7 datasets found
  1. LandslideSusceptibilityMappingData

    • zenodo.org
    csv
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous users Anonymous users; Anonymous users Anonymous users (2024). LandslideSusceptibilityMappingData [Dataset]. http://doi.org/10.5281/zenodo.14202177
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anonymous users Anonymous users; Anonymous users Anonymous users
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 22, 2024
    Description

    File "All points in the study area"is a shape file that extracts the corresponding values in the tif image from the tif image to the points of the raster in the study area at 30m*30m using the "Multi-value Extract to Point" tool in ArcGIS 10.8.

  2. a

    Geospatial Data Extraction Tool

    • data-with-cpaws-nl.hub.arcgis.com
    Updated Mar 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Canadian Parks and Wilderness Society (2022). Geospatial Data Extraction Tool [Dataset]. https://data-with-cpaws-nl.hub.arcgis.com/documents/a5b5f96b86ac434083f84434b12a65a3
    Explore at:
    Dataset updated
    Mar 28, 2022
    Dataset authored and provided by
    Canadian Parks and Wilderness Society
    Area covered
    Description

    The Geospatial Data Extraction Guide can be found here. The Geospatial Data Extraction Tool allows for the dynamic extraction of data from the Government of Canadas Open Data Portal. There is a selection of base layers including: Landsat mosaic Canadian Digital Surface Model Canadian Digital Elevation Model National Forest Inventory National Tiling System Grid Coverage National Parks Boundaries National Marine Conservation Areas Automatic Extraction Building Projects Limits The User can select the data to be extracted, including: CanVec Elevation Automatic Extraction Data CanVec CanVec contains more than 60 topographic features organized into 8 themes: Transport Features, Administrative Features, Hydro Features, Land Features, Manmade Features, Elevation Features, Resource Management Features and Toponymic Features.

    This multiscale product originates from the best available geospatial data sources covering Canadian Territory. It offers quality topographic information in vector format complying with international geomatics standards. The document CanVec_Code in the Data Resourced section shows the list of entities and the scales at which they are available.The maximum extraction area is 150000km. Users are able to extract the following data:Lakes and rivers - Hydrographic featuresTransport networks - Transport featuresConstructions and land use - Manmade featuresMines, energy and communication networks - Resources Management FeaturesWooded areas, saturated soils and landscape - Land featuresElevation featuresMap Labels - Toponymic features (50K only)Output Options: OGC GeoPackage, ESRI file Geodatabase, ESRI ShapefileCoordinate System Options: NAD83 CSRS (EPSG:4617), WGS 84 / Pseudo-Mercator (EPSG:3857), NAD83 / Canada Atlas Lambert (EPSG:3979)Option to clip the data: Yes / NoScale Options: 1 / 50,000, 1 / 250,00ElevationElevation data consists of the Canadian Digital Elevation Model (CDDEM) and the Canadian Digital Surface Model (CDSM). These products are available for extraction along with their derived products (Shaded Relief, Color Shaded Relief, Color Relief, Slope Map*, Aspect Map* and Point Data). *Only available for CDEM.The maximum extraction area is 50000km. Users are able to extract the following data:Digital Elevation Model (DEM)Shaded ReliefColor ReliefColor Shaded ReliefSlope mapAspect mapPoint DataPick an azimuth between 0 and 360 Degrees: Direction of light source, between 0 and 360, measured in degrees, clockwise from the north.Pick an altitude between 0 and 90 degrees: Vertical direction of light source, from 0 (horizon) to 90 degrees (zenith).Enter a vertical exaggeration factor: Vertical exaggeration factor.Select the slope's measuring unit: Choice of degrees or percent slope.Coordinate System Options: NAD83 CSRS (EPSG:4617), WGS 84 / Pseudo-Mercator (EPSG:3857), NAD83 / Canada Atlas Lambert (EPSG:3979). Data is stored in geographic coordinates (longitude and latitude). However, it can also be offered in a plane coordinate projection (X and Y) at the time of extraction. Definition for the coordinate system can be found in the metadata.Select the DEM output formats: OGC GeoPackage, ESRI file Geodatabase, ESRI Shapefile. The source data (DEM or DSM) available formats are GeoTIFF and Esri ASCII Grid. The GeoTIFF format specification can be obtained from: https://www.pubdoc.org/fileformat/rasterimage/tiff/geotiff.pdf and https://geotiff.maptools.org/spec/geotiffhome.html.The Esri ASCII Grid format specification can be obtained from:https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/esri-ascii-raster-format.htmSelect the Point Data output format: ASCII Gridded XYZ (xyz), ASCII Gridded CSV (.csv). The Point Data available formats are text CSV (.csv) (comma separated values) and text XYZ (.xyz) (space separated values). The format specification is the same for both (ASCII Gridded XYZ) and can be obtained from: https://www.gdal.org/frmt_xyz.htmlSelect the image resolution: 0.75 arc seconds, 1.5 arc seconds, 3 arc seconds, 6 arc seconds, 12 arc secondsEmail address (yourname@domain.com): When processed results will be deposited to the given email. The email information that you provide on this site is collected in accordance with the federal Privacy Act. You will be notified once your request has been processed and when it is ready for delivery. Informations about your privacy rights.The job status is listed and can be refreshed to see updates.Automatic Extraction DataThe maximum extraction area is 50000km. Users are able to extract the following data:BuildingsOutput Options: OGC GeoPackage, ESRI file Geodatabase, ESRI ShapefileCoordinate System Options: NAD83 CSRS (EPSG:4617), WGS 84 / Pseudo-Mercator (EPSG:3857), NAD83 / Canada Atlas Lambert (EPSG:3979)Email address (yourname@domain.com): When processed results will be deposited to the given email. The email information that you provide on this site is collected in accordance with the federal Privacy Act. You will be notified once your request has been processed and when it is ready for delivery. Informations about your privacy rights.The job status is listed and can be refreshed to see updates.

  3. W

    GAL GW Quantile Interpolation 20161013

    • cloud.csiss.gmu.edu
    • researchdata.edu.au
    • +1more
    zip
    Updated Dec 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australia (2019). GAL GW Quantile Interpolation 20161013 [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/49f20390-3340-4b08-b1dc-370fb919d34c
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 14, 2019
    Dataset provided by
    Australia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    This dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement.

    The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    The Groundwater (GW) quantiles are extracted from the Groundwater modelling outputs. Dataset prepared for import into the Impact and Risk Analysis Database.

    Dataset History

    Drawdown percentile and exceedance probability values was extracted from groundwater model outputs. This was performed using a GIS routine to extract groundwater model raster values using the assessment units (as points) attributed with the regional water table aquifer layer and assigning the model value from the corresponding layer to each assessment unit.

    Dataset Citation

    XXXX XXX (2017) GAL GW Quantile Interpolation 20161013. Bioregional Assessment Derived Dataset. Viewed 12 December 2018, http://data.bioregionalassessments.gov.au/dataset/49f20390-3340-4b08-b1dc-370fb919d34c.

    Dataset Ancestors

  4. f

    Sawyer Mill Dam Removal Drone DSM Elevation vs. Conventional Survey Terrain...

    • figshare.com
    xlsx
    Updated Feb 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandra Evans; Kevin Gardner (2022). Sawyer Mill Dam Removal Drone DSM Elevation vs. Conventional Survey Terrain Analysis for Reservoir Response Paper (2019 & 2020) [Dataset]. http://doi.org/10.6084/m9.figshare.14668176.v2
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 18, 2022
    Dataset provided by
    figshare
    Authors
    Alexandra Evans; Kevin Gardner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These are the calculations used for examining elevation differences between the drone DSMs and conventional survey elevations across terrain types in the Evans et al. Sawyer Mill dam removal reservoir response manuscript. The “Extract Values to Points” tool in ArcGIS Pro extracted the DSM raster values at the XY locations of the surveyed points. Using the surveyed elevations and extracted DSM values across the available areas and flight dates, trends in the drone DSMs’ Z-direction accuracy were examined across different terrain categories: vegetation, dry terrain (e.g. exposed ground or wood), and submerged terrain (e.g. substrate). Elevation values correspond to NAVD88 in meters. The DSMs' and surveyed points' XY were in WGS 84 when used in the “Extract Values to Points” tool. The "Terrain" columns designate the final terrain type categories used in the terrain analysis presented in the manuscript, while the "Terrain/Notes from Field" columns contain transcribed notes from survey field notebooks that were written in the field. Vegetation heights were also from survey field notebooks. Please see the manuscript and spreadsheet for additional information. These materials were made using resources from an NSF EPSCoR funded project “RII Track-2 FEC: Strengthening the scientific basis for decision-making about dams: Multi-scale, coupled-systems research on ecological, social, and economic trade-offs” (a.k.a. "Future of Dams"). Support for this project is provided by the National Science Foundation’s Research Infrastructure Improvement NSF #IIA-1539071. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

  5. d

    New River in Hinton, West Virginia, Flood Map Files from June 2016.

    • datadiscoverystudio.org
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). New River in Hinton, West Virginia, Flood Map Files from June 2016. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/dfa8818e05fe468db351f1d92918868f/html
    Explore at:
    Dataset updated
    Jun 8, 2018
    Area covered
    New River
    Description

    description: The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the New River within the community of Hinton, West Virginia. These geospatial data include the following items: 1. newriver_bnd; shapefile containing the polygon showing the mapped area boundary for the New River flood maps, 2. newriver_hwm; shapefile containing high-water mark points, 3. polygon_newriver_hwm; shapefile containing mapped extent of flood inundation, derived from the water-surface elevation surveyed at high-water marks, 4. depth_hwm; raster file for the flood depths derived from the water-surface elevation surveyed at high-water marks, 5. polygon_newriver_dem; shapefile containing mapped extent of flood inundation, derived from the height above ground recorded at high-water marks and the digital elevation model (DEM) raster, 6. depth_dem; raster file for the flood depths derived from the height above ground recorded at high-water marks and the digital elevation model raster. The upstream and downstream mapped area extent is limited to the upstream-most and downstream-most high-water mark locations. In areas of uncertainty of flood extent, the mapped area boundary is lined up with the flood inundation polygon extent. The mapped area boundary polygon was used to extract the final flood inundation polygon and depth raster from the water-surface elevation raster file. Depth raster files were created using the "Topo to Raster" tool in ArcMap (ESRI, 2012). For this study two sets of inundation layers were generated for each reach. One raster file showing flood depths, "depth_hwm", was created by using high-water mark water-surface elevation values on the land surface and a digital elevation model. However, differences in elevation between the surveyed water-surface elevation values at HWMs and the land-surface elevation from the digital elevation model data provided uncertainty in the inundation extent of the generated layers. Often times elevation differences of +/- 20 feet were noticed between the surveyed elevation from a HWM on the land surface and the digital elevation model land-surface elevation. Due to these elevation differences, we incorporated a second method of interpolating the water-surface layer. The recorded height above ground value from the surveyed HWM was added to the digital elevation model land-surface elevation at that point. This created a new water-surface elevation value to be used with the Topo to Raster interpolation method to create a second depth raster, "depth_dem". Both sets of inundation layers are provided.; abstract: The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the New River within the community of Hinton, West Virginia. These geospatial data include the following items: 1. newriver_bnd; shapefile containing the polygon showing the mapped area boundary for the New River flood maps, 2. newriver_hwm; shapefile containing high-water mark points, 3. polygon_newriver_hwm; shapefile containing mapped extent of flood inundation, derived from the water-surface elevation surveyed at high-water marks, 4. depth_hwm; raster file for the flood depths derived from the water-surface elevation surveyed at high-water marks, 5. polygon_newriver_dem; shapefile containing mapped extent of flood inundation, derived from the height above ground recorded at high-water marks and the digital elevation model (DEM) raster, 6. depth_dem; raster file for the flood depths derived from the height above ground recorded at high-water marks and the digital elevation model raster. The upstream and downstream mapped area extent is limited to the upstream-most and downstream-most high-water mark locations. In areas of uncertainty of flood extent, the mapped area boundary is lined up with the flood inundation polygon extent. The mapped area boundary polygon was used to extract the final flood inundation polygon and depth raster from the water-surface elevation raster file. Depth raster files were created using the "Topo to Raster" tool in ArcMap (ESRI, 2012). For this study two sets of inundation layers were generated for each reach. One raster file showing flood depths, "depth_hwm", was created by using high-water mark water-surface elevation values on the land surface and a digital elevation model. However, differences in elevation between the surveyed water-surface elevation values at HWMs and the land-surface elevation from the digital elevation model data provided uncertainty in the inundation extent of the generated layers. Often times elevation differences of +/- 20 feet were noticed between the surveyed elevation from a HWM on the land surface and the digital elevation model land-surface elevation. Due to these elevation differences, we incorporated a second method of interpolating the water-surface layer. The recorded height above ground value from the surveyed HWM was added to the digital elevation model land-surface elevation at that point. This created a new water-surface elevation value to be used with the Topo to Raster interpolation method to create a second depth raster, "depth_dem". Both sets of inundation layers are provided.

  6. d

    Elk River in Kanawha and Clay Counties, West Virginia, Flood Map Files from...

    • datadiscoverystudio.org
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Elk River in Kanawha and Clay Counties, West Virginia, Flood Map Files from June 2016. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/abf34ed402ea489d90616e28a3e2942a/html
    Explore at:
    Dataset updated
    Jun 8, 2018
    Description

    description: The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the Elk River within communities in Kanawha and Clay Counties, West Virginia. These geospatial data include the following items: 1. elk_bnd; shapefile containing the polygon showing the mapped area boundary for the Elk River flood maps, 2. elk_hwm; shapefile containing high-water mark points, 3. polygon_elk_hwm; shapefile containing mapped extent of flood inundation, derived from the water-surface elevation surveyed at high-water marks, 4. depth_hwm; raster file for the flood depths derived from the water-surface elevation surveyed at high-water marks, 5. polygon_elk_dem; shapefile containing mapped extent of flood inundation, derived from the height above ground recorded at high-water marks and the digital elevation model (DEM) raster, 6. depth_dem; raster file for the flood depths derived from the height above ground recorded at high-water marks and the digital elevation model raster. The upstream and downstream mapped area extent is limited to the upstream-most and downstream-most high-water mark locations. In areas of uncertainty of flood extent, the mapped area boundary is lined up with the flood inundation polygon extent. The mapped area boundary polygon was used to extract the final flood inundation polygon and depth raster from the water-surface elevation raster file. Depth raster files were created using the "Topo to Raster" tool in ArcMap (ESRI, 2012). For this study two sets of inundation layers were generated for each reach. One raster file showing flood depths, "depth_hwm", was created by using high-water mark water-surface elevation values on the land surface and a digital elevation model. However, differences in elevation between the surveyed water-surface elevation values at HWMs and the land-surface elevation from the digital elevation model data provided uncertainty in the inundation extent of the generated layers. Often times elevation differences of +/- 20 feet were noticed between the surveyed elevation from a HWM on the land surface and the digital elevation model land-surface elevation. Due to these elevation differences, we incorporated a second method of interpolating the water-surface layer. The recorded height above ground value from the surveyed HWM was added to the digital elevation model land-surface elevation at that point. This created a new water-surface elevation value to be used with the Topo to Raster interpolation method to create a second depth raster, "depth_dem". Both sets of inundation layers are provided.; abstract: The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the Elk River within communities in Kanawha and Clay Counties, West Virginia. These geospatial data include the following items: 1. elk_bnd; shapefile containing the polygon showing the mapped area boundary for the Elk River flood maps, 2. elk_hwm; shapefile containing high-water mark points, 3. polygon_elk_hwm; shapefile containing mapped extent of flood inundation, derived from the water-surface elevation surveyed at high-water marks, 4. depth_hwm; raster file for the flood depths derived from the water-surface elevation surveyed at high-water marks, 5. polygon_elk_dem; shapefile containing mapped extent of flood inundation, derived from the height above ground recorded at high-water marks and the digital elevation model (DEM) raster, 6. depth_dem; raster file for the flood depths derived from the height above ground recorded at high-water marks and the digital elevation model raster. The upstream and downstream mapped area extent is limited to the upstream-most and downstream-most high-water mark locations. In areas of uncertainty of flood extent, the mapped area boundary is lined up with the flood inundation polygon extent. The mapped area boundary polygon was used to extract the final flood inundation polygon and depth raster from the water-surface elevation raster file. Depth raster files were created using the "Topo to Raster" tool in ArcMap (ESRI, 2012). For this study two sets of inundation layers were generated for each reach. One raster file showing flood depths, "depth_hwm", was created by using high-water mark water-surface elevation values on the land surface and a digital elevation model. However, differences in elevation between the surveyed water-surface elevation values at HWMs and the land-surface elevation from the digital elevation model data provided uncertainty in the inundation extent of the generated layers. Often times elevation differences of +/- 20 feet were noticed between the surveyed elevation from a HWM on the land surface and the digital elevation model land-surface elevation. Due to these elevation differences, we incorporated a second method of interpolating the water-surface layer. The recorded height above ground value from the surveyed HWM was added to the digital elevation model land-surface elevation at that point. This created a new water-surface elevation value to be used with the Topo to Raster interpolation method to create a second depth raster, "depth_dem". Both sets of inundation layers are provided.

  7. a

    IE GSI Photogrammetry Coverage Ireland (ROI) ITM WMS

    • hub.arcgis.com
    Updated Jan 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geological Survey Ireland (2022). IE GSI Photogrammetry Coverage Ireland (ROI) ITM WMS [Dataset]. https://hub.arcgis.com/maps/482ecad9c7ab4da0a9b6cdf56bc76ff5
    Explore at:
    Dataset updated
    Jan 19, 2022
    Dataset authored and provided by
    Geological Survey Ireland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Photogrammetry is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From drone, aeroplane or helicopter, photographs are taken. Multiple overlapping photographs of the ground are taken. Precise measurements from the photographs can be taken to create topography maps.This data was collected using a drone carrying a digital camera in 2019, 2020 and 2021.A software package was used extract points (X,Y,Z (x & y coordinates) and z (height)) from the photographs. The data is then converted into gridded (GeoTIFF) data to create a Digital Surface Model of the earth.This data shows the areas in Ireland for which you can download photogrammetry data and contains links to download the data. This is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The photogrammetry coverage is shown as polygons. Each polygon is 2000m by 2000m in size and holds information on:County - County the data is located in.Location - location nameData URL - A link to download the raster data in 2000m by 2000m sections.Data Licence- Licencing details.Data Owner –Data owner.Data Surveyor –Data collector.RMS Error - Root Mean Square Error in the z.Capture Date -Date data was captured.Resolution - Horizontal resolution of the data - grid cell size.Data Originator –Organisation the data originates from.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Anonymous users Anonymous users; Anonymous users Anonymous users (2024). LandslideSusceptibilityMappingData [Dataset]. http://doi.org/10.5281/zenodo.14202177
Organization logo

LandslideSusceptibilityMappingData

Explore at:
csvAvailable download formats
Dataset updated
Nov 25, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Anonymous users Anonymous users; Anonymous users Anonymous users
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Nov 22, 2024
Description

File "All points in the study area"is a shape file that extracts the corresponding values in the tif image from the tif image to the points of the raster in the study area at 30m*30m using the "Multi-value Extract to Point" tool in ArcGIS 10.8.

Search
Clear search
Close search
Google apps
Main menu