https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Exploratory Data Analysis (EDA) tools market is experiencing robust growth, driven by the increasing volume and complexity of data across industries. The rising need for data-driven decision-making, coupled with the expanding adoption of cloud-based analytics solutions, is fueling market expansion. While precise figures for market size and CAGR are not provided, a reasonable estimation, based on the prevalent growth in the broader analytics market and the crucial role of EDA in the data science workflow, would place the 2025 market size at approximately $3 billion, with a projected Compound Annual Growth Rate (CAGR) of 15% through 2033. This growth is segmented across various applications, with large enterprises leading the adoption due to their higher investment capacity and complex data needs. However, SMEs are witnessing rapid growth in EDA tool adoption, driven by the increasing availability of user-friendly and cost-effective solutions. Further segmentation by tool type reveals a strong preference for graphical EDA tools, which offer intuitive visualizations facilitating better data understanding and communication of findings. Geographic regions, such as North America and Europe, currently hold a significant market share, but the Asia-Pacific region shows promising potential for future growth owing to increasing digitalization and data generation. Key restraints to market growth include the need for specialized skills to effectively utilize these tools and the potential for data bias if not handled appropriately. The competitive landscape is dynamic, with both established players like IBM and emerging companies specializing in niche areas vying for market share. Established players benefit from brand recognition and comprehensive enterprise solutions, while specialized vendors provide innovative features and agile development cycles. Open-source options like KNIME and R packages (Rattle, Pandas Profiling) offer cost-effective alternatives, particularly attracting academic institutions and smaller businesses. The ongoing development of advanced analytics functionalities, such as automated machine learning integration within EDA platforms, will be a significant driver of future market growth. Further, the integration of EDA tools within broader data science platforms is streamlining the overall analytical workflow, contributing to increased adoption and reduced complexity. The market's evolution hinges on enhanced user experience, more robust automation features, and seamless integration with other data management and analytics tools.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Many upcoming and proposed missions to ocean worlds such as Europa, Enceladus, and Titan aim to evaluate their habitability and the existence of potential life on these moons. These missions will suffer from communication challenges and technology limitations. We review and investigate the applicability of data science and unsupervised machine learning (ML) techniques on isotope ratio mass spectrometry data (IRMS) from volatile laboratory analogs of Europa and Enceladus seawaters as a case study for development of new strategies for icy ocean world missions. Our driving science goal is to determine whether the mass spectra of volatile gases could contain information about the composition of the seawater and potential biosignatures. We implement data science and ML techniques to investigate what inherent information the spectra contain and determine whether a data science pipeline could be designed to quickly analyze data from future ocean worlds missions. In this study, we focus on the exploratory data analysis (EDA) step in the analytics pipeline. This is a crucial unsupervised learning step that allows us to understand the data in depth before subsequent steps such as predictive/supervised learning. EDA identifies and characterizes recurring patterns, significant correlation structure, and helps determine which variables are redundant and which contribute to significant variation in the lower dimensional space. In addition, EDA helps to identify irregularities such as outliers that might be due to poor data quality. We compared dimensionality reduction methods Uniform Manifold Approximation and Projection (UMAP) and Principal Component Analysis (PCA) for transforming our data from a high-dimensional space to a lower dimension, and we compared clustering algorithms for identifying data-driven groups (“clusters”) in the ocean worlds analog IRMS data and mapping these clusters to experimental conditions such as seawater composition and CO2 concentration. Such data analysis and characterization efforts are the first steps toward the longer-term science autonomy goal where similar automated ML tools could be used onboard a spacecraft to prioritize data transmissions for bandwidth-limited outer Solar System missions.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Exploratory Data Analysis (EDA) tools market is experiencing robust growth, driven by the increasing volume and complexity of data across various industries. The market, estimated at $1.5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $5 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of big data analytics and business intelligence initiatives across large enterprises and SMEs is creating a significant demand for efficient EDA tools. Secondly, the growing need for faster, more insightful data analysis to support better decision-making is driving the preference for user-friendly graphical EDA tools over traditional non-graphical methods. Furthermore, advancements in artificial intelligence and machine learning are seamlessly integrating into EDA tools, enhancing their capabilities and broadening their appeal. The market segmentation reveals a significant portion held by large enterprises, reflecting their greater resources and data handling needs. However, the SME segment is rapidly gaining traction, driven by the increasing affordability and accessibility of cloud-based EDA solutions. Geographically, North America currently dominates the market, but regions like Asia-Pacific are exhibiting high growth potential due to increasing digitalization and technological advancements. Despite this positive outlook, certain restraints remain. The high initial investment cost associated with implementing advanced EDA solutions can be a barrier for some SMEs. Additionally, the need for skilled professionals to effectively utilize these tools can create a challenge for organizations. However, the ongoing development of user-friendly interfaces and the availability of training resources are actively mitigating these limitations. The competitive landscape is characterized by a mix of established players like IBM and emerging innovative companies offering specialized solutions. Continuous innovation in areas like automated data preparation and advanced visualization techniques will further shape the future of the EDA tools market, ensuring its sustained growth trajectory.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Exploratory data analysis.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
Exploratory Data Analysis (EDA) Tools play a pivotal role in the modern data-driven landscape, transforming raw data into actionable insights. As businesses increasingly recognize the value of data in informing decisions, the market for EDA tools has witnessed substantial growth, driven by the rapid expansion of dat
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by ADITYA MISHRA
Released under CC0: Public Domain
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global market for data lens (visualizations of data) is experiencing robust growth, driven by the increasing adoption of data analytics across diverse industries. This market, estimated at $50 billion in 2025, is projected to achieve a compound annual growth rate (CAGR) of 15% from 2025 to 2033. This expansion is fueled by several key factors. Firstly, the rising volume and complexity of data necessitate effective visualization tools for insightful analysis. Businesses are increasingly relying on interactive dashboards and data storytelling techniques to derive actionable intelligence from their data, fostering the demand for sophisticated data visualization solutions. Secondly, advancements in artificial intelligence (AI) and machine learning (ML) are enhancing the capabilities of data visualization platforms, enabling automated insights generation and predictive analytics. This creates new opportunities for vendors to offer more advanced and user-friendly tools. Finally, the growing adoption of cloud-based solutions is further accelerating market growth, offering enhanced scalability, accessibility, and cost-effectiveness. The market is segmented across various types, including points, lines, and bars, and applications, ranging from exploratory data analysis and interactive data visualization to descriptive statistics and advanced data science techniques. Major players like Tableau, Sisense, and Microsoft dominate the market, constantly innovating to meet evolving customer needs and competitive pressures. The geographical distribution of the market reveals strong growth across North America and Europe, driven by early adoption and technological advancements. However, emerging markets in Asia-Pacific and the Middle East & Africa are showing significant growth potential, fueled by increasing digitalization and investment in data analytics infrastructure. Restraints to growth include the high cost of implementation, the need for skilled professionals to effectively utilize these tools, and security concerns related to data privacy. Nonetheless, the overall market outlook remains positive, with continued expansion anticipated throughout the forecast period due to the fundamental importance of data visualization in informed decision-making across all sectors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Despite exploratory data analysis (EDA) is a powerful approach for uncovering insights from unfamiliar datasets, existing EDA tools face challenges in assisting users to assess the progress of exploration and synthesize coherent insights from isolated findings. To address these challenges, we present FactExplorer, a novel fact-based EDA system that shifts the analysis focus from raw data to data facts. FactExplorer employs a hybrid logical-visual representation, providing users with a comprehensive overview of all potential facts at the outset of their exploration. Moreover, FactExplorer introduces fact-mining techniques, including topic-based drill-down and transition path search capabilities. These features facilitate in-depth analysis of facts and enhance the understanding of interconnections between specific facts. Finally, we present a usage scenario and conduct a user study to assess the effectiveness of FactExplorer. The results indicate that FactExplorer facilitates the understanding of isolated findings and enables users to steer a thorough and effective EDA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Electronic health records (EHRs) have been widely adopted in recent years, but often include a high proportion of missing data, which can create difficulties in implementing machine learning and other tools of personalized medicine. Completed datasets are preferred for a number of analysis methods, and successful imputation of missing EHR data can improve interpretation and increase our power to predict health outcomes. However, use of the most popular imputation methods mainly require scripting skills, and are implemented using various packages and syntax. Thus, the implementation of a full suite of methods is generally out of reach to all except experienced data scientists. Moreover, imputation is often considered as a separate exercise from exploratory data analysis, but should be considered as art of the data exploration process. We have created a new graphical tool, ImputEHR, that is based on a Python base and allows implementation of a range of simple and sophisticated (e.g., gradient-boosted tree-based and neural network) data imputation approaches. In addition to imputation, the tool enables data exploration for informed decision-making, as well as implementing machine learning prediction tools for response data selected by the user. Although the approach works for any missing data problem, the tool is primarily motivated by problems encountered for EHR and other biomedical data. We illustrate the tool using multiple real datasets, providing performance measures of imputation and downstream predictive analysis.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Unsupervised exploratory data analysis (EDA) is often the first step in understanding complex data sets. While summary statistics are among the most efficient and convenient tools for exploring and describing sets of data, they are often overlooked in EDA. In this paper, we show multiple case studies that compare the performance, including clustering, of a series of summary statistics in EDA. The summary statistics considered here are pattern recognition entropy (PRE), the mean, standard deviation (STD), 1-norm, range, sum of squares (SSQ), and X4, which are compared with principal component analysis (PCA), multivariate curve resolution (MCR), and/or cluster analysis. PRE and the other summary statistics are direct methods for analyzing datathey are not factor-based approaches. To quantify the performance of summary statistics, we use the concept of the “critical pair,” which is employed in chromatography. The data analyzed here come from different analytical methods. Hyperspectral images, including one of a biological material, are also analyzed. In general, PRE outperforms the other summary statistics, especially in image analysis, although a suite of summary statistics is useful in exploring complex data sets. While PRE results were generally comparable to those from PCA and MCR, PRE is easier to apply. For example, there is no need to determine the number of factors that describe a data set. Finally, we introduce the concept of divided spectrum-PRE (DS-PRE) as a new EDA method. DS-PRE increases the discrimination power of PRE. We also show that DS-PRE can be used to provide the inputs for the k-nearest neighbor (kNN) algorithm. We recommend PRE and DS-PRE as rapid new tools for unsupervised EDA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sensor technologies allow ethologists to continuously monitor the behaviors of large numbers of animals over extended periods of time. This creates new opportunities to study livestock behavior in commercial settings, but also new methodological challenges. Densely sampled behavioral data from large heterogeneous groups can contain a range of complex patterns and stochastic structures that may be difficult to visualize using conventional exploratory data analysis techniques. The goal of this research was to assess the efficacy of unsupervised machine learning tools in recovering complex behavioral patterns from such datasets to better inform subsequent statistical modeling. This methodological case study was carried out using records on milking order, or the sequence in which cows arrange themselves as they enter the milking parlor. Data was collected over a 6-month period from a closed group of 200 mixed-parity Holstein cattle on an organic dairy. Cows at the front and rear of the queue proved more consistent in their entry position than animals at the center of the queue, a systematic pattern of heterogeneity more clearly visualized using entropy estimates, a scale and distribution-free alternative to variance robust to outliers. Dimension reduction techniques were then used to visualize relationships between cows. No evidence of social cohesion was recovered, but Diffusion Map embeddings proved more adept than PCA at revealing the underlying linear geometry of this data. Median parlor entry positions from the pre- and post-pasture subperiods were highly correlated (R = 0.91), suggesting a surprising degree of temporal stationarity. Data Mechanics visualizations, however, revealed heterogeneous non-stationary among subgroups of animals in the center of the group and herd-level temporal outliers. A repeated measures model recovered inconsistent evidence of a relationships between entry position and cow attributes. Mutual conditional entropy tests, a permutation-based approach to assessing bivariate correlations robust to non-independence, confirmed a significant but non-linear association with peak milk yield, but revealed the age effect to be potentially confounded by health status. Finally, queueing records were related back to behaviors recorded via ear tag accelerometers using linear models and mutual conditional entropy tests. Both approaches recovered consistent evidence of differences in home pen behaviors across subsections of the queue.
There's a story behind every dataset and here's your opportunity to share yours.
Data from Game of Thrones series
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by Eric Demangel
Released under MIT
The success of scientific projects increasingly depends on using data analysis tools and data in distributed IT infrastructures. Scientists need to use appropriate data analysis tools and data, extract patterns from data using appropriate computational resources, and interpret the extracted patterns. Data analysis tools and data reside on different machines because the volume of the data often demands specific resources for their storage and processing, and data analysis tools usually require specific computational resources and run-time environments. The data analytics software framework DASF, developed at the GFZ German Research Centre for Geosciences (https://www.gfz-potsdam.de) and funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/), provides a framework for scientists to conduct data analysis in distributed environments. The data analytics software framework DASF supports scientists to conduct data analysis in distributed IT infrastructures by sharing data analysis tools and data. For this purpose, DASF defines a remote procedure call (RPC) messaging protocol that uses a central message broker instance. Scientists can augment their tools and data with this protocol to share them with others. DASF supports many programming languages and platforms since the implementation of the protocol uses WebSockets. It provides two ready-to-use language bindings for the messaging protocol, one for Python and one for the Typescript programming language. In order to share a python method or class, users add an annotation in front of it. In addition, users need to specify the connection parameters of the message broker. The central message broker approach allows the method and the client calling the method to actively establish a connection, which enables using methods deployed behind firewalls. DASF uses Apache Pulsar (https://pulsar.apache.org/) as its underlying message broker. The Typescript bindings are primarily used in conjunction with web frontend components, which are also included in the DASF-Web library. They are designed to attach directly to the data returned by the exposed RPC methods. This supports the development of highly exploratory data analysis tools. DASF also provides a progress reporting API that enables users to monitor long-running remote procedure calls. One application using the framework is the Digital Earth Flood Event Explorer (https://git.geomar.de/digital-earth/flood-event-explorer). The Digital Earth Flood Event Explorer integrates several exploratory data analysis tools and remote procedures deployed at various Helmholtz centers across Germany.
Solar eclipses are a topic of interest among astronomers, astrologers and the general public as well. There were and will be about 11898 eclipses in the 5 millennia from 2000 BC to 3000 AD. Data visualization and regression techniques offer a deep insight into how various parameters of a solar eclipse are related to each other. Physical models can be verified and can be updated based on the insights gained from the analysis.
The study covers the major aspects of data analysis including data cleaning, pre-processing, EDA, distribution fitting, regression and machine learning based data analytics. We provide a cleaned and usable database ready for EDA and statistical analysis.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
The data was collected from the famous cookery Youtube channels in India. The major focus was to collect the viewers' comments in Hinglish languages. The datasets are taken from top 2 Indian cooking channel named Nisha Madhulika channel and Kabita’s Kitchen channel.
Both the datasets comments are divided into seven categories:-
Label 1- Gratitude
Label 2- About the recipe
Label 3- About the video
Label 4- Praising
Label 5- Hybrid
Label 6- Undefined
Label 7- Suggestions and queries
All the labelling has been done manually.
Nisha Madhulika dataset:
Dataset characteristics: Multivariate
Number of instances: 4900
Area: Cooking
Attribute characteristics: Real
Number of attributes: 4
Date donated: March, 2019
Associate tasks: Classification
Missing values: Null
Kabita Kitchen dataset:
Dataset characteristics: Multivariate
Number of instances: 4900
Area: Cooking
Attribute characteristics: Real
Number of attributes: 4
Date donated: March, 2019
Associate tasks: Classification
Missing values: Null
There are two separate datasets file of each channel named as preprocessing and main file .
The files with preprocessing names are generated after doing the preprocessing and exploratory data analysis on both the datasets. This file includes:
The main file includes:
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by Kunal Khurana
Released under MIT
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This file is the data set form the famous publication Francis J. Anscombe "*Graphs in Statistical Analysis*", The American Statistician 27 pp. 17-21 (1973) (doi: 10.1080/00031305.1973.10478966). It consists of four data sets of 11 points each. Note the peculiarity that the same 'x' values are used for the first three data sets, and I have followed this exactly as in the original publication (originally done to save space), i.e. the first column (x123) serves as the 'x' for the next three 'y' columns; y1, y2 and y3.
In the dataset Anscombe_quintet_data.csv
there is a new column (y5
) as an example of Simpson's paradox (C. McBride Ellis "*Anscombe dataset No. 5: Simpson's paradox*", Zenodo doi: 10.5281/zenodo.15209087 (2025)
Analytic provenance is a data repository that can be used to study human analysis activity, thought processes, and software interaction with visual analysis tools during exploratory data analysis. It was collected during a series of user studies involving exploratory data analysis scenario with textual and cyber security data. Interactions logs, think-alouds, videos and all coded data in this study are available online for research purposes. Analysis sessions are segmented in multiple sub-task steps based on user think-alouds, video and audios captured during the studies. These analytic provenance datasets can be used for research involving tools and techniques for analyzing interaction logs and analysis history.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Exploratory Data Analysis (EDA) tools market is experiencing robust growth, driven by the increasing volume and complexity of data across industries. The rising need for data-driven decision-making, coupled with the expanding adoption of cloud-based analytics solutions, is fueling market expansion. While precise figures for market size and CAGR are not provided, a reasonable estimation, based on the prevalent growth in the broader analytics market and the crucial role of EDA in the data science workflow, would place the 2025 market size at approximately $3 billion, with a projected Compound Annual Growth Rate (CAGR) of 15% through 2033. This growth is segmented across various applications, with large enterprises leading the adoption due to their higher investment capacity and complex data needs. However, SMEs are witnessing rapid growth in EDA tool adoption, driven by the increasing availability of user-friendly and cost-effective solutions. Further segmentation by tool type reveals a strong preference for graphical EDA tools, which offer intuitive visualizations facilitating better data understanding and communication of findings. Geographic regions, such as North America and Europe, currently hold a significant market share, but the Asia-Pacific region shows promising potential for future growth owing to increasing digitalization and data generation. Key restraints to market growth include the need for specialized skills to effectively utilize these tools and the potential for data bias if not handled appropriately. The competitive landscape is dynamic, with both established players like IBM and emerging companies specializing in niche areas vying for market share. Established players benefit from brand recognition and comprehensive enterprise solutions, while specialized vendors provide innovative features and agile development cycles. Open-source options like KNIME and R packages (Rattle, Pandas Profiling) offer cost-effective alternatives, particularly attracting academic institutions and smaller businesses. The ongoing development of advanced analytics functionalities, such as automated machine learning integration within EDA platforms, will be a significant driver of future market growth. Further, the integration of EDA tools within broader data science platforms is streamlining the overall analytical workflow, contributing to increased adoption and reduced complexity. The market's evolution hinges on enhanced user experience, more robust automation features, and seamless integration with other data management and analytics tools.