Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold rose to 3,320.86 USD/t.oz on July 1, 2025, up 0.53% from the previous day. Over the past month, Gold's price has fallen 1.80%, but it is still 42.51% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on July of 2025.
This statistic depicts the average annual prices for gold from 2014 to 2024 with a forecast until 2026. In 2024, the average price for gold stood at 2,388 U.S. dollars per troy ounce, the highest value recorded throughout the period considered. In 2026, the average gold price is expected to increase, reaching 3,200 U.S. dollars per troy ounce.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.procurementresource.com/privacy-policyhttps://www.procurementresource.com/privacy-policy
Get the latest insights on price movement and trend analysis of Gold in different regions across the world (Asia, Europe, North America, Latin America, and the Middle East Africa).
In 2025, the price of platinum is forecast to hover around 1,150 U.S. dollars per troy ounce. Meanwhile, the cost of per troy ounce of gold is expected to amount to 1,700 U.S. dollars.
Precious metals
Precious metals are counted among the most valuable commodities worldwide. The most well known such metals are gold, silver and the platinum group metals. A precious metal can be used as an industrial commodity or as an investment. The major areas of application include the following sectors: technology, car-making, industrial manufacturing and jewelry making. Furthermore, gold and silver are used as coinage metals, and gold reserves are held by the central banks of many countries worldwide in order to store value or for use as a redemption medium. The idea behind this procedure is that gold reserves will help secure and stabilize the countries’ respective currencies. At 8,100 tons, the United States is the country with the most extensive stock of gold. It is kept in an underground vault at the New York Federal Reserve Bank.
Russia, the United States, Canada, South Africa and China are the main producers of precious metals. Silver is the most abundant of the metals, followed by gold and palladium. Barrick Gold is the world’s largest gold mining company. The Toronto-based firm produced some five million ounces of gold in 2020. The leading silver producers include Mexico-based Fresnillo, Poland’s KGHM Polska Miedž and the mining giant Glencore. Anglo Platinum and Impala are the key mining companies to produce platinum group metals.
In 2023, Silver prices are expected to settle at around 23.5 U.S. dollars per troy ounce. It is expected to remain the precious metal with the lowest value per ounce. The price of gold is forecast to drop to around 1,663 U.S. dollars per ounce, making it the most expensive precious metal in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average gold price increased by 1.7% to $1800 per troy ounce in 2021. This year, it was forecast to ease, but rising political uncertainty may reverse the forecast.
https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html
Predictions: S&P GSCI Gold index is expected to continue its upward trend in the near term, driven by safe-haven demand amid ongoing geopolitical uncertainties and concerns about global economic growth. The index may face some resistance at higher levels, but it is likely to break through and reach new highs. Risks: The main risks to the S&P GSCI Gold index's upward trend include a significant improvement in the global economic outlook, a sharp decline in geopolitical tensions, and a shift in investor sentiment towards riskier assets. A prolonged period of high inflation could also pose a risk to the index, as investors may seek alternative safe-haven assets such as bonds.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Goldman Sachs raises its year-end gold price target to $3,700 due to economic uncertainties and strong demand. UBS also revises its forecast to $3,500, highlighting gold's status as a secure investment.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 2021, the Saudi gold market increased by 20% to $X for the first time since 2017, thus ending a three-year declining trend. Over the period under review, consumption, however, continues to indicate a pronounced downturn. Gold consumption peaked at $X in 2017; however, from 2018 to 2021, consumption stood at a somewhat lower figure.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Sri Lankan gold market was finally on the rise to reach $X in 2021, after three years of decline. Over the period under review, consumption saw a noticeable increase. Gold consumption peaked at $X in 2017; however, from 2018 to 2021, consumption remained at a lower figure.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 2021, the Myanmar's gold market decreased by -48.3% to $X for the first time since 2018, thus ending a two-year rising trend. Over the period under review, consumption saw a abrupt slump. Over the period under review, the market hit record highs at $X in 2015; however, from 2016 to 2021, consumption failed to regain momentum.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 2021, the global gold market decreased by -7.3% to $X for the first time since 2018, thus ending a two-year rising trend. The market value increased at an average annual rate of +3.1% from 2012 to 2021; however, the trend pattern indicated some noticeable fluctuations being recorded in certain years. Over the period under review, the global market reached the maximum level at $X in 2020, and then shrank in the following year.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the Gold Market was valued at USD 3.2 Trillion in 2023 and is projected to reach USD 4.5 Trillion by 2032, with an expected CAGR of 7.38% during the forecast period. It is one of the crucial financial assets with a liquid market, intrinsic value, and diversified uses in jewelry, electronics, and for investment purposes. Gold includes both the physical bullion and ETF markets. Mining and refining technological innovations enhance efficiency and sustainability.Gold provides economic stability and security of investments since it is durable, widely accepted, and one that diversifies portfolios. Hence, gold holds a very significant place both in consumer markets and financial systems through its support for industries ranging from luxury goods to technology. Recent developments include: March 2023: Pan American Silver Corporation acquired all the issued and outstanding common shares of Yamana Gold Inc., as part of the arrangement, which includes its mines and increased the geographical operations of the company in Latin America., February 2023: Barrick Gold, the world's second-biggest gold producer, announced a 10% increase in attributable proved and probable gold mineral reserves to 76 million ounces net of depletion in 2022 while maintaining current reserves.. Key drivers for this market are: Demand for Gold in the form of Jewelry and Long-term Savings, Increasing Consumption in High-End Electronics Applications; Other Drivers. Potential restraints include: Declining Ore Grades and Other Technical Challenges, Other Restraints. Notable trends are: Jewelry Segment to Dominate the Demand.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global gold target market size was valued at approximately USD 2.5 trillion in 2023 and is projected to reach around USD 3.7 trillion by 2032, growing at a compound annual growth rate (CAGR) of 4.3% during the forecast period. This steady growth is driven by various factors including increasing geopolitical uncertainties, inflation hedging characteristics of gold, and rising demand across different applications. The intrinsic value and limited supply of gold continue to make it a safe haven investment in times of economic volatility, further solidifying its role in diverse portfolios worldwide.
One of the significant growth factors driving the gold target market is the persistent demand for gold as a hedge against inflation and currency devaluation. In the face of fluctuating global economies and the ongoing volatility in currency markets, investors often turn to gold as a means to preserve wealth. The metalÂ’s ability to maintain its value over time makes it an attractive asset, especially in regions experiencing high inflation rates. Moreover, central banks continue to increase their gold reserves as part of their monetary policy strategies, thereby fueling demand in this market segment.
Another crucial factor contributing to the growth of the gold market is the expanding middle class and rising disposable incomes, particularly in developing economies. As incomes rise, so does the demand for luxury items, including gold jewelry. Countries like India and China, which have deep-rooted cultural affinities with gold, are witnessing significant increases in gold consumption for both investment and ornamental purposes. This cultural significance, combined with economic growth, has positioned the Asia Pacific region as a major consumer of gold, bolstering the market's global expansion.
Technological advancements and innovations in gold mining and refining processes are also propelling market growth. Modern techniques and equipment have improved the efficiency of gold extraction and processing, reducing costs and increasing output. Additionally, the development of new financial products like gold-backed exchange-traded funds (ETFs) has made gold investments more accessible to a broader range of investors. The convenience and flexibility of these products have attracted both retail and institutional investors, further driving market demand.
The emergence of Edible Gold Beverage is an intriguing development in the gold market, blending luxury with culinary innovation. This unique product taps into the growing trend of gourmet experiences, where consumers seek novel and opulent ways to indulge. Edible gold, known for its non-toxic and inert properties, is increasingly being used to enhance beverages, offering a visually stunning and luxurious appeal. This trend is particularly popular in high-end restaurants and events, where presentation and exclusivity are paramount. The incorporation of gold into beverages not only elevates the sensory experience but also aligns with the cultural significance of gold as a symbol of wealth and celebration. As consumer preferences evolve towards unique and extravagant experiences, the Edible Gold Beverage market is poised for growth, attracting both connoisseurs and curious consumers alike.
Regionally, Asia Pacific dominates the gold target market, accounting for a significant share due to its large population, cultural affinity for gold, and increasing economic power. North America and Europe follow with substantial market contributions, driven by investment demand and industrial applications. The Middle East, with its strong cultural and economic ties to gold, also presents a lucrative market, while Latin America is emerging as a notable player due to its rich natural gold reserves and growing investments in mining infrastructure.
The segmentation of the gold market by product type includes bullion, coins, jewelry, and exchange-traded funds (ETFs). Gold bullion, comprising bars and ingots, represents a significant portion of the market due to its traditional use as a store of value and its appeal to both retail and institutional investors. As a tangible asset, bullion is favored for its purity and weight, often considered the most direct way to hold gold. The demand for bullion remains robust amidst economic uncertainties, with investors seeking security against market fluctuations and geopolitical tensions.
Coins are
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold rose to 3,320.86 USD/t.oz on July 1, 2025, up 0.53% from the previous day. Over the past month, Gold's price has fallen 1.80%, but it is still 42.51% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on July of 2025.