42 datasets found
  1. Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

  2. d

    GIS Features of the Geospatial Fabric for National Hydrologic Modeling

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Oct 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). GIS Features of the Geospatial Fabric for National Hydrologic Modeling [Dataset]. https://catalog.data.gov/dataset/gis-features-of-the-geospatial-fabric-for-national-hydrologic-modeling
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature class and its derivation is provided within the

  3. f

    Data Paper. Data Paper

    • wiley.figshare.com
    html
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth J. Sbrocco; Paul H. Barber (2023). Data Paper. Data Paper [Dataset]. http://doi.org/10.6084/m9.figshare.3555765.v1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Wiley
    Authors
    Elizabeth J. Sbrocco; Paul H. Barber
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    File List bathymetry_30s.7z (MD5: dd855211bbcdee7d6862414da23d6da2) biogeo01_07_30s.7z (MD5: 396525db0abd9de2ede3d8fdeb15e8ee) biogeo08_17_30s.7z (MD5: 96c2417eed84e85f9896536b934c53e1) Monthly_Variables_30s.7z (MD5: 89016a8d17e8d8a1dddef0a121a83f5d)

         Additional high resolution raster files:
    

    Sea_Ice_30s.7z (MD5: 547d355294c530f63b9b0a73dedd2f3a)

         Low resolution MARSPEC data files:
    

    MARSPEC_2o5m.7z (MD5: 923c97d185adb0c72f158a84e2981391) MARSPEC_5m.7z (MD5: 95f7c3739c4f2889c2eff18afeffa489) MARSPEC_10m.7z (MD5: d91f3127f46f7004d116f14328bf4b71) Description Ecological niche models are widely used in terrestrial studies to address critical ecological and evolutionary questions related to past and future climate change, local adaptation and speciation, the discovery of rare endemics, and biological invasions. However the application of niche models to similar questions in marine ecosystems has lagged behind, in part due to the lack of a centralized high-resolution spatial data set representing both benthic and pelagic marine environments. Here we describe the creation of MARSPEC, a high-resolution GIS database of ocean climate layers intended for marine ecological niche modeling and other applications in marine spatial ecology. MARSPEC combines information related to topographic complexity of the seafloor with bioclimatic measures of sea surface temperature and salinity for the world ocean. We derived seven geophysical variables from a high-resolution raster grid representing depth of the seafloor (bathymetry) to characterize six facets of topographic complexity (east-west and north-south components of aspect, slope, concavity of the seafloor, and plan and profile curvature) and distance from shore. We further derived 10 bioclimatic variables describing the annual mean, range, variance and extreme values for temperature and salinity from long-term monthly climatological means obtained from remotely sensed and in situ oceanographic observations. All variables were clipped to a common land mask, interpolated to a nominal 1-km (30 arc-second) grid, and converted to an ESRI raster grid file format compatible with popular GIS programs. MARSPEC is a 10-fold improvement in spatial resolution over the next-best data set (Bio-ORACLE) and is the only high-resolution global marine data set to combine variables from the benthic and pelagic environments into a single database. Additionally, we provide the monthly climatological layers used to derive the bioclimatic variables, allowing users to calculate equivalent MARSPEC variables from anomaly data for past and future climate scenarios. A detailed description of GIS processing steps required to calculate the MARSPEC variables can be found in the metadata.

          Key words: climate change; ecological niche modeling; GIS; marine spatial ecology; ocean climate; salinity; sea surface temperature; species distribution modeling.
    
  4. d

    Land-Use Conflict Identification Strategy (LUCIS) Models

    • catalog.data.gov
    • hub.arcgis.com
    Updated Nov 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Univeristy of Idaho (2020). Land-Use Conflict Identification Strategy (LUCIS) Models [Dataset]. https://catalog.data.gov/dataset/land-use-conflict-identification-strategy-lucis-models
    Explore at:
    Dataset updated
    Nov 30, 2020
    Dataset provided by
    Univeristy of Idaho
    Description

    The downloadable ZIP file contains model documentation and contact information for the model creator. For more information, or a copy of the project report which provides greater model detail, please contact Ryan Urie - traigo12@gmail.com.This model was created from February through April 2010 as a central component of the developer's master's project in Bioregional Planning and Community Design at the University of Idaho to provide a tool for identifying appropriate locations for various land uses based on a variety of user-defined social, economic, ecological, and other criteria. It was developed using the Land-Use Conflict Identification Strategy developed by Carr and Zwick (2007). The purpose of this model is to allow users to identify suitable locations within a user-defined extent for any land use based on any number of social, economic, ecological, or other criteria the user chooses. The model as it is currently composed was designed to identify highly suitable locations for new residential, commercial, and industrial development in Kootenai County, Idaho using criteria, evaluations, and weightings chosen by the model's developer. After criteria were chosen, one or more data layers were gathered for each criterion from public sources. These layers were processed to result in a 60m-resolution raster showing the suitability of each criterion across the county. These criteria were ultimately combined with a weighting sum to result in an overall development suitability raster. The model is intended to serve only as an example of how a GIS-based land-use suitability analysis can be conceptualized and implemented using ArcGIS ModelBuilder, and under no circumstances should the model's outputs be applied to real-world decisions or activities. The model was designed to be extremely flexible so that later users may determine their own land-use suitability, suitability criteria, evaluation rationale, and criteria weights. As this was the first project of its kind completed by the model developer, no guarantees are made as to the quality of the model or the absence of errorsThis model has a hierarchical structure in which some forty individual land-use suitability criteria are combined by weighted summation into several land-use goals which are again combined by weighted summation to yield a final land-use suitability layer. As such, any inconsistencies or errors anywhere in the model tend to reveal themselves in the final output and the model is in a sense self-testing. For example, each individual criterion is presented as a raster with values from 1-9 in a defined spatial extent. Inconsistencies at any point in the model will reveal themselves in the final output in the form of an extent different from that desired, missing values, or values outside the 1-9 range.This model was created using the ArcGIS ModelBuilder function of ArcGIS 9.3. It was based heavily on the recommendations found in the text "Smart land-use analysis: the LUCIS model." The goal of the model is to determine the suitability of a chosen land-use at each point across a chosen area using the raster data format. In this case, the suitability for Development was evaluated across the area of Kootenai County, Idaho, though this is primarily for illustrative purposes. The basic process captured by the model is as follows: 1. Choose a land use suitability goal. 2. Select the goals and criteria that define this goal and get spatial data for each. 3. Use the gathered data to evaluate the quality of each criterion across the landscape, resulting in a raster with values from 1-9. 4. Apply weights to each criterion to indicate its relative contribution to the suitability goal. 5. Combine the weighted criteria to calculate and display the suitability of this land use at each point across the landscape. An individual model was first built for each of some forty individual criteria. Once these functioned successfully, individual criteria were combined with a weighted summation to yield one of three land-use goals (in this case, Residential, Commercial, or Industrial). A final model was then constructed to combined these three goals into a final suitability output. In addition, two conditional elements were placed on this final output (one to give already-developed areas a very high suitability score for development [a "9"] and a second to give permanently conserved areas and other undevelopable lands a very low suitability score for development [a "1"]). Because this model was meant to serve primarily as an illustration of how to do land-use suitability analysis, the criteria, evaluation rationales, and weightings were chosen by the modeler for expediency; however, a land-use analysis meant to guide real-world actions and decisions would need to rely far more heavily on a variety of scientific and stakeholder input.

  5. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2024 - 2028
    Area covered
    United Kingdom, Germany, United States, Canada
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover

  6. d

    Digital data for the Salinas Valley Geological Framework, California

    • catalog.data.gov
    • data.usgs.gov
    Updated Sep 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Digital data for the Salinas Valley Geological Framework, California [Dataset]. https://catalog.data.gov/dataset/digital-data-for-the-salinas-valley-geological-framework-california
    Explore at:
    Dataset updated
    Sep 23, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Salinas, Salinas Valley, California
    Description

    This digital dataset was created as part of a U.S. Geological Survey study, done in cooperation with the Monterey County Water Resource Agency, to conduct a hydrologic resource assessment and develop an integrated numerical hydrologic model of the hydrologic system of Salinas Valley, CA. As part of this larger study, the USGS developed this digital dataset of geologic data and three-dimensional hydrogeologic framework models, referred to here as the Salinas Valley Geological Framework (SVGF), that define the elevation, thickness, extent, and lithology-based texture variations of nine hydrogeologic units in Salinas Valley, CA. The digital dataset includes a geospatial database that contains two main elements as GIS feature datasets: (1) input data to the 3D framework and textural models, within a feature dataset called “ModelInput”; and (2) interpolated elevation, thicknesses, and textural variability of the hydrogeologic units stored as arrays of polygonal cells, within a feature dataset called “ModelGrids”. The model input data in this data release include stratigraphic and lithologic information from water, monitoring, and oil and gas wells, as well as data from selected published cross sections, point data derived from geologic maps and geophysical data, and data sampled from parts of previous framework models. Input surface and subsurface data have been reduced to points that define the elevation of the top of each hydrogeologic units at x,y locations; these point data, stored in a GIS feature class named “ModelInputData”, serve as digital input to the framework models. The location of wells used a sources of subsurface stratigraphic and lithologic information are stored within the GIS feature class “ModelInputData”, but are also provided as separate point feature classes in the geospatial database. Faults that offset hydrogeologic units are provided as a separate line feature class. Borehole data are also released as a set of tables, each of which may be joined or related to well location through a unique well identifier present in each table. Tables are in Excel and ascii comma-separated value (CSV) format and include separate but related tables for well location, stratigraphic information of the depths to top and base of hydrogeologic units intercepted downhole, downhole lithologic information reported at 10-foot intervals, and information on how lithologic descriptors were classed as sediment texture. Two types of geologic frameworks were constructed and released within a GIS feature dataset called “ModelGrids”: a hydrostratigraphic framework where the elevation, thickness, and spatial extent of the nine hydrogeologic units were defined based on interpolation of the input data, and (2) a textural model for each hydrogeologic unit based on interpolation of classed downhole lithologic data. Each framework is stored as an array of polygonal cells: essentially a “flattened”, two-dimensional representation of a digital 3D geologic framework. The elevation and thickness of the hydrogeologic units are contained within a single polygon feature class SVGF_3DHFM, which contains a mesh of polygons that represent model cells that have multiple attributes including XY location, elevation and thickness of each hydrogeologic unit. Textural information for each hydrogeologic unit are stored in a second array of polygonal cells called SVGF_TextureModel. The spatial data are accompanied by non-spatial tables that describe the sources of geologic information, a glossary of terms, a description of model units that describes the nine hydrogeologic units modeled in this study. A data dictionary defines the structure of the dataset, defines all fields in all spatial data attributer tables and all columns in all nonspatial tables, and duplicates the Entity and Attribute information contained in the metadata file. Spatial data are also presented as shapefiles. Downhole data from boreholes are released as a set of tables related by a unique well identifier, tables are in Excel and ascii comma-separated value (CSV) format.

  7. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  8. Geospatial Deep Learning Seminar Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Geospatial Deep Learning Seminar Online Course [Dataset]. https://ckan.americaview.org/dataset/geospatial-deep-learning-seminar-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.

  9. Global Geospatial Solutions Market By Technology (Geospatial Analytics, GIS,...

    • verifiedmarketresearch.com
    Updated Sep 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2025). Global Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS And Positioning), Component (Hardware, Software), Application (Planning And Analysis, Asset Management), End-User (Transportation, Defense And Intelligence), & Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/geospatial-solutions-market/
    Explore at:
    Dataset updated
    Sep 23, 2025
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Geospatial Solutions Market size was valued at USD 282.75 Billion in 2024 and is projected to reach USD 650.14 Billion by 2032, growing at a CAGR of 12.10% during the forecast period 2026-2032.Geospatial Solutions Market: Definition/ OverviewGeospatial solutions are applications and technologies that use spatial data to address geography, location, and Earth's surface problems. They use tools like GIS, remote sensing, GPS, satellite imagery analysis, and spatial modelling. These solutions enable informed decision-making, resource allocation optimization, asset management, environmental monitoring, infrastructure planning, and addressing challenges in sectors like urban planning, agriculture, transportation, disaster management, and natural resource management. They empower users to harness spatial information for better understanding and decision-making in various contexts.Geospatial solutions are technologies and methodologies used to analyze and visualize spatial data, ranging from urban planning to agriculture. They use GIS, remote sensing, and GNSS to gather, process, and interpret data. These solutions help users make informed decisions, solve complex problems, optimize resource allocation, and enhance situational awareness. They are crucial in addressing challenges and unlocking opportunities in today's interconnected world, such as mapping land use patterns, monitoring ecosystem changes, and real-time asset tracking.

  10. d

    Digital Elevation Models and GIS in Hydrology (M2)

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Belize Lane (2022). Digital Elevation Models and GIS in Hydrology (M2) [Dataset]. http://doi.org/10.4211/hs.9c4a6e2090924d97955a197fea67fd72
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Irene Garousi-Nejad; Belize Lane
    Area covered
    Description

    This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about

    In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.

    Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.

  11. d

    Salinity yield modeling spatial data for the Upper Colorado River Basin, USA...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Oct 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Salinity yield modeling spatial data for the Upper Colorado River Basin, USA [Dataset]. https://catalog.data.gov/dataset/salinity-yield-modeling-spatial-data-for-the-upper-colorado-river-basin-usa
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Colorado River, United States
    Description

    These data (vector and raster) were compiled for spatial modeling of salinity yield sources in the Upper Colorado River Basin (UCRB) and describe different scales of watersheds in the Upper Colorado River Basin (UCRB) for use in salinity yield modeling. Salinity yield refers to how much dissolved salts are picked up in surface waters that could be expected to be measured at the watershed outlet point annually. The vector polygons are small catchments developed originally for use in SPARROW modeling that break up the UCRB into 10,789 catchments linked together through a synthetic stream network. The catchments were used for a machine learning based salinity model and attributed with the new results in these vector GIS datasets. Although all of these feature classes include the same polygons, the attribute tables for each include differing outputs from new salinity models and a comparison with SPARROW model results from previous research. The new model presented in these datasets utilizes new predictive soil maps and a more flexible random forest function to improve on previous UCRB salinity spatial models. The raster data layers represent aspects of soils, topography, climate, and runoff characteristics that have hypothesized influences on salinity yields.

  12. G

    Geographic Information System (GIS) Software Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Geographic Information System (GIS) Software Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/geographic-information-system-software-market-global-industry-analysis
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Software Market Outlook



    According to our latest research, the global Geographic Information System (GIS) Software market size reached USD 11.6 billion in 2024, reflecting a robust demand for spatial data analytics and location-based services across various industries. The market is experiencing a significant growth trajectory, driven by a CAGR of 12.4% from 2025 to 2033. By the end of 2033, the GIS Software market is forecasted to attain a value of USD 33.5 billion. This remarkable expansion is primarily attributed to the integration of advanced technologies such as artificial intelligence, IoT, and cloud computing, which are enhancing the capabilities and accessibility of GIS platforms.




    One of the major growth factors propelling the GIS Software market is the increasing adoption of location-based services across urban planning, transportation, and utilities management. Governments and private organizations are leveraging GIS solutions to optimize infrastructure development, streamline resource allocation, and improve emergency response times. The proliferation of smart city initiatives worldwide has further fueled the demand for GIS tools, as urban planners and municipal authorities require accurate spatial data for effective decision-making. Additionally, the evolution of 3D GIS and real-time mapping technologies is enabling more sophisticated modeling and simulation, expanding the scope of GIS applications beyond traditional mapping to include predictive analytics and scenario planning.




    Another significant driver for the GIS Software market is the rapid digitization of industries such as agriculture, mining, and oil & gas. Precision agriculture, for example, relies heavily on GIS platforms to monitor crop health, manage irrigation, and enhance yield forecasting. Similarly, the mining sector uses GIS for exploration, environmental impact assessment, and asset management. The integration of remote sensing data with GIS software is providing stakeholders with actionable insights, leading to higher efficiency and reduced operational risks. Furthermore, the growing emphasis on environmental sustainability and regulatory compliance is prompting organizations to invest in advanced GIS solutions for monitoring land use, tracking deforestation, and managing natural resources.



    The evolution of 3D GIS is revolutionizing the way spatial data is visualized and analyzed, offering a more immersive and detailed perspective of geographic information. This technology allows for the creation of three-dimensional models that provide a realistic representation of urban landscapes, infrastructure, and natural environments. By integrating 3D GIS with real-time data feeds, organizations can enhance their spatial analysis capabilities, enabling more accurate simulations and predictions. This advancement is particularly beneficial for urban planners and architects who require detailed visualizations to assess the impact of new developments and infrastructure projects. Moreover, 3D GIS is facilitating better communication and collaboration among stakeholders by providing a common platform for visualizing complex spatial data.




    The expanding use of cloud-based GIS solutions is also a key factor driving market growth. Cloud deployment offers scalability, cost-effectiveness, and remote accessibility, making GIS tools more accessible to small and medium enterprises as well as large organizations. The cloud model supports real-time data sharing and collaboration, which is particularly valuable for disaster management and emergency response teams. As organizations increasingly prioritize digital transformation, the demand for cloud-native GIS platforms is expected to rise, supported by advancements in data security, interoperability, and integration with other enterprise systems.




    Regionally, North America remains the largest market for GIS Software, accounting for a significant share of global revenues. This leadership is underpinned by substantial investments in smart infrastructure, advanced transportation systems, and environmental monitoring programs. The Asia Pacific region, however, is witnessing the fastest growth, driven by rapid urbanization, government-led digital initiatives, and the expansion of the utility and agriculture sectors. Europe continues to demonstrate steady adoption, particularly in environmental manage

  13. D

    GIS Mapping Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). GIS Mapping Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/gis-mapping-software-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Mapping Software Market Outlook



    The global GIS Mapping Software market size was valued at approximately USD 8.5 billion in 2023 and is projected to reach around USD 17.5 billion by 2032, growing at a CAGR of 8.3% from 2024 to 2032. This robust growth is driven by the increasing adoption of geospatial technologies across various sectors, including urban planning, disaster management, and agriculture.



    One of the primary growth factors for the GIS Mapping Software market is the rising need for spatial data analytics. Organizations are increasingly recognizing the value of geographical data in making informed decisions, driving the demand for sophisticated mapping solutions. Furthermore, advancements in satellite imaging technology and the increasing availability of high-resolution imagery are enhancing the capabilities of GIS software, making it a crucial tool for various applications.



    Another significant driver is the integration of GIS with emerging technologies such as artificial intelligence (AI) and the Internet of Things (IoT). These integrations are facilitating real-time data processing and analysis, thereby improving the efficiency and accuracy of GIS applications. For instance, in urban planning and disaster management, real-time data can significantly enhance predictive modeling and response strategies. This synergy between GIS and cutting-edge technologies is expected to fuel market growth further.



    The growing emphasis on sustainable development and smart city initiatives globally is also contributing to the market's expansion. Governments and private entities are investing heavily in GIS technologies to optimize resource management, enhance public services, and improve urban infrastructure. These investments are particularly evident in developing regions where urbanization rates are high, and there is a pressing need for efficient spatial planning and management.



    In terms of regional outlook, North America holds a significant share of the GIS Mapping Software market, driven by robust technological infrastructure and high adoption rates across various industries. However, Asia Pacific is expected to witness the highest growth rate during the forecast period. This growth is attributed to rapid urbanization, increasing government initiatives for smart cities, and rising investments in infrastructure development.



    The Geographic Information Systems Platform has become an integral part of modern spatial data management, offering a comprehensive framework for collecting, analyzing, and visualizing geographic data. This platform facilitates the integration of diverse data sources, enabling users to create detailed maps and spatial models that support decision-making across various sectors. With the increasing complexity of urban environments and the need for efficient resource management, the Geographic Information Systems Platform provides the tools necessary for real-time data processing and analysis. Its versatility and scalability make it an essential component for organizations looking to leverage geospatial data for strategic planning and operational efficiency.



    Component Analysis



    The GIS Mapping Software market is segmented by component into software and services. The software segment dominates the market, primarily due to the continuous advancements in GIS software capabilities. Modern GIS software offers a range of functionalities, from basic mapping to complex spatial analysis, making it indispensable for various sectors. These software solutions are increasingly user-friendly, allowing even non-experts to leverage geospatial data effectively.



    Moreover, the software segment is witnessing significant innovation with the integration of AI and machine learning algorithms. These advancements are enabling more sophisticated data analysis and predictive modeling, which are crucial for applications such as disaster management and urban planning. The adoption of cloud-based GIS software is also on the rise, offering scalability and real-time data processing capabilities, which are essential for dynamic applications like transport management.



    The services segment, although smaller than the software segment, is also experiencing growth. This includes consulting, implementation, and maintenance services that are critical for the successful deployment and operation of GIS systems. The increasing complexity of GIS applications nec

  14. D

    Geographic Information System (GIS) Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Geographic Information System (GIS) Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/geographic-information-system-gis-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Market Outlook



    The Geographic Information System (GIS) market is witnessing robust growth with its global market size projected to reach USD 25.7 billion by 2032, up from USD 8.7 billion in 2023, at a compound annual growth rate (CAGR) of 12.4% during the forecast period. This growth is primarily driven by the increasing integration of GIS technology across various industries to improve spatial data visualization, enhance decision-making, and optimize operations. The benefits offered by GIS in terms of accuracy, efficiency, and cost-effectiveness are convincing more sectors to adopt these systems, thereby expanding the market size significantly.



    A major growth factor contributing to the GIS market expansion is the escalating demand for location-based services. As businesses across different sectors recognize the importance of spatial data analytics in driving strategic decisions, the reliance on GIS applications is becoming increasingly pronounced. The rise in IoT devices, coupled with the enhanced capabilities of AI and machine learning, has further fueled the demand for GIS solutions. These technologies enable the processing and analysis of large volumes of spatial data, thereby providing valuable insights that businesses can leverage for competitive advantage. In addition, government initiatives promoting the adoption of digital infrastructure and smart city projects are playing a crucial role in the growth of the GIS market.



    The advancement in satellite imaging and remote sensing technologies is another key driver of the GIS market growth. With enhanced satellite capabilities, the precision and quality of geospatial data have significantly improved, making GIS applications more reliable and effective. The availability of high-resolution satellite imagery has opened new avenues in various sectors including agriculture, urban planning, and disaster management. Moreover, the decreasing costs of satellite data acquisition and the proliferation of drone technology are making GIS more accessible to small and medium enterprises, further expanding the market potential.



    The advent of 3D Geospatial Technologies is revolutionizing the way industries utilize GIS data. By providing a three-dimensional perspective, these technologies enhance spatial analysis and visualization, offering more detailed and accurate representations of geographical areas. This advancement is particularly beneficial in urban planning, where 3D models can simulate cityscapes and infrastructure, allowing planners to visualize potential developments and assess their impact on the environment. Moreover, 3D geospatial data is proving invaluable in sectors such as construction and real estate, where it aids in site analysis and project planning. As these technologies continue to evolve, they are expected to play a pivotal role in the future of GIS, expanding its applications and driving further market growth.



    Furthermore, the increasing application of GIS in environmental monitoring and management is bolstering market growth. With growing concerns over climate change and environmental degradation, GIS is being extensively used for resource management, biodiversity conservation, and natural disaster risk management. This trend is expected to continue as more organizations and governments prioritize sustainability, thereby driving the demand for advanced GIS solutions. The integration of GIS with other technologies such as big data analytics, and cloud computing is also expected to enhance its capabilities, making it an indispensable tool for environmental management.



    Regionally, North America is currently leading the GIS market, driven by the widespread adoption of advanced technologies and the presence of major GIS vendors. The regionÂ’s focus on infrastructure development and smart city projects is further propelling the market growth. Europe is also witnessing significant growth owing to the increasing adoption of GIS in various industries such as agriculture and transportation. The Asia Pacific region is anticipated to exhibit the highest CAGR during the forecast period, attributed to rapid urbanization, government initiatives for digital transformation, and increasing investments in infrastructure development. In contrast, the markets in Latin America and the Middle East & Africa are growing steadily as these regions continue to explore and adopt GIS technologies.



    <a href="https://dataintelo.com/report/geospatial-data-fusion-market" target="_blank&quo

  15. r

    Spatial Morphology Lab 01. International laboratory for comparative research...

    • resodate.org
    Updated Jan 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    Dataset updated
    Jan 1, 2020
    Dataset provided by
    Chalmers University of Technology
    Authors
    Ioanna Stavroulaki; Meta Berghauser Pont; Lars Marcus; Kailun Sun
    Area covered
    Sweden, Gothenburg
    Description

    GIS-datasets for the Street networks of Stockholm, Gothenburg and Eskilstuna produced as part of the Spatial Morphology Lab (SMoL). The goal of the SMoL project is to develop a strong theory and methodology for urban planning & design research with an analytical approach. Three frequently recurring variables of spatial urban form are studied that together quite well capture and describe the central characteristics and qualities of the built environment: density, diversity and proximity. The first measure describes how intensive a place can be used depending on how much built up area is found there. The second measure captures how differentiated the use of a place can be depending on the division in smaller units such as plots. The third measure describes how accessible a place is depending on how it relates with other places. Empirical studies have shown strong links between these metrics and people's use of cities such as pedestrian movement patterns. To support this goal, a central objective of the project is the establishment of an international platform of GIS data models for comparative studies in spatial urban form comprising three European capitals: London in the UK, Amsterdam in the Netherlands and Stockholm in Sweden, as well as two additional Swedish cities of smaller size than Stockholm: Gothenburg and Eskilstuna. The result of the project is a GIS database for the five cities covering the three basic layers of urban form: street network (motorised and non-motorised), buildings and plots systems. The data is shared via SND to create a research infrastructure that is open to new study initiatives. The datasets for Amsterdam will also be uploaded to SND. The datasets of London cannot be uploaded because of licensing restrictions. The street network GIS-maps include motorised and non-motorised networks. The motorised networks exclude all streets that are pedestrian-only and were cars are excluded. The network layers are based on the Swedish national road database, NVDB (Nationell Vägdatabas), downloaded from Trafikverket (https://lastkajen.trafikverket.se, date of download 15-5-2016, last update 8-11-2015). The original road-centre-line maps of all cities were edited based on the same basic representational principles and were converted into line-segment maps, using the following software: FME, Mapinfo professional and PST (Place Syntax Tool). The coordinate system is SWEREF99TM. In the final line-segment maps (GIS-layers) all roads are represented with one line irrespectively of the number of lanes, except from Motorways and Highways which are represented with two lines, one for each direction, again irrespectively of the number of lanes. We followed the same editing and generalizing procedure for all maps aiming to remove errors and to increase comparability between networks. This process included removing duplicate and isolated lines, snapping and generalizing. The snapping threshold used was 2m (end points closer than 2m were snapped together). The generalizing threshold used was 1m (successive line segments with angular deviation less than 1m were merged into one). In the final editing step, all road polylines were segmented to their constituting line-segments. The aim was to create appropriate line-segment maps to be analysed using Angular Segment Analysis, a network centrality analysis method introduced in Space Syntax. All network layers are complemented with an “Unlink points” layer; a GIS point layer with the locations of all non-level intersections, such as overpasses and underpasses, bridges, tunnels, flyovers and the like. The Unlink point layer is necessary to conduct network analysis that takes into account the non-planarity of the street network, using such software as PST (Place Syntax Tool).

  16. Data from: Data for modelling spatial patterns and determinants of...

    • search.dataone.org
    • portal.edirepository.org
    Updated Oct 30, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth Wentz; Patricia Gober; Robert Balling; Thomas Day (2013). Data for modelling spatial patterns and determinants of atmospheric carbon dioxide concentrations in Phoenix metro area [Dataset]. https://search.dataone.org/view/knb-lter-cap.384.9
    Explore at:
    Dataset updated
    Oct 30, 2013
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Elizabeth Wentz; Patricia Gober; Robert Balling; Thomas Day
    Time period covered
    Jan 16, 2000
    Area covered
    Description

    The purpose of this work is to describe determinants and spatial patterns of atmospheric carbon dioxide (CO2) in Phoenix, Arizona. Specifically, we use geographic information systems (GIS) and regression-based analyses to identify the human and biological factors that contribute to spatial and temporal variations in near-surface atmospheric CO2 levels. We use these factors to create estimated surfaces of CO2 for the urban area. We validate our surfaces using independently collected records of CO2 from several monitoring stations and transects. To investigate the temporal patterns and variations of CO2, we were able to generate CO2 surfaces for the early mornings and the afternoons, and on weekdays when traffic is heavy and spatially focused and on weekends when it is lighter and more spatially dispersed. Our findings suggest there is a distinct relationship between the structure of Phoenix CO2 levels and spatial patterns of human activities and vegetation densities. Morning CO2 levels are higher than afternoon levels and correspond closely to the density of traffic, population, and employment. The spatial structure of human activity explains the pattern of CO2 better on weekdays than on weekends. CO2 surfaces reflect declining densities of human activity with distance from the city center, the pattern of irrigated agriculture in the Phoenix area, and riparian habitats on the urban fringe. Spatial and temporal patterns of CO2 are useful in understanding urban climate and ecosystem processes.

  17. r

    Spatial Morphology Lab 01. International laboratory for comparative research...

    • researchdata.se
    Updated Jun 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ioanna Stavroulaki; Meta Berghauser Pont; Lars Marcus; Kailun Sun (2025). Spatial Morphology Lab 01. International laboratory for comparative research in urban form. Street networks, Sweden - Non-Motorised network of Eskilstuna [Dataset]. http://doi.org/10.5878/0pnq-sm82
    Explore at:
    (74694)Available download formats
    Dataset updated
    Jun 25, 2025
    Dataset provided by
    Chalmers University of Technology
    Authors
    Ioanna Stavroulaki; Meta Berghauser Pont; Lars Marcus; Kailun Sun
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2016
    Area covered
    Stockholm, Eskilstuna, Netherlands, Västra Götaland County, Gothenburg
    Description

    GIS-datasets for the Street networks of Stockholm, Gothenburg and Eskilstuna produced as part of the Spatial Morphology Lab (SMoL).

    The goal of the SMoL project is to develop a strong theory and methodology for urban planning & design research with an analytical approach. Three frequently recurring variables of spatial urban form are studied that together quite well capture and describe the central characteristics and qualities of the built environment: density, diversity and proximity.

    The first measure describes how intensive a place can be used depending on how much built up area is found there. The second measure captures how differentiated the use of a place can be depending on the division in smaller units such as plots. The third measure describes how accessible a place is depending on how it relates with other places. Empirical studies have shown strong links between these metrics and people's use of cities such as pedestrian movement patterns.

    To support this goal, a central objective of the project is the establishment of an international platform of GIS data models for comparative studies in spatial urban form comprising three European capitals: London in the UK, Amsterdam in the Netherlands and Stockholm in Sweden, as well as two additional Swedish cities of smaller size than Stockholm: Gothenburg and Eskilstuna.

    The result of the project is a GIS database for the five cities covering the three basic layers of urban form: street network (motorised and non-motorised), buildings and plots systems.

    The data is shared via SND to create a research infrastructure that is open to new study initiatives. The datasets for Amsterdam will also be uploaded to SND. The datasets of London cannot be uploaded because of licensing restrictions.

    The street network GIS-maps include motorised and non-motorised networks. The non-motorized networks include all streets and paths that are accessible for people walking or cycling, including those that are shared with vehicles. All streets where walking or cycling is forbidden, such as motorways, highways, or high-speed tunnels, are not included in the network.

    The non-motorised network layers for Stockholm and Eskilstuna are based on the Swedish national road database, NVDB (Nationell Vägdatabas), downloaded from Trafikverket (https://lastkajen.trafikverket.se, date of download 15-5-2016, last update 8-11-2015). For Gothenburg, it is based on Open Street Maps (openstreetmap.org, http://download.geofabrik.de, date of download 29-4-2016), because the NVDB did not provide enough detail for the non-motorized network, as in the other cities. The original road-centre-line maps of all cities were edited based on the same basic representational principles and were converted into line-segment maps, using the following software: FME, Mapinfo professional and PST (Place Syntax Tool). The coordinate system is SWEREF99TM. In the final line-segment maps (GIS-layers) all streets or paths are represented with one line irrespectively of the number of lanes or type, meaning that parallel lines representing a street and a pedestrian or a cycle path running on the side, are reduced to one line. The reason is that these parallel lines are nor physically or perceptually separated, and thus are accessible and recognized from pedestrians as one “line of movement” in the street network. If there are obstacles or great distance between parallel streets and paths, then the multiple lines remain. The aim is to make a skeletal network that better represents the total space, which is accessible for pedestrians to move, irrespectively of the typical separations or distinctions of streets and paths. This representational choice follows the Space Syntax methodology in representing the public space and the street network.

    We followed the same editing and generalizing procedure for all maps aiming to remove errors and to increase comparability between networks. This process included removing duplicate and isolated lines, snapping and generalizing. The snapping threshold used was 2m (end points closer than 2m were snapped together). The generalizing threshold used was 1m (successive line segments with angular deviation less than 1m were merged into one). In the final editing step, all road polylines were segmented to their constituting line-segments. The aim was to create appropriate line-segment maps to be analysed using Angular Segment Analysis, a network centrality analysis method introduced in Space Syntax.

    All network layers are complemented with an “Unlink points” layer; a GIS point layer with the locations of all non-level intersections, such as pedestrian bridges and tunnels. The Unlink point layer is necessary to conduct network analysis that takes into account the non-planarity of the street network, using such software as PST (Place Syntax Tool).

  18. D

    Grid Garage ArcGIS Toolbox

    • data.nsw.gov.au
    • researchdata.edu.au
    pdf, url, zip
    Updated Feb 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSW Department of Climate Change, Energy, the Environment and Water (2024). Grid Garage ArcGIS Toolbox [Dataset]. https://data.nsw.gov.au/data/dataset/groups/grid-garage-arcgis-toolbox
    Explore at:
    zip, pdf, urlAvailable download formats
    Dataset updated
    Feb 26, 2024
    Dataset authored and provided by
    NSW Department of Climate Change, Energy, the Environment and Water
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Grid Garage Toolbox is designed to help you undertake the Geographic Information System (GIS) tasks required to process GIS data (geodata) into a standard, spatially aligned format. This format is required by most, grid or raster, spatial modelling tools such as the Multi-criteria Analysis Shell for Spatial Decision Support (MCAS-S). Grid Garage contains 36 tools designed to save you time by batch processing repetitive GIS tasks as well diagnosing problems with data and capturing a record of processing step and any errors encountered.

    Grid Garage provides tools that function using a list based approach to batch processing where both inputs and outputs are specified in tables to enable selective batch processing and detailed result reporting. In many cases the tools simply extend the functionality of standard ArcGIS tools, providing some or all of the inputs required by these tools via the input table to enable batch processing on a 'per item' basis. This approach differs slightly from normal batch processing in ArcGIS, instead of manually selecting single items or a folder on which to apply a tool or model you provide a table listing target datasets. In summary the Grid Garage allows you to:

    • List, describe and manage very large volumes of geodata.
    • Batch process repetitive GIS tasks such as managing (renaming, describing etc.) or processing (clipping, resampling, reprojecting etc.) many geodata inputs such as time-series geodata derived from satellite imagery or climate models.
    • Record any errors when batch processing and diagnose errors by interrogating the input geodata that failed.
    • Develop your own models in ArcGIS ModelBuilder that allow you to automate any GIS workflow utilising one or more of the Grid Garage tools that can process an unlimited number of inputs.
    • Automate the process of generating MCAS-S TIP metadata files for any number of input raster datasets.

    The Grid Garage is intended for use by anyone with an understanding of GIS principles and an intermediate to advanced level of GIS skills. Using the Grid Garage tools in ArcGIS ModelBuilder requires skills in the use of the ArcGIS ModelBuilder tool.

    Download Instructions: Create a new folder on your computer or network and then download and unzip the zip file from the GitHub Release page for each of the following items in the 'Data and Resources' section below. There is a folder in each zip file that contains all the files. See the Grid Garage User Guide for instructions on how to install and use the Grid Garage Toolbox with the sample data provided.

  19. d

    Bespoke geospatial, GIS and economic consulting work

    • datarade.ai
    Updated May 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    505 Economics (2021). Bespoke geospatial, GIS and economic consulting work [Dataset]. https://datarade.ai/data-products/bespoke-geospatial-gis-and-economic-consulting-work-505-economics
    Explore at:
    Dataset updated
    May 31, 2021
    Dataset authored and provided by
    505 Economics
    Area covered
    American Samoa, Iran (Islamic Republic of), Jordan, Cambodia, Panama, State of, Gibraltar, Moldova (Republic of), Nauru, Brunei Darussalam
    Description

    505 Economics is comprised of doctoral and post-doctoral researchers based at the London School of Economics. We blend together experience in data science, GIS, artificial intelligence and economics.

    Our department at LSE is ranked number 1 in Economic Geography in the world.

    Get in touch to discuss how we can help you with your geospatial and economics projects.

    We have previously: Created sub-national GDP measures using high resolution satellite imagery and deep learning for EU regions Created sub-national economic data for conflict zones using alternative data Extracted geographic features for African countries (e.g. POI, road network data) Created Computable general equilibrium (CGE) models

  20. D

    Digital Map Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Digital Map Market Report [Dataset]. https://www.datainsightsmarket.com/reports/digital-map-market-12805
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 12, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The digital map market, currently valued at $25.55 billion in 2025, is experiencing robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 13.39% from 2025 to 2033. This expansion is fueled by several key drivers. The increasing adoption of location-based services (LBS) across diverse sectors like automotive, logistics, and smart city initiatives is a primary catalyst. Furthermore, advancements in technologies such as AI, machine learning, and high-resolution satellite imagery are enabling the creation of more accurate, detailed, and feature-rich digital maps. The shift towards cloud-based deployment models offers scalability and cost-effectiveness, further accelerating market growth. While data privacy concerns and the high initial investment costs for sophisticated mapping technologies present some challenges, the overall market outlook remains overwhelmingly positive. The competitive landscape is dynamic, with established players like Google, TomTom, and ESRI vying for market share alongside innovative startups offering specialized solutions. The segmentation of the market by solution (software and services), deployment (on-premise and cloud), and industry reveals significant opportunities for growth in sectors like automotive navigation, autonomous vehicle development, and precision agriculture, where real-time, accurate mapping data is crucial. The Asia-Pacific region, driven by rapid urbanization and technological advancements in countries like China and India, is expected to witness particularly strong growth. The market's future hinges on continuous innovation. We anticipate a rise in the demand for 3D maps, real-time updates, and integration with other technologies like the Internet of Things (IoT) and augmented reality (AR). Companies are focusing on enhancing the accuracy and detail of their maps, incorporating real-time traffic data, and developing tailored solutions for specific industry needs. The increasing adoption of 5G technology promises to further boost the market by enabling faster data transmission and real-time updates crucial for applications like autonomous driving and drone delivery. The development of high-precision mapping solutions catering to specialized sectors like infrastructure management and disaster response will also fuel future growth. Ultimately, the digital map market is poised for continued expansion, driven by technological advancements and increased reliance on location-based services across a wide spectrum of industries. Recent developments include: December 2022 - The Linux Foundation has partnered with some of the biggest technology companies in the world to build interoperable and open map data in what is an apparent move t. The Overture Maps Foundation, as the new effort is called, is officially hosted by the Linux Foundation. The ultimate aim of the Overture Maps Foundation is to power new map products through openly available datasets that can be used and reused across applications and businesses, with each member throwing their data and resources into the mix., July 27, 2022 - Google declared the launch of its Street View experience in India in collaboration with Genesys International, an advanced mapping solutions company, and Tech Mahindra, a provider of digital transformation, consulting, and business re-engineering solutions and services. Google, Tech Mahindra, and Genesys International also plan to extend this to more than around 50 cities by the end of the year 2022.. Key drivers for this market are: Growth in Application for Advanced Navigation System in Automotive Industry, Surge in Demand for Geographic Information System (GIS); Increased Adoption of Connected Devices and Internet. Potential restraints include: Complexity in Integration of Traditional Maps with Modern GIS System. Notable trends are: Surge in Demand for GIS and GNSS to Influence the Adoption of Digital Map Technology.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
Organization logo

Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

Explore at:
Dataset updated
Sep 10, 2022
Dataset provided by
CKANhttps://ckan.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

Search
Clear search
Close search
Google apps
Main menu