Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The BioID Face Database has been recorded and is published to give all researchers working in the area of face detection the possibility to compare the quality of their face detection algorithms with others. During the recording special emphasis has been laid on real world conditions. Therefore the testset features a large variety of illumination, background and face size. The dataset consists of 1521 gray level images with a resolution of 384x286 pixel. Each one shows the frontal view of a face of one out of 23 different test persons. For comparison reasons the set also contains manually set eye postions. The images are labeled BioID_xxxx.pgm where the characters xxxx are replaced by the index of the current image (with leading zeros). Similar to this, the files BioID_xxxx.eye contain the eye positions for the corresponding images.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This Dataset is created by organizing the WIDER FACE dataset. WIDER FACE dataset is a face detection benchmark dataset, of which images are selected from the publicly available WIDER dataset. We chose 32,203 images and labeled 393,703 faces with a high degree of variability in scale, pose, and occlusion as depicted in the sample images. WIDER FACE dataset is organized based on 61 event classes. For each event class, we randomly select 40%/10%/50% of data as training, validation, and testing sets. We adopt the same evaluation metric employed in the PASCAL VOC dataset.
Original Dataset http://shuoyang1213.me/WIDERFACE/
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Infrared Face Detection Dataset
Dataset contains 125,500+ images, including infrared images, from 4,484 individuals with or without a mask of various races, genders, and ages. It is specifically designed for research in face recognition and facial recognition technology, focusing on the unique challenges posed by thermal infrared imaging. By utilizing this dataset, researchers and developers can enhance their understanding of recognition systems and improve the recognition accuracy… See the full description on the dataset page: https://huggingface.co/datasets/UniDataPro/infrared-face-recognition-dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
FGnet Markup Scheme of the BioID Face Database - The BioID Face Database is being used within the FGnet project of the European Working Group on face and gesture recognition. David Cristinacce and Kola Babalola, PhD students from the department of Imaging Science and Biomedical Engineering at the University of Manchester marked up the images from the BioID Face Database. They selected several additional feature points, which are very useful for facial analysis and gesture recognition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Includes face images of 11 subjects with 3 sets of images: one of the subject with no occlusion, one of them wearing a hat, and one of them wearing glasses. Each set consists of 5 subject positions (subject's two profile positions, one central position, and two positions angled between the profile and central positions), with 7 lighting angles for each position (completing a 180 degree arc around the subject), and 5 light settings for each angle (warm, cold, low, medium, and bright). Images are 5184 pixels tall by 3456 pixels wide and are saved in .JPG format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Driver Face Detection is a dataset for object detection tasks - it contains Distracted annotations for 3,406 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
## Overview
Human Face is a dataset for object detection tasks - it contains Face annotations for 727 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
Welcome to the Native American Facial Images from Past Dataset, meticulously curated to enhance face recognition models and support the development of advanced biometric identification systems, KYC models, and other facial recognition technologies.
This dataset comprises over 5,000+ images, divided into participant-wise sets with each set including:
The dataset includes contributions from a diverse network of individuals across Native American countries:
To ensure high utility and robustness, all images are captured under varying conditions:
Each image set is accompanied by detailed metadata for each participant, including:
This metadata is essential for training models that can accurately recognize and identify Native American faces across different demographics and conditions.
This facial image dataset is ideal for various applications in the field of computer vision, including but not limited to:
High-resolution thermal infrared face database with extensive manual annotations, introduced by Kopaczka et al, 2018. Useful for training algoeithms for image processing tasks as well as facial expression recognition. The full database itself, all annotations and the complete source code are freely available from the authors for research purposes at https://github.com/marcinkopaczka/thermalfaceproject.
Please cite following papers for the dataset: [1] M. Kopaczka, R. Kolk and D. Merhof, "A fully annotated thermal face database and its application for thermal facial expression recognition," 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2018, pp. 1-6, doi: 10.1109/I2MTC.2018.8409768. [2] Kopaczka, M., Kolk, R., Schock, J., Burkhard, F., & Merhof, D. (2018). A thermal infrared face database with facial landmarks and emotion labels. IEEE Transactions on Instrumentation and Measurement, 68(5), 1389-1401.
This dataset was created by mihira liyanage
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Eye Position File Format - The eye position files are text files containing a single comment line followed by the x and the y coordinate of the left eye and the x and the y coordinate of the right eye separated by spaces. Note that we refer to the left eye as the person's left eye. Therefore, when captured by a camera, the position of the left eye is on the image's right and vice versa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This directory contains benchmark face databases (AR, FERET, GT, ORL, and Yale) used to evaluate our proposed RSSPCA algorithm in comparison with established methods including PCA, PCA-L1, and RSPCA.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
## Overview
Face Recognition 1 2 is a dataset for object detection tasks - it contains Face2 Flickr Faces Mask annotations for 574 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Includes videos of 11 subjects, each showing 18 different angles of their face for one second each. The process was repeated with 5 light settings (warm, cold, low, medium, and bright). Videos are recorded in 3840 pixels tall by 2160 pixels wide and are saved in .MP4 format.
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
Welcome to the Middle Eastern Child Faces Dataset, meticulously curated to enhance face recognition models and support the development of advanced biometric identification systems, child identification models, and other facial recognition technologies.
This dataset comprises over 3,000 child image sets, divided into participant-wise sets with each set including:
The dataset includes contributions from a diverse network of children across Middle Eastern countries:
To ensure high utility and robustness, all images are captured under varying conditions:
Each facial image set is accompanied by detailed metadata for each participant, including:
This metadata is essential for training models that can accurately recognize and identify children's faces across different demographics and conditions.
This facial image dataset is ideal for various applications in the field of computer vision, including but not limited to:
This dataset was created by merna tarek
## Overview
Cow Face Recognition is a dataset for object detection tasks - it contains Cow Face annotations for 1,299 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('lfw', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/lfw-0.1.1.png" alt="Visualization" width="500px">
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The ChokePoint dataset is designed for experiments in person identification/verification under real-world surveillance conditions using existing technologies. An array of three cameras was placed above several portals (natural choke points in terms of pedestrian traffic) to capture subjects walking through each portal in a natural way. While a person is walking through a portal, a sequence of face images (ie. a face set) can be captured. Faces in such sets will have variations in terms of illumination conditions, pose, sharpness, as well as misalignment due to automatic face localisation/detection. Due to the three camera configuration, one of the cameras is likely to capture a face set where a subset of the faces is near-frontal.
The dataset consists of 25 subjects (19 male and 6 female) in portal 1 and 29 subjects (23 male and 6 female) in portal 2. The recording of portal 1 and portal 2 are one month apart. The dataset has frame rate of 30 fps and the image resolution is 800X600 pixels. In total, the dataset consists of 48 video sequences and 64,204 face images. In all sequences, only one subject is presented in the image at a time. The first 100 frames of each sequence are for background modelling where no foreground objects were presented.
Each sequence was named according to the recording conditions (eg. P2E_S1_C3) where P, S, and C stand for portal, sequence and camera, respectively. E and L indicate subjects either entering or leaving the portal. The numbers indicate the respective portal, sequence and camera label. For example, P2L_S1_C3 indicates that the recording was done in Portal 2, with people leaving the portal, and captured by camera 3 in the first recorded sequence.
To pose a more challenging real-world surveillance problems, two seqeunces (P2E_S5 and P2L_S5) were recorded with crowded scenario. In additional to the aforementioned variations, the sequences were presented with continuous occlusion. This phenomenon presents challenges in identidy tracking and face verification.
This dataset can be applied, but not limited, to the following research areas:
person re-identification
image set matching
face quality measurement
face clustering
3D face reconstruction
pedestrian/face tracking
background estimation and subtraction
Please cite the following paper if you use the ChokePoint dataset in your work (papers, articles, reports, books, software, etc):
Y. Wong, S. Chen, S. Mau, C. Sanderson, B.C. Lovell Patch-based Probabilistic Image Quality Assessment for Face Selection and Improved Video-based Face Recognition IEEE Biometrics Workshop, Computer Vision and Pattern Recognition (CVPR) Workshops, pages 81-88, 2011. http://doi.org/10.1109/CVPRW.2011.5981881
This images has been collected from Pinterest and cropped. There are 105 celebrities and 17534 faces.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The BioID Face Database has been recorded and is published to give all researchers working in the area of face detection the possibility to compare the quality of their face detection algorithms with others. During the recording special emphasis has been laid on real world conditions. Therefore the testset features a large variety of illumination, background and face size. The dataset consists of 1521 gray level images with a resolution of 384x286 pixel. Each one shows the frontal view of a face of one out of 23 different test persons. For comparison reasons the set also contains manually set eye postions. The images are labeled BioID_xxxx.pgm where the characters xxxx are replaced by the index of the current image (with leading zeros). Similar to this, the files BioID_xxxx.eye contain the eye positions for the corresponding images.