Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Exploratory Data Analysis (EDA) tools market is experiencing robust growth, driven by the increasing need for businesses to derive actionable insights from their ever-expanding datasets. The market, currently estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an estimated $45 billion by 2033. This growth is fueled by several factors, including the rising adoption of big data analytics, the proliferation of cloud-based solutions offering enhanced accessibility and scalability, and the growing demand for data-driven decision-making across diverse industries like finance, healthcare, and retail. The market is segmented by application (large enterprises and SMEs) and type (graphical and non-graphical tools), with graphical tools currently holding a larger market share due to their user-friendly interfaces and ability to effectively communicate complex data patterns. Large enterprises are currently the dominant segment, but the SME segment is anticipated to experience faster growth due to increasing affordability and accessibility of EDA solutions. Geographic expansion is another key driver, with North America currently holding the largest market share due to early adoption and a strong technological ecosystem. However, regions like Asia-Pacific are exhibiting high growth potential, fueled by rapid digitalization and a burgeoning data science talent pool. Despite these opportunities, the market faces certain restraints, including the complexity of some EDA tools requiring specialized skills and the challenge of integrating EDA tools with existing business intelligence platforms. Nonetheless, the overall market outlook for EDA tools remains highly positive, driven by ongoing technological advancements and the increasing importance of data analytics across all sectors. The competition among established players like IBM Cognos Analytics and Altair RapidMiner, and emerging innovative companies like Polymer Search and KNIME, further fuels market dynamism and innovation.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Exploratory Data Analysis (EDA) Tools market is anticipated to experience significant growth in the coming years, driven by the increasing adoption of data-driven decision-making and the growing need for efficient data exploration and analysis. The market size is valued at USD XX million in 2025 and is projected to reach USD XX million by 2033, registering a CAGR of XX% during the forecast period. The increasing complexity and volume of data generated by businesses and organizations have necessitated the use of advanced data analysis tools to derive meaningful insights and make informed decisions. Key trends driving the market include the rising adoption of AI and machine learning technologies, the growing need for self-service data analytics, and the increasing emphasis on data visualization and storytelling. Non-graphical EDA tools are gaining traction due to their ability to handle large and complex datasets. Graphical EDA tools are preferred for their intuitive and interactive user interfaces that simplify data exploration. Large enterprises are major consumers of EDA tools as they have large volumes of data to analyze. SMEs are also increasingly adopting EDA tools as they realize the importance of data-driven insights for business growth. The North American region holds a significant market share due to the presence of established technology companies and a high adoption rate of data analytics solutions. The Asia Pacific region is expected to witness substantial growth due to the rising number of businesses and organizations in emerging economies.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming Exploratory Data Analysis (EDA) tools market! Our in-depth analysis reveals key trends, growth drivers, and top players shaping this $3 billion industry, projected for 15% CAGR through 2033. Learn about market segmentation, regional insights, and future opportunities.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Explore the booming Exploratory Data Analysis (EDA) Tools market, projected to reach $10.5 billion by 2025 with a 12.5% CAGR. Discover key drivers, trends, and market share for large enterprises, SMEs, graphical & non-graphical tools across North America, Europe, APAC, and more.
Facebook
TwitterThis dataset contains 55,000 entries of synthetic customer transactions, generated using Python's Faker library. The goal behind creating this dataset was to provide a resource for learners like myself to explore, analyze, and apply various data analysis techniques in a context that closely mimics real-world data.
About the Dataset: - CID (Customer ID): A unique identifier for each customer. - TID (Transaction ID): A unique identifier for each transaction. - Gender: The gender of the customer, categorized as Male or Female. - Age Group: Age group of the customer, divided into several ranges. - Purchase Date: The timestamp of when the transaction took place. - Product Category: The category of the product purchased, such as Electronics, Apparel, etc. - Discount Availed: Indicates whether the customer availed any discount (Yes/No). - Discount Name: Name of the discount applied (e.g., FESTIVE50). - Discount Amount (INR): The amount of discount availed by the customer. - Gross Amount: The total amount before applying any discount. - Net Amount: The final amount after applying the discount. - Purchase Method: The payment method used (e.g., Credit Card, Debit Card, etc.). - Location: The city where the purchase took place.
Use Cases: 1. Exploratory Data Analysis (EDA): This dataset is ideal for conducting EDA, allowing users to practice techniques such as summary statistics, visualizations, and identifying patterns within the data. 2. Data Preprocessing and Cleaning: Learners can work on handling missing data, encoding categorical variables, and normalizing numerical values to prepare the dataset for analysis. 3. Data Visualization: Use tools like Python’s Matplotlib, Seaborn, or Power BI to visualize purchasing trends, customer demographics, or the impact of discounts on purchase amounts. 4. Machine Learning Applications: After applying feature engineering, this dataset is suitable for supervised learning models, such as predicting whether a customer will avail a discount or forecasting purchase amounts based on the input features.
This dataset provides an excellent sandbox for honing skills in data analysis, machine learning, and visualization in a structured but flexible manner.
This is not a real dataset. This dataset was generated using Python's Faker library for the sole purpose of learning
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Many upcoming and proposed missions to ocean worlds such as Europa, Enceladus, and Titan aim to evaluate their habitability and the existence of potential life on these moons. These missions will suffer from communication challenges and technology limitations. We review and investigate the applicability of data science and unsupervised machine learning (ML) techniques on isotope ratio mass spectrometry data (IRMS) from volatile laboratory analogs of Europa and Enceladus seawaters as a case study for development of new strategies for icy ocean world missions. Our driving science goal is to determine whether the mass spectra of volatile gases could contain information about the composition of the seawater and potential biosignatures. We implement data science and ML techniques to investigate what inherent information the spectra contain and determine whether a data science pipeline could be designed to quickly analyze data from future ocean worlds missions. In this study, we focus on the exploratory data analysis (EDA) step in the analytics pipeline. This is a crucial unsupervised learning step that allows us to understand the data in depth before subsequent steps such as predictive/supervised learning. EDA identifies and characterizes recurring patterns, significant correlation structure, and helps determine which variables are redundant and which contribute to significant variation in the lower dimensional space. In addition, EDA helps to identify irregularities such as outliers that might be due to poor data quality. We compared dimensionality reduction methods Uniform Manifold Approximation and Projection (UMAP) and Principal Component Analysis (PCA) for transforming our data from a high-dimensional space to a lower dimension, and we compared clustering algorithms for identifying data-driven groups (“clusters”) in the ocean worlds analog IRMS data and mapping these clusters to experimental conditions such as seawater composition and CO2 concentration. Such data analysis and characterization efforts are the first steps toward the longer-term science autonomy goal where similar automated ML tools could be used onboard a spacecraft to prioritize data transmissions for bandwidth-limited outer Solar System missions.
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
Exploratory Data Analysis (EDA) Tools play a pivotal role in the modern data-driven landscape, transforming raw data into actionable insights. As businesses increasingly recognize the value of data in informing decisions, the market for EDA tools has witnessed substantial growth, driven by the rapid expansion of dat
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.
The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.
Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:
Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.
Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.
Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.
Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).
We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.
Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.
Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Thorough knowledge of the structure of analyzed data allows to form detailed scientific hypotheses and research questions. The structure of data can be revealed with methods for exploratory data analysis. Due to multitude of available methods, selecting those which will work together well and facilitate data interpretation is not an easy task. In this work we present a well fitted set of tools for a complete exploratory analysis of a clinical dataset and perform a case study analysis on a set of 515 patients. The proposed procedure comprises several steps: 1) robust data normalization, 2) outlier detection with Mahalanobis (MD) and robust Mahalanobis distances (rMD), 3) hierarchical clustering with Ward’s algorithm, 4) Principal Component Analysis with biplot vectors. The analyzed set comprised elderly patients that participated in the PolSenior project. Each patient was characterized by over 40 biochemical and socio-geographical attributes. Introductory analysis showed that the case-study dataset comprises two clusters separated along the axis of sex hormone attributes. Further analysis was carried out separately for male and female patients. The most optimal partitioning in the male set resulted in five subgroups. Two of them were related to diseased patients: 1) diabetes and 2) hypogonadism patients. Analysis of the female set suggested that it was more homogeneous than the male dataset. No evidence of pathological patient subgroups was found. In the study we showed that outlier detection with MD and rMD allows not only to identify outliers, but can also assess the heterogeneity of a dataset. The case study proved that our procedure is well suited for identification and visualization of biologically meaningful patient subgroups.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides an overview of various AI tools, capturing key attributes that highlight their popularity, subscription models, and the categories they fall under. It can serve as a valuable resource for analyzing trends in AI tool usage, comparing different tools based on user feedback, and understanding the market positioning of these tools.
Columns: Name: The name of the AI tool, representing various applications and services in the AI domain. Votes: The number of votes or ratings each tool has received, reflecting its popularity and user acceptance. Subscription: The type of subscription model the tool offers, indicating whether it is free, freemium (a mix of free and paid features), or paid. Category: A list of categories associated with each tool, identifying the primary industries or use cases it caters to, such as: Human Resources Legal AI Chatbots Marketing Education Video Generators Writing Generators Storytellers Presentations Startup Tools Dataset Use Cases: Market Analysis: Understand which AI tools are most popular based on user votes and explore trends across different categories. Product Comparison: Compare AI tools based on their subscription models, identifying which tools offer free or freemium options versus paid-only models. Category Insights: Analyze the distribution of AI tools across various categories to see where innovation and adoption are most concentrated.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Parallel Coordinate Plots (PCP) are a valuable tool for exploratory data analysis of high-dimensional numerical data. The use of PCPs is limited when working with categorical variables or a mix of categorical and continuous variables. In this article, we propose Generalized Parallel Coordinate Plots (GPCP) to extend the ability of PCPs from just numeric variables to dealing seamlessly with a mix of categorical and numeric variables in a single plot. In this process we find that existing solutions for categorical values only, such as hammock plots or parsets become edge cases in the new framework. By focusing on individual observations rather than a marginal frequency we gain additional flexibility. The resulting approach is implemented in the R package ggpcp. Supplementary materials for this article are available online.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description:
Dive into the dynamic world of the software industry with this comprehensive dataset featuring key metrics from top software companies for the years 2022 to 2023.
This dataset provides valuable insights into:
Benefits:
Comprehensive: Data covering essential metrics for informed analysis. Recent: Insights from the latest two years (2022-2023) for current market trends. User-Friendly: Organized structure for easy integration with data manipulation tools like Pandas. Take your data analysis to the next level and explore the competitive landscape of the software industry!
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Presentation Date: Sunday, January 8th, 2023 Location: Seattle, Washington, USA Abstract: A talk introducing glue software and its function with astronomy at the 2023 AAS meeting. Files included are Keynote slides (in .key and .pdf formats)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Exploratory data analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Exploratory Data Analysis for the Physical Properties of Lakes
This lesson was adapted from educational material written by Dr. Kateri Salk for her Fall 2019 Hydrologic Data Analysis course at Duke University. This is the first part of a two-part exercise focusing on the physical properties of lakes.
Introduction
Lakes are dynamic, nonuniform bodies of water in which the physical, biological, and chemical properties interact. Lakes also contain the majority of Earth's fresh water supply. This lesson introduces exploratory data analysis using R statistical software in the context of the physical properties of lakes.
Learning Objectives
After successfully completing this exercise, you will be able to:
Facebook
TwitterAt least 350k posts are published on X, 510k comments are posted on Facebook, and 66k pictures and videos are shared on Instagram each minute. These large datasets require substantial processing power, even if only a percentage is collected for analysis and research. To face this challenge, data scientists can now use computer clusters deployed on various IaaS and PaaS services in the cloud. However, scientists still have to master the design of distributed algorithms and be familiar with using distributed computing programming frameworks. It is thus essential to generate tools that provide analysis methods to leverage the advantages of computer clusters for processing large amounts of social network text. This paper presents Whistlerlib, a new Python library for conducting exploratory analysis on large text datasets on social networks. Whistlerlib implements distributed versions of various social media, sentiment, and social network analysis methods that can run atop computer clusters. We experimentally demonstrate the scalability of the various Whistlerlib distributed methods when deployed on a public cloud platform. We also present a practical example of the analysis of posts on the social network X about the Mexico City subway to showcase the features of Whistlerlib in scenarios where social network analysis tools are needed to address issues with a social dimension.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Despite exploratory data analysis (EDA) is a powerful approach for uncovering insights from unfamiliar datasets, existing EDA tools face challenges in assisting users to assess the progress of exploration and synthesize coherent insights from isolated findings. To address these challenges, we present FactExplorer, a novel fact-based EDA system that shifts the analysis focus from raw data to data facts. FactExplorer employs a hybrid logical-visual representation, providing users with a comprehensive overview of all potential facts at the outset of their exploration. Moreover, FactExplorer introduces fact-mining techniques, including topic-based drill-down and transition path search capabilities. These features facilitate in-depth analysis of facts and enhance the understanding of interconnections between specific facts. Finally, we present a usage scenario and conduct a user study to assess the effectiveness of FactExplorer. The results indicate that FactExplorer facilitates the understanding of isolated findings and enables users to steer a thorough and effective EDA.
Facebook
TwitterThe high-resolution and mass accuracy of Fourier transform mass spectrometry (FT-MS) has made it an increasingly popular technique for discerning the composition of soil, plant and aquatic samples containing complex mixtures of proteins, carbohydrates, lipids, lignins, hydrocarbons, phytochemicals and other compounds. Thus, there is a growing demand for informatics tools to analyze FT-MS data that will aid investigators seeking to understand the availability of carbon compounds to biotic and abiotic oxidation and to compare fundamental chemical properties of complex samples across groups. We present ftmsRanalysis, an R package which provides an extensive collection of data formatting and processing, filtering, visualization, and sample and group comparison functionalities. The package provides a suite of plotting methods and enables expedient, flexible and interactive visualization of complex datasets through functions which link to a powerful and interactive visualization user interface, Trelliscope. Example analysis using FT-MS data from a soil microbiology study demonstrates the core functionality of the package and highlights the capabilities for producing interactive visualizations.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context: Artificial Intelligence is evolving faster than ever, with new tools and models being released every few months. From large language models (LLMs) like ChatGPT, Claude, and Gemini, to image generation tools like Midjourney and Stable Diffusion, the AI ecosystem is expanding across multiple modalities like text, image, video, audio, and beyond. This dataset was created to provide a single, structured source of information about the most important AI tools available today. It captures their companies, categories, capabilities, release years, and availability (API/open-source), making it easier for researchers, developers, and AI enthusiasts to explore and analyze the rapidly changing AI landscape.
Content: This dataset includes 113 AI tools and models, with 22 attributes that describe their features and availability:
Tool Name & Company
Category (LLMs, Image Gen, Productivity, etc.)
Modalities (Text, Image, Video, Audio, Code, Multimodal…)
Open-Source Status
API Availability & Website
Release Year
Other metadata (domains, API status, modality counts, etc.)
It’s designed to give a structured overview of the AI landscape for 2022–2025.
Acknowledgements:
This dataset is compiled from publicly available information about AI tools and companies. Special thanks to the open-source and AI research community for making insights about generative AI accessible.
Inspiration:
Trend Analysis: Study how AI tools have evolved over time
Comparison: Compare companies and their approaches to multimodality
Visualization: Build charts showing AI adoption across modalities
Innovation: Use the dataset as a foundation for new AI research or projects
This dataset is perfect for anyone interested in exploring the current state of generative AI and its future directions.
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
The data was collected from the famous cookery Youtube channels in India. The major focus was to collect the viewers' comments in Hinglish languages. The datasets are taken from top 2 Indian cooking channel named Nisha Madhulika channel and Kabita’s Kitchen channel.
Both the datasets comments are divided into seven categories:-
Label 1- Gratitude
Label 2- About the recipe
Label 3- About the video
Label 4- Praising
Label 5- Hybrid
Label 6- Undefined
Label 7- Suggestions and queries
All the labelling has been done manually.
Nisha Madhulika dataset:
Dataset characteristics: Multivariate
Number of instances: 4900
Area: Cooking
Attribute characteristics: Real
Number of attributes: 3
Date donated: March, 2019
Associate tasks: Classification
Missing values: Null
Kabita Kitchen dataset:
Dataset characteristics: Multivariate
Number of instances: 4900
Area: Cooking
Attribute characteristics: Real
Number of attributes: 3
Date donated: March, 2019
Associate tasks: Classification
Missing values: Null
There are two separate datasets file of each channel named as preprocessing and main file .
The files with preprocessing names are generated after doing the preprocessing and exploratory data analysis on both the datasets. This file includes:
The main file includes:
Please cite the paper
https://www.mdpi.com/2504-2289/3/3/37
MDPI and ACS Style
Kaur, G.; Kaushik, A.; Sharma, S. Cooking Is Creating Emotion: A Study on Hinglish Sentiments of Youtube Cookery Channels Using Semi-Supervised Approach. Big Data Cogn. Comput. 2019, 3, 37.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Exploratory Data Analysis (EDA) tools market is experiencing robust growth, driven by the increasing need for businesses to derive actionable insights from their ever-expanding datasets. The market, currently estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an estimated $45 billion by 2033. This growth is fueled by several factors, including the rising adoption of big data analytics, the proliferation of cloud-based solutions offering enhanced accessibility and scalability, and the growing demand for data-driven decision-making across diverse industries like finance, healthcare, and retail. The market is segmented by application (large enterprises and SMEs) and type (graphical and non-graphical tools), with graphical tools currently holding a larger market share due to their user-friendly interfaces and ability to effectively communicate complex data patterns. Large enterprises are currently the dominant segment, but the SME segment is anticipated to experience faster growth due to increasing affordability and accessibility of EDA solutions. Geographic expansion is another key driver, with North America currently holding the largest market share due to early adoption and a strong technological ecosystem. However, regions like Asia-Pacific are exhibiting high growth potential, fueled by rapid digitalization and a burgeoning data science talent pool. Despite these opportunities, the market faces certain restraints, including the complexity of some EDA tools requiring specialized skills and the challenge of integrating EDA tools with existing business intelligence platforms. Nonetheless, the overall market outlook for EDA tools remains highly positive, driven by ongoing technological advancements and the increasing importance of data analytics across all sectors. The competition among established players like IBM Cognos Analytics and Altair RapidMiner, and emerging innovative companies like Polymer Search and KNIME, further fuels market dynamism and innovation.