are for the different ends of the range. Then hit the 'Choropleth' button. The default options for the colours of the ends of the choropleth colour range are saved in the add in, but different values can be selected but setting up a column range of up to twelve cells, anywhere in Excel, filled with the option colours wanted. Then use the 'Colour range' control to select this range, and hit apply, having selected high or low values as wished. The button 'Copy' sets up a sheet 'ColourRamp' in the active workbook with the default colours, which can just be extended or deleted with just a few cells, so saving the user time. The add-in was developed entirely within the Excel VBA IDE by Tim Lund. He is kindly distributing the tool for free on the Datastore but suggests that users who find the tool useful make a donation to the Shelter charity. It is not intended to keep the actively maintained, but if any users or developers would like to add more features, email the author. Acknowledgments Calculation of Excel freeform shapes from latitudes and longitudes is done using calculations from the Ordnance Survey.

  10. c

    Niagara Open Data

    • catalog.civicdataecosystem.org
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Niagara Open Data [Dataset]. https://catalog.civicdataecosystem.org/dataset/niagara-open-data
    Explore at:
    Description

    The Ontario government, generates and maintains thousands of datasets. Since 2012, we have shared data with Ontarians via a data catalogue. Open data is data that is shared with the public. Click here to learn more about open data and why Ontario releases it. Ontario’s Open Data Directive states that all data must be open, unless there is good reason for it to remain confidential. Ontario’s Chief Digital and Data Officer also has the authority to make certain datasets available publicly. Datasets listed in the catalogue that are not open will have one of the following labels: If you want to use data you find in the catalogue, that data must have a licence – a set of rules that describes how you can use it. A licence: Most of the data available in the catalogue is released under Ontario’s Open Government Licence. However, each dataset may be shared with the public under other kinds of licences or no licence at all. If a dataset doesn’t have a licence, you don’t have the right to use the data. If you have questions about how you can use a specific dataset, please contact us. The Ontario Data Catalogue endeavors to publish open data in a machine readable format. For machine readable datasets, you can simply retrieve the file you need using the file URL. The Ontario Data Catalogue is built on CKAN, which means the catalogue has the following features you can use when building applications. APIs (Application programming interfaces) let software applications communicate directly with each other. If you are using the catalogue in a software application, you might want to extract data from the catalogue through the catalogue API. Note: All Datastore API requests to the Ontario Data Catalogue must be made server-side. The catalogue's collection of dataset metadata (and dataset files) is searchable through the CKAN API. The Ontario Data Catalogue has more than just CKAN's documented search fields. You can also search these custom fields. You can also use the CKAN API to retrieve metadata about a particular dataset and check for updated files. Read the complete documentation for CKAN's API. Some of the open data in the Ontario Data Catalogue is available through the Datastore API. You can also search and access the machine-readable open data that is available in the catalogue. How to use the API feature: Read the complete documentation for CKAN's Datastore API. The Ontario Data Catalogue contains a record for each dataset that the Government of Ontario possesses. Some of these datasets will be available to you as open data. Others will not be available to you. This is because the Government of Ontario is unable to share data that would break the law or put someone's safety at risk. You can search for a dataset with a word that might describe a dataset or topic. Use words like “taxes” or “hospital locations” to discover what datasets the catalogue contains. You can search for a dataset from 3 spots on the catalogue: the homepage, the dataset search page, or the menu bar available across the catalogue. On the dataset search page, you can also filter your search results. You can select filters on the left hand side of the page to limit your search for datasets with your favourite file format, datasets that are updated weekly, datasets released by a particular organization, or datasets that are released under a specific licence. Go to the dataset search page to see the filters that are available to make your search easier. You can also do a quick search by selecting one of the catalogue’s categories on the homepage. These categories can help you see the types of data we have on key topic areas. When you find the dataset you are looking for, click on it to go to the dataset record. Each dataset record will tell you whether the data is available, and, if so, tell you about the data available. An open dataset might contain several data files. These files might represent different periods of time, different sub-sets of the dataset, different regions, language translations, or other breakdowns. You can select a file and either download it or preview it. Make sure to read the licence agreement to make sure you have permission to use it the way you want. Read more about previewing data. A non-open dataset may be not available for many reasons. Read more about non-open data. Read more about restricted data. Data that is non-open may still be subject to freedom of information requests. The catalogue has tools that enable all users to visualize the data in the catalogue without leaving the catalogue – no additional software needed. Have a look at our walk-through of how to make a chart in the catalogue. Get automatic notifications when datasets are updated. You can choose to get notifications for individual datasets, an organization’s datasets or the full catalogue. You don’t have to provide and personal information – just subscribe to our feeds using any feed reader you like using the corresponding notification web addresses. Copy those addresses and paste them into your reader. Your feed reader will let you know when the catalogue has been updated. The catalogue provides open data in several file formats (e.g., spreadsheets, geospatial data, etc). Learn about each format and how you can access and use the data each file contains. A file that has a list of items and values separated by commas without formatting (e.g. colours, italics, etc.) or extra visual features. This format provides just the data that you would display in a table. XLSX (Excel) files may be converted to CSV so they can be opened in a text editor. How to access the data: Open with any spreadsheet software application (e.g., Open Office Calc, Microsoft Excel) or text editor. Note: This format is considered machine-readable, it can be easily processed and used by a computer. Files that have visual formatting (e.g. bolded headers and colour-coded rows) can be hard for machines to understand, these elements make a file more human-readable and less machine-readable. A file that provides information without formatted text or extra visual features that may not follow a pattern of separated values like a CSV. How to access the data: Open with any word processor or text editor available on your device (e.g., Microsoft Word, Notepad). A spreadsheet file that may also include charts, graphs, and formatting. How to access the data: Open with a spreadsheet software application that supports this format (e.g., Open Office Calc, Microsoft Excel). Data can be converted to a CSV for a non-proprietary format of the same data without formatted text or extra visual features. A shapefile provides geographic information that can be used to create a map or perform geospatial analysis based on location, points/lines and other data about the shape and features of the area. It includes required files (.shp, .shx, .dbt) and might include corresponding files (e.g., .prj). How to access the data: Open with a geographic information system (GIS) software program (e.g., QGIS). A package of files and folders. The package can contain any number of different file types. How to access the data: Open with an unzipping software application (e.g., WinZIP, 7Zip). Note: If a ZIP file contains .shp, .shx, and .dbt file types, it is an ArcGIS ZIP: a package of shapefiles which provide information to create maps or perform geospatial analysis that can be opened with ArcGIS (a geographic information system software program). A file that provides information related to a geographic area (e.g., phone number, address, average rainfall, number of owl sightings in 2011 etc.) and its geospatial location (i.e., points/lines). How to access the data: Open using a GIS software application to create a map or do geospatial analysis. It can also be opened with a text editor to view raw information. Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A text-based format for sharing data in a machine-readable way that can store data with more unconventional structures such as complex lists. How to access the data: Open with any text editor (e.g., Notepad) or access through a browser. Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A text-based format to store and organize data in a machine-readable way that can store data with more unconventional structures (not just data organized in tables). How to access the data: Open with any text editor (e.g., Notepad). Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A file that provides information related to an area (e.g., phone number, address, average rainfall, number of owl sightings in 2011 etc.) and its geospatial location (i.e., points/lines). How to access the data: Open with a geospatial software application that supports the KML format (e.g., Google Earth). Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. This format contains files with data from tables used for statistical analysis and data visualization of Statistics Canada census data. How to access the data: Open with the Beyond 20/20 application. A database which links and combines data from different files or applications (including HTML, XML, Excel, etc.). The database file can be converted to a CSV/TXT to make the data machine-readable, but human-readable formatting will be lost. How to access the data: Open with Microsoft Office Access (a database management system used to develop application software). A file that keeps the original layout and

  11. 2024 General Payment Data

    • healthdata.gov
    csv, xlsx, xml
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenPaymentsData.cms.gov (2025). 2024 General Payment Data [Dataset]. https://healthdata.gov/CMS/2024-General-Payment-Data/2fsj-j6dj
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    Centers for Medicare & Medicaid Services
    Description

    All general (non-research, non-ownership related) payments from the 2024 program year [January 1 – December 31, 2024]

    NOTE: This is a very large file and, depending on your network characteristics and software, may take a long time to download or fail to download. Additionally, the number of rows in the file may be larger than the maximum rows your version of Microsoft Excel supports. If you can't download the file, we recommend engaging your IT support staff. If you are able to download the file but are unable to open it in MS Excel or get a message that the data has been truncated, we recommend trying alternative programs such as MS Access, Universal Viewer, Editpad or any other software your organization has available for large datasets.

  12. s

    Excel Mapping Template for London Boroughs and Wards

    • ckan.publishing.service.gov.uk
    • data.europa.eu
    Updated Oct 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Excel Mapping Template for London Boroughs and Wards [Dataset]. https://ckan.publishing.service.gov.uk/dataset/excel-mapping-template-for-london-boroughs-and-wards
    Explore at:
    Dataset updated
    Oct 28, 2025
    Area covered
    London
    Description

    A free mapping tool that allows you to create a thematic map of London without any specialist GIS skills or software - all you need is Microsoft Excel. Templates are available for London’s Boroughs and Wards. Full instructions are contained within the spreadsheets. Macros The tool works in any version of Excel. But the user MUST ENABLE MACROS, for the features to work. There a some restrictions on functionality in the ward maps in Excel 2003 and earlier - full instructions are included in the spreadsheet. To check whether the macros are enabled in Excel 2003 click Tools, Macro, Security and change the setting to Medium. Then you have to re-start Excel for the changes to take effect. When Excel starts up a prompt will ask if you want to enable macros - click yes. In Excel 2007 and later, it should be set by default to the correct setting, but if it has been changed, click on the Windows Office button in the top corner, then Excel options (at the bottom), Trust Centre, Trust Centre Settings, and make sure it is set to 'Disable all macros with notification'. Then when you open the spreadsheet, a prompt labelled 'Options' will appear at the top for you to enable macros. To create your own thematic borough maps in Excel using the ward map tool as a starting point, read these instructions. You will need to be a confident Excel user, and have access to your boundaries as a picture file from elsewhere. The mapping tools created here are all fully open access with no passwords. Copyright notice: If you publish these maps, a copyright notice must be included within the report saying: "Contains Ordnance Survey data © Crown copyright and database rights." NOTE: Excel 2003 users must 'ungroup' the map for it to work.

  13. e

    Predložak za mapiranje u Excelu za londonske četvrti i odjele

    • data.europa.eu
    Updated Apr 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (2020). Predložak za mapiranje u Excelu za londonske četvrti i odjele [Dataset]. https://data.europa.eu/data/datasets/excel-mapping-template-for-london-boroughs-and-wards1?locale=hr
    Explore at:
    Dataset updated
    Apr 9, 2020
    Dataset authored and provided by
    Greater London Authority
    Area covered
    London
    Description

    A free mapping tool that allows you to create a thematic map of London without any specialist GIS skills or software - all you need is Microsoft Excel. Templates are available for London’s Boroughs and Wards. Full instructions are contained within the spreadsheets. Macros The tool works in any version of Excel. But the user MUST ENABLE MACROS, for the features to work. There a some restrictions on functionality in the ward maps in Excel 2003 and earlier - full instructions are included in the spreadsheet. To check whether the macros are enabled in Excel 2003 click Tools, Macro, Security and change the setting to Medium. Then you have to re-start Excel for the changes to take effect. When Excel starts up a prompt will ask if you want to enable macros - click yes. In Excel 2007 and later, it should be set by default to the correct setting, but if it has been changed, click on the Windows Office button in the top corner, then Excel options (at the bottom), Trust Centre, Trust Centre Settings, and make sure it is set to 'Disable all macros with notification'. Then when you open the spreadsheet, a prompt labelled 'Options' will appear at the top for you to enable macros. To create your own thematic borough maps in Excel using the ward map tool as a starting point, read these instructions. You will need to be a confident Excel user, and have access to your boundaries as a picture file from elsewhere. The mapping tools created here are all fully open access with no passwords. Copyright notice: If you publish these maps, a copyright notice must be included within the report saying: "Contains Ordnance Survey data © Crown copyright and database rights." NOTE: Excel 2003 users must 'ungroup' the map for it to work.

  14. d

    Data from: GeoRePORT Input Spreadsheet

    • catalog.data.gov
    • data.openei.org
    • +4more
    Updated Jan 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Renewable Energy Laboratory (2025). GeoRePORT Input Spreadsheet [Dataset]. https://catalog.data.gov/dataset/georeport-input-spreadsheet-7526f
    Explore at:
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    National Renewable Energy Laboratory
    Description

    The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT) was developed as a way to distill large amounts of geothermal project data into an objective, reportable data set that can be used to communicate with experts and non-experts. GeoRePORT summarizes (1) resource grade and certainty and (2) project readiness. This Excel file allows users to easily navigate through the resource grade attributes, using drop-down menus to pick grades and project readiness, and then easily print and share the summary with others. This spreadsheet is the first draft, for which we are soliciting expert feedback. The spreadsheet will be updated based on this feedback to increase usability of the tool. If you have any comments, please feel free to contact us.

  15. c

    Corporations Search (Washington state)

    • s.cnmilf.com
    • data.wa.gov
    • +1more
    Updated Sep 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.wa.gov (2024). Corporations Search (Washington state) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/corporations-search-from-secretary-of-state
    Explore at:
    Dataset updated
    Sep 6, 2024
    Dataset provided by
    data.wa.gov
    Area covered
    Washington
    Description

    This provides a link to the Washington Secretary of State's Corporations Search tool. The Corporations Data Extract feature is no longer available. Customers needing a list of multiple businesses can use our advanced search to create a list of businesses under specific parameters. You can export this information to an Excel spreadsheet to sort and search more extensively. Below are the steps to perform this type of search. The more specified parameter searches provide narrower search results. Please visit our Corporations and Charities Filing System by following this link https://ccfs.sos.wa.gov/ Scroll down to the “Corporation Search” section and click the “Advanced Search” button on the right. Under the first section, specify how you would like the business name searched. Only use this for single business lookups unless all the businesses you are searching have a common name (use the “contains” selection). Select the appropriate business type from the dropdown if you are looking for a list of a specific business type. For a list of a particular business type with a specific status, select that status under “Business Status.” You can also search by expiration date in this section. Under the “Date of Incorporation/Formation/Registration,” you can search by start or end date. Under the “Registered Agent/Governor Search” section, you can search all businesses with the same registered agent on record or governor listed. Once you have made all your search selections, click the green “Search” button at the bottom right of the page. A list will populate; scroll to the bottom and select the green Excel document icon with CSV. An Excel document should automatically download. If you have popups blocked, please unblock our site, and try again. Once you have opened the downloaded Excel spreadsheet, you can adjust the width of each column and sort the data using the data tab. You can also search by pressing CTRL+F on a Windows keyboard.

  16. Materials Facility Waste Returns Data January 2022 to December 2023

    • ckan.publishing.service.gov.uk
    • environment.data.gov.uk
    • +1more
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). Materials Facility Waste Returns Data January 2022 to December 2023 [Dataset]. https://ckan.publishing.service.gov.uk/dataset/materials-facility-waste-returns-data-january-2022-to-december-2023
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    Materials Facility Waste Return Data for January to December 2021.An excel data extract of wastes received at Materials Facility sites (sites covered under the Material Facility regulations: https://www.legislation.gov.uk/uksi/2016/1154/schedule/9/made) including sampling data for mixed waste received above 125 tonnes. An excel data extract of waste removed from Materials Facility sites including sampling of specified output material (a batch of material produced from a separating process for mixed waste material and made up of one of the following kinds of target material in largest proportion: glass, metal, paper, plastic) the sampling frequency for specified output material is dependent on the material grade in question. Attribution statement: We may be able to license this dataset to you under the Environment Agency Conditional Licence: https://www.gov.uk/government/publications/environment-agency-conditional-licence/environment-agency-conditional-licence with the following special conditions. You must first check the supporting information in the above link to determine if the conditions on use are suitable for your purposes. If they aren’t, this information is not provided with a licence for use, and the data is provided for read right only. You may use the Information for your internal or personal purposes and may only sublicense others to use it if you do so under a written licence which includes the terms of these conditions and the agreement and in particular may not allow any period of use longer than the period licensed to you. The period of permitted use is one year. We have restricted use of the Information as a result of legal restrictions placed upon us to protect the rights or confidentialities of others, including Personal Data that may not be Public Register after this licence expires. If you contact us in writing (this includes email) we will, as far as confidentiality rules allow, provide you with details including, if available, how you might seek permission from a third party to extend your use rights. This condition does not apply if use is limited to use that is authorised by any statute or use that does not require a licence from us.

  17. m

    An Extensive Dataset for the Heart Disease Classification System

    • data.mendeley.com
    Updated Feb 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sozan S. Maghdid (2022). An Extensive Dataset for the Heart Disease Classification System [Dataset]. http://doi.org/10.17632/65gxgy2nmg.1
    Explore at:
    Dataset updated
    Feb 15, 2022
    Authors
    Sozan S. Maghdid
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Finding a good data source is the first step toward creating a database. Cardiovascular illnesses (CVDs) are the major cause of death worldwide. CVDs include coronary heart disease, cerebrovascular disease, rheumatic heart disease, and other heart and blood vessel problems. According to the World Health Organization, 17.9 million people die each year. Heart attacks and strokes account for more than four out of every five CVD deaths, with one-third of these deaths occurring before the age of 70 A comprehensive database for factors that contribute to a heart attack has been constructed , The main purpose here is to collect characteristics of Heart Attack or factors that contribute to it. As a result, a form is created to accomplish this. Microsoft Excel was used to create this form. Figure 1 depicts the form which It has nine fields, where eight fields for input fields and one field for output field. Age, gender, heart rate, systolic BP, diastolic BP, blood sugar, CK-MB, and Test-Troponin are representing the input fields, while the output field pertains to the presence of heart attack, which is divided into two categories (negative and positive).negative refers to the absence of a heart attack, while positive refers to the presence of a heart attack.Table 1 show the detailed information and max and min of values attributes for 1319 cases in the whole database.To confirm the validity of this data, we looked at the patient files in the hospital archive and compared them with the data stored in the laboratories system. On the other hand, we interviewed the patients and specialized doctors. Table 2 is a sample for 1320 cases, which shows 44 cases and the factors that lead to a heart attack in the whole database,After collecting this data, we checked the data if it has null values (invalid values) or if there was an error during data collection. The value is null if it is unknown. Null values necessitate special treatment. This value is used to indicate that the target isn’t a valid data element. When trying to retrieve data that isn't present, you can come across the keyword null in Processing. If you try to do arithmetic operations on a numeric column with one or more null values, the outcome will be null. An example of a null values processing is shown in Figure 2.The data used in this investigation were scaled between 0 and 1 to guarantee that all inputs and outputs received equal attention and to eliminate their dimensionality. Prior to the use of AI models, data normalization has two major advantages. The first is to avoid overshadowing qualities in smaller numeric ranges by employing attributes in larger numeric ranges. The second goal is to avoid any numerical problems throughout the process.After completion of the normalization process, we split the data set into two parts - training and test sets. In the test, we have utilized1060 for train 259 for testing Using the input and output variables, modeling was implemented.

  18. s

    Data from: Questions asked of Swinburne Library shelving staff across a...

    • figshare.swinburne.edu.au
    pdf
    Updated Jul 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dana McKay; Ben Conyers (2024). Questions asked of Swinburne Library shelving staff across a three month period at the end of the academic year: September to November 2009 [Dataset]. http://doi.org/10.25916/sut.26289487.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Swinburne
    Authors
    Dana McKay; Ben Conyers
    License

    http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/

    Description

    We know that library users often get lost looking for physical items, however there has been little research on how library users search the shelves or what causes them to fail to find what they are looking for. The researchers carried out a preliminary investigation into library users' difficulties searching the shelves. To get an initial picture of exactly what kind of problems library users face when searching for physical items, they asked shelving staff to collect the questions they were asked in a three month period at the end of the academic year (01 September to 17 November 2009). Shelving staff are highly visible in the library and available at the point of need when users get lost; this makes them ideally placed for contextual data collection about users' problems. To facilitate data collection the researchers provided data sheets that had spaces for campus, date, whether or not the user already had a Dewey decimal number and a free-text description of the user's problem or question. Participation in data collection was voluntary, so the queries collected are not a universal sample; however issues staff reported were fairly consistent, and thus are probably representative. Over the three months that this study ran, 183 enquiries, problems and questions were recorded by shelving staff; these enquiries were spread across the five main Swinburne campuses in Australia. 54% of the library users who consulted shelving staff in this study already had a Dewey decimal number. In the free-text enquiry field, some staff recorded problem or enquiry, some recorded assistance offered, and some recorded both. Provided here are a PDF copy of the data sheet used by shelvers for capturing information; and the results of the study. The results are presented in a single Excel spreadsheet with 41 rows and 183 columns of data. Rows categorise the data by the type of problem library users encountered. Columns indicate the campus and date of the question, and whether or not the user already had a Dewey decimal number for the item. End users will require Microsoft Excel or the equivalent to open the spreadsheet.

  19. c

    Ontario Data Catalogue (Ontario Data Catalogue)

    • catalog.civicdataecosystem.org
    Updated Nov 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Ontario Data Catalogue (Ontario Data Catalogue) [Dataset]. https://catalog.civicdataecosystem.org/dataset/ontario-data-catalogue-ontario-data-catalogue
    Explore at:
    Dataset updated
    Nov 24, 2025
    Area covered
    Ontario
    Description

    AI Generated Summary: The Ontario Data Catalogue is a data portal providing access to open datasets generated and maintained by the Ontario government. It allows users to search, access, visualize, and download data in various machine-readable formats, often through APIs, while also indicating licensing terms and data update frequencies. The catalogue also provides tools for data visualization and notifications for dataset updates. About: The Ontario government generates and maintains thousands of datasets. Since 2012, we have shared data with Ontarians via a data catalogue. Open data is data that is shared with the public. Click here to learn more about open data and why Ontario releases it. Ontario’s Digital and Data Directive states that all data must be open, unless there is good reason for it to remain confidential. Ontario’s Chief Digital and Data Officer also has the authority to make certain datasets available publicly. Datasets listed in the catalogue that are not open will have one of the following labels: If you want to use data you find in the catalogue, that data must have a licence – a set of rules that describes how you can use it. A licence: Most of the data available in the catalogue is released under Ontario’s Open Government Licence. However, each dataset may be shared with the public under other kinds of licences or no licence at all. If a dataset doesn’t have a licence, you don’t have the right to use the data. If you have questions about how you can use a specific dataset, please contact us. The Ontario Data Catalogue endeavors to publish open data in a machine readable format. For machine readable datasets, you can simply retrieve the file you need using the file URL. The Ontario Data Catalogue is built on CKAN, which means the catalogue has the following features you can use when building applications. APIs (Application programming interfaces) let software applications communicate directly with each other. If you are using the catalogue in a software application, you might want to extract data from the catalogue through the catalogue API. Note: All Datastore API requests to the Ontario Data Catalogue must be made server-side. The catalogue's collection of dataset metadata (and dataset files) is searchable through the CKAN API. The Ontario Data Catalogue has more than just CKAN's documented search fields. You can also search these custom fields. You can also use the CKAN API to retrieve metadata about a particular dataset and check for updated files. Read the complete documentation for CKAN's API. Some of the open data in the Ontario Data Catalogue is available through the Datastore API. You can also search and access the machine-readable open data that is available in the catalogue. How to use the API feature: Read the complete documentation for CKAN's Datastore API. The Ontario Data Catalogue contains a record for each dataset that the Government of Ontario possesses. Some of these datasets will be available to you as open data. Others will not be available to you. This is because the Government of Ontario is unable to share data that would break the law or put someone's safety at risk. You can search for a dataset with a word that might describe a dataset or topic. Use words like “taxes” or “hospital locations” to discover what datasets the catalogue contains. You can search for a dataset from 3 spots on the catalogue: the homepage, the dataset search page, or the menu bar available across the catalogue. On the dataset search page, you can also filter your search results. You can select filters on the left hand side of the page to limit your search for datasets with your favourite file format, datasets that are updated weekly, datasets released by a particular ministry, or datasets that are released under a specific licence. Go to the dataset search page to see the filters that are available to make your search easier. You can also do a quick search by selecting one of the catalogue’s categories on the homepage. These categories can help you see the types of data we have on key topic areas. When you find the dataset you are looking for, click on it to go to the dataset record. Each dataset record will tell you whether the data is available, and, if so, tell you about the data available. An open dataset might contain several data files. These files might represent different periods of time, different sub-sets of the dataset, different regions, language translations, or other breakdowns. You can select a file and either download it or preview it. Make sure to read the licence agreement to make sure you have permission to use it the way you want. A non-open dataset may be not available for many reasons. Read more about non-open data. Read more about restricted data. Data that is non-open may still be subject to freedom of information requests. The catalogue has tools that enable all users to visualize the data in the catalogue without leaving the catalogue – no additional software needed. Get automatic notifications when datasets are updated. You can choose to get notifications for individual datasets, an organization’s datasets or the full catalogue. You don’t have to provide and personal information – just subscribe to our feeds using any feed reader you like using the corresponding notification web addresses. Copy those addresses and paste them into your reader. Your feed reader will let you know when the catalogue has been updated. The catalogue provides open data in several file formats (e.g., spreadsheets, geospatial data, etc). Learn about each format and how you can access and use the data each file contains. A file that has a list of items and values separated by commas without formatting (e.g. colours, italics, etc.) or extra visual features. This format provides just the data that you would display in a table. XLSX (Excel) files may be converted to CSV so they can be opened in a text editor. How to access the data: Open with any spreadsheet software application (e.g., Open Office Calc, Microsoft Excel) or text editor. Note: This format is considered machine-readable, it can be easily processed and used by a computer. Files that have visual formatting (e.g. bolded headers and colour-coded rows) can be hard for machines to understand, these elements make a file more human-readable and less machine-readable. A file that provides information without formatted text or extra visual features that may not follow a pattern of separated values like a CSV. How to access the data: Open with any word processor or text editor available on your device (e.g., Microsoft Word, Notepad). A spreadsheet file that may also include charts, graphs, and formatting. How to access the data: Open with a spreadsheet software application that supports this format (e.g., Open Office Calc, Microsoft Excel). Data can be converted to a CSV for a non-proprietary format of the same data without formatted text or extra visual features. A shapefile provides geographic information that can be used to create a map or perform geospatial analysis based on location, points/lines and other data about the shape and features of the area. It includes required files (.shp, .shx, .dbt) and might include corresponding files (e.g., .prj). How to access the data: Open with a geographic information system (GIS) software program (e.g., QGIS). A package of files and folders. The package can contain any number of different file types. How to access the data: Open with an unzipping software application (e.g., WinZIP, 7Zip). Note: If a ZIP file contains .shp, .shx, and .dbt file types, it is an ArcGIS ZIP: a package of shapefiles which provide information to create maps or perform geospatial analysis that can be opened with ArcGIS (a geographic information system software program). A file that provides information related to a geographic area (e.g., phone number, address, average rainfall, number of owl sightings in 2011 etc.) and its geospatial location (i.e., points/lines). How to access the data: Open using a GIS software application to create a map or do geospatial analysis. It can also be opened with a text editor to view raw information. Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A text-based format for sharing data in a machine-readable way that can store data with more unconventional structures such as complex lists. How to access the data: Open with any text editor (e.g., Notepad) or access through a browser. Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A text-based format to store and organize data in a machine-readable way that can store data with more unconventional structures (not just data organized in tables). How to access the data: Open with any text editor (e.g., Notepad). Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A file that provides information related to an area (e.g., phone number, address, average rainfall, number of owl sightings in 2011 etc.) and its geospatial location (i.e., points/lines). How to access the data: Open with a geospatial software application that supports the KML format (e.g., Google Earth). Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. This format contains files with data from tables used for statistical analysis and data visualization of Statistics Canada census data. How to access the data: Open with the Beyond 20/20 application. A database which links and combines data from different files or

  20. Materials Facility Waste Returns Data January to December 2020

    • ckan.publishing.service.gov.uk
    • data.gov.uk
    Updated Apr 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2022). Materials Facility Waste Returns Data January to December 2020 [Dataset]. https://ckan.publishing.service.gov.uk/dataset/materials-facility-waste-returns-data-january-to-december-2020
    Explore at:
    Dataset updated
    Apr 8, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    Materials Facility Waste Return Data for January to December 2020. Please note Materials Facility Waste Return's Data prior to 2020 is available on the WRAP Portal here: https://mfrp.wrap.org.uk/ . An excel data extract of wastes received at Materials Facility sites (sites covered under the Material Facility regulations: https://www.legislation.gov.uk/uksi/2016/1154/schedule/9/made) including sampling data for mixed waste received above 125 tonnes. An excel data extract of waste removed from Materials Facility sites including sampling of specified output material (a batch of material produced from a separating process for mixed waste material and made up of one of the following kinds of target material in largest proportion: glass, metal, paper, plastic) the sampling frequency for specified output material is dependent on the material grade in question. Attribution statement: We may be able to license this dataset to you under the Environment Agency Conditional Licence: https://www.gov.uk/government/publications/environment-agency-conditional-licence/environment-agency-conditional-licence with the following special conditions. You must first check the supporting information in the above link to determine if the conditions on use are suitable for your purposes. If they aren’t, this information is not provided with a licence for use, and the data is provided for read right only. You may use the Information for your internal or personal purposes and may only sublicense others to use it if you do so under a written licence which includes the terms of these conditions and the agreement and in particular may not allow any period of use longer than the period licensed to you. The period of permitted use is one year. We have restricted use of the Information as a result of legal restrictions placed upon us to protect the rights or confidentialities of others, including Personal Data that may not be Public Register after this licence expires. If you contact us in writing (this includes email) we will, as far as confidentiality rules allow, provide you with details including, if available, how you might seek permission from a third party to extend your use rights. This condition does not apply if use is limited to use that is authorised by any statute or use that does not require a licence from us

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Do, Tuan (2023). Finsheet - Stock Price in Excel and Google Sheet [Dataset]. http://doi.org/10.7910/DVN/ZD9XVF

Finsheet - Stock Price in Excel and Google Sheet

Explore at:
Dataset updated
Nov 8, 2023
Dataset provided by
Harvard Dataverse
Authors
Do, Tuan
Description

This dataset contains the valuation template the researcher can use to retrieve real-time Excel stock price and stock price in Google Sheets. The dataset is provided by Finsheet, the leading financial data provider for spreadsheet users. To get more financial data, visit the website and explore their function. For instance, if a researcher would like to get the last 30 years of income statement for Meta Platform Inc, the syntax would be =FS_EquityFullFinancials("FB", "ic", "FY", 30) In addition, this syntax will return the latest stock price for Caterpillar Inc right in your spreadsheet. =FS_Latest("CAT") If you need assistance with any of the function, feel free to reach out to their customer support team. To get starter, install their Excel and Google Sheets add-on.

Search
Clear search
Close search
Google apps
Main menu