Facebook
TwitterEximpedia Export import trade data lets you search trade data and active Exporters, Importers, Buyers, Suppliers, manufacturers exporters from over 209 countries
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GAPs Data Repository provides a comprehensive overview of available qualitative and quantitative data on national return regimes, now accessible through an advanced web interface at https://data.returnmigration.eu/.
This updated guideline outlines the complete process, starting from the initial data collection for the return migration data repository to the development of a comprehensive web-based platform. Through iterative development, participatory approaches, and rigorous quality checks, we have ensured a systematic representation of return migration data at both national and comparative levels.
The Repository organizes data into five main categories, covering diverse aspects and offering a holistic view of return regimes: country profiles, legislation, infrastructure, international cooperation, and descriptive statistics. These categories, further divided into subcategories, are based on insights from a literature review, existing datasets, and empirical data collection from 14 countries. The selection of categories prioritizes relevance for understanding return and readmission policies and practices, data accessibility, reliability, clarity, and comparability. Raw data is meticulously collected by the national experts.
The transition to a web-based interface builds upon the Repository’s original structure, which was initially developed using REDCap (Research Electronic Data Capture). It is a secure web application for building and managing online surveys and databases.The REDCAP ensures systematic data entries and store them on Uppsala University’s servers while significantly improving accessibility and usability as well as data security. It also enables users to export any or all data from the Project when granted full data export privileges. Data can be exported in various ways and formats, including Microsoft Excel, SAS, Stata, R, or SPSS for analysis. At this stage, the Data Repository design team also converted tailored records of available data into public reports accessible to anyone with a unique URL, without the need to log in to REDCap or obtain permission to access the GAPs Project Data Repository. Public reports can be used to share information with stakeholders or external partners without granting them access to the Project or requiring them to set up a personal account. Currently, all public report links inserted in this report are also available on the Repository’s webpage, allowing users to export original data.
This report also includes a detailed codebook to help users understand the structure, variables, and methodologies used in data collection and organization. This addition ensures transparency and provides a comprehensive framework for researchers and practitioners to effectively interpret the data.
The GAPs Data Repository is committed to providing accessible, well-organized, and reliable data by moving to a centralized web platform and incorporating advanced visuals. This Repository aims to contribute inputs for research, policy analysis, and evidence-based decision-making in the return and readmission field.
Explore the GAPs Data Repository at https://data.returnmigration.eu/.
Facebook
TwitterThe files and workflow will allow you to replicate the study titled "Exploring an extinct society through the lens of Habitus-Field theory and the Tocharian text corpus". This study aimed at utilizing the CEToM-corpus (https://cetom.univie.ac.at/) (Tocharian) to analyze the life-world of the elites of an extinct society situated in modern eastern China. To acquire the raw data needed for steps 1 & 2, please contact Melanie Malzahn melanie.malzahn@univie.ac.at. We conducted a mixed methods study, containing of close reading, content analysis, and multiple correspondence analysis (MCA). The excel file titled "fragments_architecture_combined.xlsx" allows for replication of the MCA and equates to the third step of the workflow outlined below. We used the following programming languages and packages to prepare the dataset and to analyze the data. Data preparation and merging procedures were achieved in python (version 3.9.10) with packages pandas (version 1.5.3), os (version 3.12.0), re (version 3.12.0), numpy (version 1.24.3), gensim (version 4.3.1), BeautifulSoup4 (version 4.12.2), pyasn1 (version 0.4.8), and langdetect (version 1.0.9). Multiple Correspondence Analyses were conducted in R (version 4.3.2) with the packages FactoMineR (version 2.9), factoextra (version 1.0.7), readxl version(1.4.3), tidyverse version(2.0.0), ggplot2 (version 3.4.4) and psych (version 2.3.9). After requesting the necessary files, please open the scripts in the order outlined bellow and execute the code-files to replicate the analysis: Preparatory step: Create a folder for the python and r-scripts downloadable in this repository. Open the file 0_create folders.py and declare a root folder in line 19. This first script will generate you the following folders: "tarim-brahmi_database" = Folder, which contains tocharian dictionaries and tocharian text fragments. "dictionaries" = contains tocharian A and tocharian B vocabularies, including linguistic features such as translations, meanings, part of speech tags etc. A full overview of the words is provided on https://cetom.univie.ac.at/?words. "fragments" = contains tocharian text fragments as xml-files. "word_corpus_data" = folder will contain excel-files of the corpus data after the first step. "Architectural_terms" = This folder contains the data on the architectural terms used in the dataset (e.g. dwelling, house). "regional_data" = This folder contains the data on the findsports (tocharian and modern chinese equivalent, e.g. Duldur-Akhur & Kucha). "mca_ready_data" = This is the folder, in which the excel-file with the merged data will be saved. Note that the prepared file named "fragments_architecture_combined.xlsx" can be saved into this directory. This allows you to skip steps 1 &2 and reproduce the MCA of the content analysis based on the third step of our workflow (R-Script titled 3_conduct_MCA.R). First step - run 1_read_xml-files.py: loops over the xml-files in folder dictionaries and identifies a) word metadata, including language (Tocharian A or B), keywords, part of speech, lemmata, word etymology, and loan sources. Then, it loops over the xml-textfiles and extracts a text id number, langauge (Tocharian A or B), text title, text genre, text subgenre, prose type, verse type, material on which the text is written, medium, findspot, the source text in tocharian, and the translation where available. After successful feature extraction, the resulting pandas dataframe object is exported to the word_corpus_data folder. Second step - run 2_merge_excel_files.py: merges all excel files (corpus, data on findspots, word data) and reproduces the content analysis, which was based upon close reading in the first place. Third step - run 3_conduct_MCA.R: recodes, prepares, and selects the variables necessary to conduct the MCA. Then produces the descriptive values, before conducitng the MCA, identifying typical texts per dimension, and exporting the png-files uploaded to this repository.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The files contain the necessary code and data to generate the tables and results shown in the paper "Fiscal procyclicality in commodity exporting countries: How much does it pour and why" within the contractual limits of the data sources. The README file summarizes the entire package, explains datasets, provides sources, and details how the code works and where to find final tables and figures. The code MASTER.do will build all tables and figures in Stata with the exception of Table 7 and Figure 15. Table 7 is Excel constructed; Figure 15 uses an R code.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterEximpedia Export import trade data lets you search trade data and active Exporters, Importers, Buyers, Suppliers, manufacturers exporters from over 209 countries