100+ datasets found
  1. Annual life expectancy in the United States 1850-2100

    • statista.com
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual life expectancy in the United States 1850-2100 [Dataset]. https://www.statista.com/statistics/1040079/life-expectancy-united-states-all-time/
    Explore at:
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    From the mid-19th century until today, life expectancy at birth in the United States has roughly doubled, from 39.4 years in 1850 to 79.6 years in 2025. It is estimated that life expectancy in the U.S. began its upward trajectory in the 1880s, largely driven by the decline in infant and child mortality through factors such as vaccination programs, antibiotics, and other healthcare advancements. Improved food security and access to clean water, as well as general increases in living standards (such as better housing, education, and increased safety) also contributed to a rise in life expectancy across all age brackets. There were notable dips in life expectancy; with an eight year drop during the American Civil War in the 1860s, a seven year drop during the Spanish Flu empidemic in 1918, and a 2.5 year drop during the Covid-19 pandemic. There were also notable plateaus (and minor decreases) not due to major historical events, such as that of the 2010s, which has been attributed to a combination of factors such as unhealthy lifestyles, poor access to healthcare, poverty, and increased suicide rates, among others. However, despite the rate of progress slowing since the 1950s, most decades do see a general increase in the long term, and current UN projections predict that life expectancy at birth in the U.S. will increase by another nine years before the end of the century.

  2. NCHS - Death rates and life expectancy at birth

    • catalog.data.gov
    • data.virginia.gov
    • +4more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Death rates and life expectancy at birth [Dataset]. https://catalog.data.gov/dataset/nchs-death-rates-and-life-expectancy-at-birth
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  3. Life expectancy by continent and gender 2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Life expectancy by continent and gender 2024 [Dataset]. https://www.statista.com/statistics/270861/life-expectancy-by-continent/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    In 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84–83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53–54 years.

  4. Life expectancy in North America 2022

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in North America 2022 [Dataset]. https://www.statista.com/statistics/274513/life-expectancy-in-north-america/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    North America
    Description

    This statistic shows the average life expectancy in North America for those born in 2022, by gender and region. In Canada, the average life expectancy was 80 years for males and 84 years for females.

    Life expectancy in North America

    Of those considered in this statistic, the life expectancy of female Canadian infants born in 2021 was the longest, at 84 years. Female infants born in America that year had a similarly high life expectancy of 81 years. Male infants, meanwhile, had lower life expectancies of 80 years (Canada) and 76 years (USA).

    Compare this to the worldwide life expectancy for babies born in 2021: 75 years for women and 71 years for men. Of continents worldwide, North America ranks equal first in terms of life expectancy of (77 years for men and 81 years for women). Life expectancy is lowest in Africa at just 63 years and 66 years for males and females respectively. Japan is the country with the highest life expectancy worldwide for babies born in 2020.

    Life expectancy is calculated according to current mortality rates of the population in question. Global variations in life expectancy are caused by differences in medical care, public health and diet, and reflect global inequalities in economic circumstances. Africa’s low life expectancy, for example, can be attributed in part to the AIDS epidemic. In 2019, around 72,000 people died of AIDS in South Africa, the largest amount worldwide. Nigeria, Tanzania and India were also high on the list of countries ranked by AIDS deaths that year. Likewise, Africa has by far the highest rate of mortality by communicable disease (i.e. AIDS, neglected tropics diseases, malaria and tuberculosis).

  5. M

    Life Expectancy Statistics 2025 By Health Progress

    • media.market.us
    Updated Jan 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Media (2025). Life Expectancy Statistics 2025 By Health Progress [Dataset]. https://media.market.us/life-expectancy-statistics/
    Explore at:
    Dataset updated
    Jan 14, 2025
    Dataset authored and provided by
    Market.us Media
    License

    https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Description

    Introduction

    Life Expectancy Statistics: Life expectancy is the average number of years a person is expected to live based on current mortality rates in a specific population.

    It is influenced by healthcare quality, lifestyle choices, economic conditions, genetics, environmental factors, and social determinants like education and public health policies.

    Typically measured as life expectancy at birth, it reflects the average lifespan of a newborn. However, it can also be assessed for older ages, such as 65, to predict additional years of life.

    https://media.market.us/wp-content/uploads/2024/12/life-expectancy-statistics.png" alt="Life Expectancy Statistics" class="wp-image-27483">

  6. T

    Vital Signs: Life Expectancy – Bay Area

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Apr 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-Bay-Area/emjt-svg9
    Explore at:
    xml, csv, tsv, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 7, 2017
    Dataset authored and provided by
    State of California, Department of Health: Death Records
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.

    Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  7. T

    Vital Signs: Life Expectancy – by ZIP Code

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Apr 12, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – by ZIP Code [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-by-ZIP-Code/xym8-u3kc
    Explore at:
    tsv, json, application/rdfxml, xml, csv, application/rssxmlAvailable download formats
    Dataset updated
    Apr 12, 2017
    Dataset authored and provided by
    State of California, Department of Health: Death Records
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov

    U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.

    For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.

    ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  8. Life expectancy at various ages, by population group and sex, Canada

    • open.canada.ca
    • datasets.ai
    • +2more
    csv, html, xml
    Updated Jan 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Life expectancy at various ages, by population group and sex, Canada [Dataset]. https://open.canada.ca/data/en/dataset/5efba11f-3ee5-4a16-9254-a606018862e6
    Explore at:
    html, xml, csvAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).

  9. Life expectancy at birth and at age 65, by province and territory,...

    • www150.statcan.gc.ca
    • datasets.ai
    • +5more
    Updated Dec 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2017). Life expectancy at birth and at age 65, by province and territory, three-year average [Dataset]. http://doi.org/10.25318/1310040901-eng
    Explore at:
    Dataset updated
    Dec 6, 2017
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Life expectancy at birth and at age 65, by sex, on a three-year average basis.

  10. Life expectancy, at birth and at age 65, by sex, three-year average, Canada,...

    • www150.statcan.gc.ca
    • datasets.ai
    • +1more
    Updated Aug 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2018). Life expectancy, at birth and at age 65, by sex, three-year average, Canada, provinces, territories, health regions and peer groups, inactive [Dataset]. http://doi.org/10.25318/1310006301-eng
    Explore at:
    Dataset updated
    Aug 22, 2018
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains 2754 series, with data for years 2005/2007 - 2012/2014 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (153 items: Canada; Newfoundland and Labrador; Eastern Regional Integrated Health Authority, Newfoundland and Labrador; Central Regional Integrated Health Authority, Newfoundland and Labrador; ...); Age group (2 items: At birth; At age 65); Sex (3 items: Both sexes; Males; Females); Characteristics (3 items: Life expectancy; Low 95% confidence interval, life expectancy; High 95% confidence interval, life expectancy).

  11. A

    ‘NCHS - Death rates and life expectancy at birth’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jun 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2019). ‘NCHS - Death rates and life expectancy at birth’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-nchs-death-rates-and-life-expectancy-at-birth-ab5b/latest
    Explore at:
    Dataset updated
    Jun 30, 2019
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘NCHS - Death rates and life expectancy at birth’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/c2b9cde2-8de2-4643-8681-d6f829849ef5 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex.

    Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).

    Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm.

    SOURCES

    CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).

    REFERENCES

    1. National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.

    2. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.

    3. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.

    4. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.

    5. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

    --- Original source retains full ownership of the source dataset ---

  12. Life expectancy in Europe 2024

    • statista.com
    Updated Nov 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in Europe 2024 [Dataset]. https://www.statista.com/statistics/274514/life-expectancy-in-europe/
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Europe
    Description

    This statistic shows the average life expectancy in Europe for those born in 2024, by gender and region. The average life expectancy in Western Europe was 79 years for males and 84 years for females in 2024. Additional information on European life expectancy The difference in life expectancy seen between men and women across all European regions is in line with the global trends of women outliving men, on average. The average life expectancy at birth worldwide by income group shows that the gender life expectancy gap is not only a consistent trend across countries, but also income groups. Moreover, the higher life expectancy for those in high income groups may help to explain the lower average life expectancy for those born in Eastern Europe where average incomes are generally lower than other European regions. Although income and length of life are not directly correlated, higher income individuals are generally able to afford access to superior nutrition and healthcare as well as having leisure time for exercise. That said, current trends in the increases in life expectancy worldwide by country between 1970 and 2017 suggest economic growth will lead to larger increases in life expectancy. Those increases are less likely to occur to such a degree in the more developed regions of Europe where Italy, Spain, France, Switzerland, Iceland and Austria all rank in the top 20 countries with the highest life expectancy.

  13. life expectancy dataset

    • kaggle.com
    Updated May 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kiran Shahi (2022). life expectancy dataset [Dataset]. http://doi.org/10.34740/kaggle/ds/1980580
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 25, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kiran Shahi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    These datasets were collected to fulfil the requirement of University coursework.

    The complete source code and paper are available on GitHub. Click here.

    About Dataset

    These datasets contain the information of the World Development Indicator (WDI) provided by the world bank, the non-communicable mortality rate, the suicide rate and the number of health workforce data by the World Health Organization (WHO).

    DatasetDescription
    World Development IndicatorsThis dataset contains the data of 1444 development indicators for 2666 countries and country groups between the years 1960 to 2020. This dataset was downloaded from the world bank’s data hub.
    Health workforceThis dataset contains the health workforce information such as medical doctors (per 10000 population), number of medical doctors, number of Generalist medical practitioners, etc.
    Mortality from CVD, cancer, diabetes or CRD between exact ages 30 and 70 (%)This dataset contains information on mortality caused by various non-communicable diseases such as cardiovascular disease (CVD), cancer, diabetes etc. We have used two files for this dataset. Separately for both males and females. This dataset was downloaded from the world bank’s databank.
    Suicide mortality rate (per 100,000 population)This data set contains information on the suicide mortality rate per 100,000 population. We have used two files for this dataset. Separately for both males and females. This dataset was downloaded from the world bank’s databank.

    Implementation

  14. F

    Life Expectancy at Birth, Total for the United States

    • fred.stlouisfed.org
    json
    Updated Apr 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Life Expectancy at Birth, Total for the United States [Dataset]. https://fred.stlouisfed.org/series/SPDYNLE00INUSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Apr 16, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Life Expectancy at Birth, Total for the United States (SPDYNLE00INUSA) from 1960 to 2023 about life expectancy, life, birth, and USA.

  15. s

    Life Expectancy - Dataset - Cobalt Admin

    • cobaltadmin.sgdatacatalogue.net
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Life Expectancy - Dataset - Cobalt Admin [Dataset]. https://cobaltadmin.sgdatacatalogue.net/dataset/life_expectancy
    Explore at:
    Dataset updated
    Mar 18, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Life expectancy in years, at birth and for age groups. Breakdowns are also given for deprivation (SIMD) and Urban Rural classification. Life expectancy refers to the number of years that a person could expect to survive if the current mortality rates for each age group, sex and geographic area remain constant throughout their life. This is referred to as ‘period life expectancy’ and does not usually reflect the actual number of years that a person will survive. This is because it does not take into account changes in health care and other social factors that may occur through someone’s lifetime. However, life expectancy is a useful statistic as it provides a snapshot of the health of a population and allows the identification of inequalities between populations. Further details are available on the NRS website

  16. lillies: An R package for the estimation of excess Life Years Lost among...

    • plos.figshare.com
    • figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleguer Plana-Ripoll; Vladimir Canudas-Romo; Nanna Weye; Thomas M. Laursen; John J. McGrath; Per Kragh Andersen (2023). lillies: An R package for the estimation of excess Life Years Lost among patients with a given disease or condition [Dataset]. http://doi.org/10.1371/journal.pone.0228073
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Oleguer Plana-Ripoll; Vladimir Canudas-Romo; Nanna Weye; Thomas M. Laursen; John J. McGrath; Per Kragh Andersen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life expectancy at a given age is a summary measure of mortality rates present in a population (estimated as the area under the survival curve), and represents the average number of years an individual at that age is expected to live if current age-specific mortality rates apply now and in the future. A complementary metric is the number of Life Years Lost, which is used to measure the reduction in life expectancy for a specific group of persons, for example those diagnosed with a specific disease or condition (e.g. smoking). However, calculation of life expectancy among those with a specific disease is not straightforward for diseases that are not present at birth, and previous studies have considered a fixed age at onset of the disease, e.g. at age 15 or 20 years. In this paper, we present the R package lillies (freely available through the Comprehensive R Archive Network; CRAN) to guide the reader on how to implement a recently-introduced method to estimate excess Life Years Lost associated with a disease or condition that overcomes these limitations. In addition, we show how to decompose the total number of Life Years Lost into specific causes of death through a competing risks model, and how to calculate confidence intervals for the estimates using non-parametric bootstrap. We provide a description on how to use the method when the researcher has access to individual-level data (e.g. electronic healthcare and mortality records) and when only aggregated-level data are available.

  17. Where should we focus on improving life expectancy?

    • gis-for-racialequity.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +1more
    Updated Mar 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Where should we focus on improving life expectancy? [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/af2472aaa9e94814b06e950db53f18f3
    Explore at:
    Dataset updated
    Mar 26, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This multi-scale map shows life expectancy - a widely-used measure of health and mortality. From the County Health Rankings page about Life Expectancy:"Life Expectancy is an AverageLife Expectancy measures the average number of years from birth a person can expect to live, according to the current mortality experience (age-specific death rates) of the population. Life Expectancy takes into account the number of deaths in a given time period and the average number of people at risk of dying during that period, allowing us to compare data across counties with different population sizes.Life Expectancy is Age-AdjustedAge is a non-modifiable risk factor, and as age increases, poor health outcomes are more likely. Life Expectancy is age-adjusted in order to fairly compare counties with differing age structures.What Deaths Count Toward Life Expectancy?Deaths are counted in the county where the individual lived. So, even if an individual dies in a car crash on the other side of the state, that death is attributed to his/her home county.Some Data are SuppressedA missing value is reported for counties with fewer than 5,000 population-years-at-risk in the time frame.Measure LimitationsLife Expectancy includes mortality of all age groups in a population instead of focusing just on premature deaths and thus can be dominated by deaths of the elderly.[1] This could draw attention to areas with higher mortality rates among the oldest segment of the population, where there may be little that can be done to change chronic health problems that have developed over many years. However, this captures the burden of chronic disease in a population better than premature death measures.[2]Furthermore, the calculation of life expectancy is complex and not easy to communicate. Methodologically, it can produce misleading results caused by hidden differences in age structure, is sensitive to infant and child mortality, and tends to be overestimated in small populations."Breakdown by race/ethnicity in pop-up: (This map has been updated with new data, so figures may vary from those in this image.)There are many factors that play into life expectancy: rates of noncommunicable diseases such as cancer, diabetes, and obesity, prevalence of tobacco use, prevalence of domestic violence, and many more.Proven strategies to improve life expectancy and health in general A database of dozens of strategies can be found at County Health Rankings' What Works for Health site, sorted by Health Behaviors, Clinical Care, Social & Economic Factors, and Physical Environment. Policies and Programs listed here have been evaluated as to their effectiveness. For example, consumer-directed health plans received an evidence rating of "mixed evidence" whereas cultural competence training for health care professionals received a rating of "scientifically supported." Data from County Health Rankings (layer referenced below), available for nation, state, and county, and available in ArcGIS Living Atlas of the World.

  18. e

    Life expectancy - current figures

    • data.europa.eu
    • data.wu.ac.at
    html
    Updated Oct 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    North Yorkshire County Council (2021). Life expectancy - current figures [Dataset]. https://data.europa.eu/data/datasets/life-expectancy-years
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 11, 2021
    Dataset authored and provided by
    North Yorkshire County Council
    Description

    Life expectancy and disability free years statistics

  19. d

    Life Expectancy at Birth

    • data.ore.dc.gov
    Updated Sep 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2024). Life Expectancy at Birth [Dataset]. https://data.ore.dc.gov/datasets/life-expectancy-at-birth
    Explore at:
    Dataset updated
    Sep 10, 2024
    Dataset authored and provided by
    City of Washington, DC
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Asian and Pacific Islander populations are only available in 5-year estimates due to low numbers.

    Data Source: DC Vital Records, CDC WONDER single-race single-year population estimates and American Community Survey (ACS) 1-year estimates.

    Why This Matters

    Life expectancy reflects a community’s mortality levels and overall health. In the U.S. life expectancy has been stagnant since 2010 and declined during the COVID-19 Pandemic, primarily due to heart disease, cancer, COVID-19, and fatal drug overdoses.

    Changes and disparities in life expectancy at birth reflect trends and inequities in living standards, access to quality health care, and other social and economic factors.

    Nationally, life expectancy at birth is lower among Black and Native Americans compared to other racial and ethnic groups. These racial disparities are rooted in a long history of racial segregation, economic and employment discrimination, and environmental racism, among other racist practices, as noted by the National Health Atlas.

    The District Response

    Ensuring District residents access to various healthcare programs, such as Medicaid, DC Healthcare Alliance Program, and DC Healthy Families. For more information on these programs, click here.

    Initiatives and programs to reduce disparities in housing, employment, and food insecurity through programs and services, such as Supplemental Nutrition Assistance Program (SNAP), DC Child Care Subsidy Program, and DC Infrastructure Academy.

    Promoting health through free DPR fitness centers, wellness classes, the MoveDC Plan for active transportation, and health and PE classes in public schools to encourage lifelong exercise habits.

  20. Disability-Free Life Expectancy (DFLE) and Life Expectancy (LE) at birth by...

    • ons.gov.uk
    • cy.ons.gov.uk
    xls
    Updated Mar 10, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2016). Disability-Free Life Expectancy (DFLE) and Life Expectancy (LE) at birth by Upper Tier Local Authority, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandlifeexpectancies/datasets/disabilityfreelifeexpectancydfleandlifeexpectancyleatbirthbyuppertierlocalauthorityatbirthengland
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Mar 10, 2016
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Health expectancies for both sexes at birth by upper tier local authority with confidence intervals and proportions of life with and without disability.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Annual life expectancy in the United States 1850-2100 [Dataset]. https://www.statista.com/statistics/1040079/life-expectancy-united-states-all-time/
Organization logo

Annual life expectancy in the United States 1850-2100

Explore at:
46 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 31, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

From the mid-19th century until today, life expectancy at birth in the United States has roughly doubled, from 39.4 years in 1850 to 79.6 years in 2025. It is estimated that life expectancy in the U.S. began its upward trajectory in the 1880s, largely driven by the decline in infant and child mortality through factors such as vaccination programs, antibiotics, and other healthcare advancements. Improved food security and access to clean water, as well as general increases in living standards (such as better housing, education, and increased safety) also contributed to a rise in life expectancy across all age brackets. There were notable dips in life expectancy; with an eight year drop during the American Civil War in the 1860s, a seven year drop during the Spanish Flu empidemic in 1918, and a 2.5 year drop during the Covid-19 pandemic. There were also notable plateaus (and minor decreases) not due to major historical events, such as that of the 2010s, which has been attributed to a combination of factors such as unhealthy lifestyles, poor access to healthcare, poverty, and increased suicide rates, among others. However, despite the rate of progress slowing since the 1950s, most decades do see a general increase in the long term, and current UN projections predict that life expectancy at birth in the U.S. will increase by another nine years before the end of the century.

Search
Clear search
Close search
Google apps
Main menu