Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
This vector tile layer is designed to support exporting small volumes of basemap tiles for offline use. The content of this layer is equivalent to World Terrain Reference map. This layer provides a detailed basemap for the world symbolized with populated places, and admin area boundary lines. The minimal features and styling is designed to draw attention to your thematic content. It is designed for use with World Terrain Base and shaded relief for added content. See World Terrain Reference for more details.Use this MapThis vector tile service supporting this layer will enable you to export a small number of tiles in a single request. This layer is not intended to be used to display live map tiles for use in a web map or web mapping application. To display map tiles, please use World Terrain Reference.Service Information for DevelopersTo export tiles for World Terrain Reference (for Export), you must use the instance of the World_Basemap_Export_v2 service hosted on basemaps.arcgis.com referenced by this layer (see URL in Contents below), which has the Export Tiles operation enabled. This layer is optimized to minimize the size of the download for offline use. Due to this optimization, there are small differences between this layer and the display optimized World_Basemap_v2 service. This layer is intended to support export of basemap tiles for offline use in ArcGIS applications and other applications built with an ArcGIS Runtime SDK.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).
Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.
Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.
Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------
Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.
Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.
References:
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Address Data Exporter lets you view, select and download City of Tempe address data. You can select the addresses you want to export by drawing a box (or other shape) around the area of interest.Data provided are also available through the city's Open Data portal.
This vector tile layer is designed to support exporting small volumes of basemap tiles for offline use. The content of this layer is equivalent to World Street Map (with Relief). This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, designed for use with shaded relief for added context. See World Street Map (with Relief) for more details.Use this MapThis vector tile service supporting this layer will enable you to export a small number of tiles in a single request. This layer is not intended to be used to display live map tiles for use in a web map or web mapping application. To display map tiles, please use World Street Map (with Relief).Service Information for DevelopersTo export tiles for World Street Map (with Relief- for Export), you must use the instance of the World_Basemap_Export_v2 service hosted on basemaps.arcgis.com referenced by this layer (see URL in Contents below), which has the Export Tiles operation enabled. This layer is optimized to minimize the size of the download for offline use. Due to this optimization, there are small differences between this layer and the display optimized World_Basemap_v2 service. This layer is intended to support export of basemap tiles for offline use in ArcGIS applications and other applications built with an ArcGIS Runtime SDK.
Water bodies are a key element in the landscape. This layer provides a global map of large water bodies for use inlandscape-scale analysis. Dataset SummaryThis layer provides access to a 250m cell-sized raster of surface water created by extracting pixels coded as water in the Global Lithological Map and the Global Landcover Map. The layer was created by Esri in 2014. Analysis: Restricted single source analysis. Maximum size of analysis is 16,000 x 16,000 pixels. What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. Restricted single source analysis means this layer has size constraints for analysis and it is not recommended for use with other layers in multisource analysis.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometerson a side or an area approximately the size of Europe.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many otherbeautiful and authoritative maps on hundreds of topics. Geonetis a good resource for learning more aboutlandscape layers and the Living Atlas of the World. To get started see theLiving Atlas Discussion Group. TheEsri Insider Blogprovides an introduction to the Ecophysiographic Mapping project.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
highway IS NOT NULL
Features may have these attributes:
This dataset is one of many "https://data.humdata.org/organization/hot">OpenStreetMap exports on HDX. See the Humanitarian OpenStreetMap Team website for more information.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
waterway IS NOT NULL OR water IS NOT NULL OR natural IN ('water','wetland','bay')
Features may have these attributes:
This dataset is one of many "https://data.humdata.org/organization/hot">OpenStreetMap exports on HDX. See the Humanitarian OpenStreetMap Team website for more information.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Cropland Data Layer (CDL), hosted on CropScape, provides a raster, geo-referenced, crop-specific land cover map for the continental United States. The CDL also includes a crop mask layer and planting frequency layers, as well as boundary, water and road layers. The Boundary Layer options provided are County, Agricultural Statistics Districts (ASD), State, and Region. The data is created annually using moderate resolution satellite imagery and extensive agricultural ground truth. Users can select a geographic area of interest or import one, then access acreage statistics for a specific year or view the change from one year to another. The data can be exported or added to the CDL. The information is useful for issues related to agricultural sustainability, biodiversity, and land cover monitoring, especially due to extreme weather events. Resources in this dataset:Resource Title: CropScape and Cropland Data Layer - National Download. File Name: Web Page, url: https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php Downloads available as zipped files at https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php --
National CDL's -- by year, 2008-2020. Cropland Data Layer provides a raster, geo-referenced, crop-specific land cover map for the continental United States. The CDL also includes a crop mask layer and planting frequency layers, as well as boundary, water and road layers. The Boundary Layer options provided are County, Agricultural Statistics Districts (ASD), State, and Region. National Cultivated Layer -- based on the most recent five years (2013-2020). National Frequency Layer -- the 2017 Crop Frequency Layer identifies crop specific planting frequency and are based on land cover information derived from the 2008 through 2020CDL's. There are currently four individual crop frequency data layers that represent four major crops: corn, cotton, soybeans, and wheat. National Confidence Layer -- the Confidence Layer spatially represents the predicted confidence that is associated with that output pixel, based upon the rule(s) that were used to classify it. Western/Eastern/Central U.S.
Visit https://nassgeodata.gmu.edu/CropScape/ for the interactive map including tutorials and basic instructions. These options include a "Demo Video", "Help", "Developer Guide", and "FAQ".
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
highway IS NOT NULL
Features may have these attributes:
This dataset is one of many "https://data.humdata.org/organization/hot">OpenStreetMap exports on HDX. See the Humanitarian OpenStreetMap Team website for more information.
This vector tile layer is designed to support exporting small volumes of basemap tiles for offline use. The content of this layer is equivalent to World Navigation Map (Dark). This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries featuring a custom dark mode navigation map style. See World Navigation Map (Dark) for more details.Use this MapThis vector tile service supporting this layer will enable you to export a small number of tiles in a single request. This layer is not intended to be used to display live map tiles for use in a web map or web mapping application. To display map tiles, please use World Navigation Map (Dark).Service Information for DevelopersTo export tiles for World Navigation Map (Dark Mode - for Export), you must use the instance of the World_Basemap_Export_v2 service hosted on basemaps.arcgis.com referenced by this layer (see URL in Contents below), which has the Export Tiles operation enabled. This layer is optimized to minimize the size of the download for offline use. Due to this optimization, there are small differences between this layer and the display optimized World_Basemap_v2 service. This layer is intended to support export of basemap tiles for offline use in ArcGIS applications and other applications built with an ArcGIS Runtime SDK.
Wayback imagery is a digital archive of the World Imagery basemap, enabling users to access more than 100 different versions of World Imagery archived over the past 10 years. Each record in the archive represents a version of World Imagery as it existed on the date it was published.This app offers a dynamic Wayback browsing and discovery experience where previous versions of the World Imagery basemap are presented within the map, along a timeline, and as a list. Versions that resulted in local changes are dynamically presented to the user based on location and scale. Preview changes by hovering over and/or selecting individual layers. When ready, one or more Wayback layers can be added to an export queue and pushed to a new ArcGIS Online web map. Browse, preview, select, and create, it’s all there!For more information on Wayback check out these articles.You can also find every Wayback tile layer in the Wayback imagery group.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
highway IS NOT NULL
Features may have these attributes:
This dataset is one of many "https://data.humdata.org/organization/hot">OpenStreetMap exports on HDX. See the Humanitarian OpenStreetMap Team website for more information.
This is the 2022 version of the Aquifer Risk Map. The 2021 version of the Aquifer Risk Map is available here.This aquifer risk map is developed to fulfill requirements of SB-200 and is intended to help prioritize areas where domestic wells and state small water systems may be accessing raw source groundwater that does not meet primary drinking water standards (maximum contaminant level or MCL). In accordance with SB-200, the risk map is to be made available to the public and is to be updated annually starting January 1, 2021. The Fund Expenditure Plan states the risk map will be used by Water Boards staff to help prioritize areas for available SAFER funding. This is the final 2022 map based upon feedback received from the 2021 map. A summary of methodology updates to the 2022 map can be found here.This map displays raw source groundwater quality risk per square mile section. The water quality data is based on depth-filtered, declustered water quality results from public and domestic supply wells. The process used to create this map is described in the 2022 Aquifer Risk Map Methodology document. Data processing scripts are available on GitHub. Download/export links are provided in this app under the Data Download widget.This draft version was last updated December 1, 2021. Water quality risk: This layer contains summarized water quality risk per square mile section and well point. The section water quality risk is determined by analyzing the long-tern (20-year) section average and the maximum recent (within 5 years) result for all sampled contaminants. These values are compared to the MCL and sections with values above the MCL are “high risk”, sections with values within 80%-100% of the MCL are “medium risk” and sections with values below 80% of the MCL are “low risk”. The specific contaminants above or close to the MCL are listed as well. The water quality data is based on depth-filtered, de-clustered water quality results from public and domestic supply wells.Individual contaminants: This layer shows de-clustered water quality data for arsenic, nitrate, 1,2,3-trichloropropane, uranium, and hexavalent chromium per square mile section. Domestic Well Density: This layer shows the count of domestic well records per square mile. The domestic well density per square mile is based on well completion report data from the Department of Water Resources Online System for Well Completion Reports, with records drilled prior to 1970 removed and records of “destruction” removed.State Small Water Systems: This layer displays point locations for state small water systems based on location data from the Division of Drinking Water.Public Water System Boundaries: This layer displays the approximate service boundaries for public water systems based on location data from the Division of Drinking Water.Reference layers: This layer contains several reference boundaries, including boundaries of CV-SALTS basins with their priority status, Groundwater Sustainability Agency boundaries, census block group boundaries, county boundaries, and groundwater unit boundaries. ArcGIS Web Application
This map contains a number of world-wide dynamic image services providing access to various Landsat scenes covering the landmass of the World for visual interpretation. Landsat 8 collects new scenes for each location on Earth every 16 days, assuming limited cloud coverage. Newest and near cloud-free scenes are displayed by default on top. Most scenes collected since 1st January 2015 are included. The service also includes scenes from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).The service contains a range of different predefined renderers for Multispectral, Panchromatic as well as Pansharpened scenes. The layers in the service can be time-enabled so that the applications can restrict the displayed scenes to a specific date range. This ArcGIS Server dynamic service can be used in Web Maps and ArcGIS Desktop, Web and Mobile applications using the REST based image services API. Users can also export images, but the exported area is limited to maximum of 2,000 columns x 2,000 rows per request.Data Source: The imagery in these services is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). The data for these services reside on the Landsat Public Datasets hosted on the Amazon Web Service cloud. Users can access full scenes from https://github.com/landsat-pds/landsat_ingestor/wiki/Accessing-Landsat-on-AWS, or alternatively access http://landsatlook.usgs.gov to review and download full scenes from the complete USGS archive.For more information on Landsat 8 images, see http://landsat.usgs.gov/landsat8.php.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit http://landsat.usgs.gov/science_GLS.php.For more information on each of the individual layers, see http://www.arcgis.com/home/item.html?id=d9b466d6a9e647ce8d1dd5fe12eb434b ; http://www.arcgis.com/home/item.html?id=6b003010cbe64d5d8fd3ce00332593bf ; http://www.arcgis.com/home/item.html?id=a7412d0c33be4de698ad981c8ba471e6
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
There have been a number of requests for "State Roads" data. This data is currently available via the Data.NSW Spatial Collaboration Portal.
To access Road Segment Data please follow the instructions below;
https://opendata.transport.nsw.gov.au/sites/default/files/styles/panopoly_image_original/public/Image%201.png?itok=Zj8I2HTQ&c=57759871b0db5f3b792ed8c6dc3c4669" alt="homepage">
https://opendata.transport.nsw.gov.au/sites/default/files/styles/panopoly_image_original/public/Image%202.png?itok=uy1Gkd3E&c=2f9dc44fee9f3e79d7b5348119a8827f" alt="Export Page">
https://opendata.transport.nsw.gov.au/sites/default/files/styles/panopoly_image_original/public/Image%203.png?itok=DMQQSR4S" alt="Layers to Export Page">
Click Next >
Do you want to specify an extent? Select No or Yes, by drawing the extent on a map. If you select ‘No’ all the data will be extracted. If you wanted to specify an extent of data extraction, e.g. around Sydney in the screenshot below, use the square icon labelled ‘Draw a rectangle’. This will draw a square centred on the point where you clicked on the map. You can change the shape from the icon labelled ‘Reshape’ to get the required area of extraction.
https://opendata.transport.nsw.gov.au/sites/default/files/styles/panopoly_image_original/public/Image%204.png?itok=T28ur_3b" alt="Map Selection View">
Click on Next >
Select your preferred Export format. Please note the limitation of ESRI Shape files truncating attribute names to 10 characters.
Select your preferred Export datum: Please note the current preference of GDA2020, although that depends on your objective.
Select your preferred Export coordinate system: ‘Geographic’ will export the geometries in latitude/longitude. MGAxx coordinate systems will export the geometries in metres.
Type your email address
https://opendata.transport.nsw.gov.au/sites/default/files/styles/panopoly_image_original/public/Image%205.png?itok=KQ2XbSQL" alt="Attribute Selection">
Click Export
You should see the screen below
https://opendata.transport.nsw.gov.au/sites/default/files/styles/panopoly_image_original/public/Image%206.PNG?itok=4isSITci" alt="Confirmation Screen">
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tool and data set of road networks for 80 of the most populated urban areas in the world. The data consist of a graph edge list for each city and two corresponding GIS shapefiles (i.e., links and nodes).Make your own data with our ArcGIS, QGIS, and python tools available at: http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646
Florida COVID-19 Case Line data, exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu. Starting on 4/6/2021, the Florida Department of Health (FDOH) changed the way they provide COVID-19 caseline data. Beginning with this date the caseline data is being archived as two separate files, one for 2020 and one for 2021. The 2021 file will only include data from 1/1/2021 onward. In addition, FDOH has added two Object ID fields to their dataset. These caseline data are being preserved as they are provided by the FDOH, with a daily archive captured by the USF Libraries DHHC.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2021. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/. https://doi.org/10.5038/USF-COVID-19-GISLive FDOH Data Source: https://www.arcgis.com/home/item.html?id=7a0c74a551904761812dc6b8bd620ee1 or Direct Download at: https://open-fdoh.hub.arcgis.com/datasets/7a0c74a551904761812dc6b8bd620ee1_0.
Archives for this data layer begin on 5/11/2020. Archived data was exported directly from the live FDOH layer into the archive by the University of South Florida Libraries - Digital Heritage and Humanities Collection.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from the Florida Department of Health. This data table represents all laboratory-confirmed cases of COVID-19 in Florida tabulated from the previous day's totals by the Florida Department of Health. Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results.All PUIs fit into one of three residency types:1. Florida residents tested in Florida2. Non-Florida residents tested in Florida 3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outsideof Florida, and were not exposed/infectious in Florida. Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state.Table Guide for Records of Confirmed Positive Cases of COVID-19"County": The Florida county where the individual with COVID-19's case has been processed. "Jurisdiction" of the case:"FL resident" -- a resident of Florida"Non-FL resident" -- someone who resides outside of Florida "Travel_Related": Whether or not the positive case of COVID-19 is designated as related to recent travel by the individual. "No" -- Case designated as not being a risk related to recent travel"Unknown" -- Case designated where a travel-related designation has not yet been made."Yes" -- Case is designated as travel-related for a person who recently traveled overseas or to an area with community"Origin": Where the person likely contracted the virus before arriving / returning to Florida."EDvisit": Whether or not an individual who tested positive for coronavirus visited and was admitted to an Emergency Department related to health conditions surrounding COVID-19."No" -- Individual was not admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19"Unknown" -- It is unknown whether the individual was admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19"Yes" -- Individual was admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19“Hospitalized”: Whether or not a patient who receives a positive laboratory confirmed test for COVID-19 receives inpatient care at a hospital at any time during illness. These people may no longer be hospitalized. This information does not indicate that a COVID-19 positive person is currently hospitalized, only that they have been hospitalized for health conditions relating to COVID-19 at some point during their illness. "No" -- Individual was not admitted for inpatient care at a hospital at any time during illness "Unknown" -- It is unknown whether the individual was admitted for inpatient care at a hospital at any time during illness "Yes" -- Individual was admitted for inpatient care at a hospital at some point during the illness "Died": Whether or not the individual who tested positive for COVID-19 died as a result of health complications from the viral infection. "NA" -- Not applicable / resident has not died "Yes" -- Individual died of a health complication resulting from COVID-19 "Contact": Whether the person contracted COVID-19 from contact with current or previously confirmedcases."No" -- Case with no known contact with current or previously confirmed cases"Yes" -- Case with known contact with current or previously confirmed cases"Unknown" -- Case where contact with current or previous confirmedcases is not known or under investigation"Case_": The date the positive laboratory result was received in the Department of Health’s database system and became a “confirmed case.” This is not the date a person contracted the virus, became symptomatic, or was treated. Florida does not create a case or count suspected/probable cases in the case counts without a confirmed-positive lab result. "EventDate": When the individual reported likely first experiencing symptoms related to COVID-19. "ChartDate": Also the date the positive laboratory result for an individual was received in the Department ofHealth’s database system and became a recorded, “confirmed case” of COVID-19 in the state. Data definitions updated by the FDOH on 5/13/2020.
Downloadable Address Points & Road Segments data from the Countywide Address Management System (CAMS) Program. (Data Updated: Week of November 25, 2024)For detailed information, please review the contents and information available on the HUB site for the CAMS Program. https://cams-lacounty.hub.arcgis.com/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.