
 Facebook
Facebook Twitter
Twitter Email
Email
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The BioID Face Database has been recorded and is published to give all researchers working in the area of face detection the possibility to compare the quality of their face detection algorithms with others. During the recording special emphasis has been laid on real world conditions. Therefore the testset features a large variety of illumination, background and face size. The dataset consists of 1521 gray level images with a resolution of 384x286 pixel. Each one shows the frontal view of a face of one out of 23 different test persons. For comparison reasons the set also contains manually set eye postions. The images are labeled BioID_xxxx.pgm where the characters xxxx are replaced by the index of the current image (with leading zeros). Similar to this, the files BioID_xxxx.eye contain the eye positions for the corresponding images.

 Facebook
Facebook Twitter
Twitter Email
Email
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This Dataset is created by organizing the WIDER FACE dataset. WIDER FACE dataset is a face detection benchmark dataset, of which images are selected from the publicly available WIDER dataset. We chose 32,203 images and labeled 393,703 faces with a high degree of variability in scale, pose, and occlusion as depicted in the sample images. WIDER FACE dataset is organized based on 61 event classes. For each event class, we randomly select 40%/10%/50% of data as training, validation, and testing sets. We adopt the same evaluation metric employed in the PASCAL VOC dataset.
Original Dataset http://shuoyang1213.me/WIDERFACE/

 Facebook
Facebook Twitter
Twitter Email
Email
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Infrared Face Detection Dataset
Dataset contains 125,500+ images, including infrared images, from 4,484 individuals with or without a mask of various races, genders, and ages. It is specifically designed for research in face recognition and facial recognition technology, focusing on the unique challenges posed by thermal infrared imaging. By utilizing this dataset, researchers and developers can enhance their understanding of recognition systems and improve the recognition accuracy… See the full description on the dataset page: https://huggingface.co/datasets/UniDataPro/infrared-face-recognition-dataset.

 Facebook
Facebook Twitter
Twitter Email
Email
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The South Asian Children Facial Image Dataset is a thoughtfully curated collection designed to support the development of advanced facial recognition systems, biometric identity verification, age estimation tools, and child-specific AI models. This dataset enables researchers and developers to build highly accurate, inclusive, and ethically sourced AI solutions for real-world applications.
The dataset includes over 1500 high-resolution image sets of children under the age of 18. Each participant contributes approximately 15 unique facial images, captured to reflect natural variations in appearance and context.
To ensure robust model training and generalizability, images are captured under varied natural conditions:
Each child’s image set is paired with detailed, structured metadata, enabling granular control and filtering during model training:
This metadata is essential for applications that require demographic awareness, such as region-specific facial recognition or bias mitigation in AI models.
This dataset is ideal for a wide range of computer vision use cases, including:
We maintain the highest ethical and security standards throughout the data lifecycle:

 Facebook
Facebook Twitter
Twitter Email
Email
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Includes face images of 11 subjects with 3 sets of images: one of the subject with no occlusion, one of them wearing a hat, and one of them wearing glasses. Each set consists of 5 subject positions (subject's two profile positions, one central position, and two positions angled between the profile and central positions), with 7 lighting angles for each position (completing a 180 degree arc around the subject), and 5 light settings for each angle (warm, cold, low, medium, and bright). Images are 5184 pixels tall by 3456 pixels wide and are saved in .JPG format.

 Facebook
Facebook Twitter
Twitter Email
Email
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Dataset Description:
The dataset comprises a collection of photos of people, organized into folders labeled "women" and "men." Each folder contains a significant number of images to facilitate training and testing of gender detection algorithms or models.
The dataset contains a variety of images capturing female and male individuals from diverse backgrounds, age groups, and ethnicities.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F1c4708f0b856f7889e3c0eea434fe8e2%2FFrame%2045%20(1).png?generation=1698764294000412&alt=media" alt="">
This labeled dataset can be utilized as training data for machine learning models, computer vision applications, and gender detection algorithms.
The dataset is split into train and test folders, each folder includes: - folders women and men - folders with images of people with the corresponding gender, - .csv file - contains information about the images and people in the dataset
🚀 You can learn more about our high-quality unique datasets here
keywords: biometric system, biometric system attacks, biometric dataset, face recognition database, face recognition dataset, face detection dataset, facial analysis, gender detection, supervised learning dataset, gender classification dataset, gender recognition dataset

 Facebook
Facebook Twitter
Twitter Email
Email
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Includes videos of 11 subjects, each showing 18 different angles of their face for one second each. The process was repeated with 5 light settings (warm, cold, low, medium, and bright). Videos are recorded in 3840 pixels tall by 2160 pixels wide and are saved in .MP4 format.

 Facebook
Facebook Twitter
Twitter Email
Email
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
FGnet Markup Scheme of the BioID Face Database - The BioID Face Database is being used within the FGnet project of the European Working Group on face and gesture recognition. David Cristinacce and Kola Babalola, PhD students from the department of Imaging Science and Biomedical Engineering at the University of Manchester marked up the images from the BioID Face Database. They selected several additional feature points, which are very useful for facial analysis and gesture recognition.

 Facebook
Facebook Twitter
Twitter Email
Email
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The Middle Eastern Children Facial Image Dataset is a thoughtfully curated collection designed to support the development of advanced facial recognition systems, biometric identity verification, age estimation tools, and child-specific AI models. This dataset enables researchers and developers to build highly accurate, inclusive, and ethically sourced AI solutions for real-world applications.
The dataset includes over 1000 high-resolution image sets of children under the age of 18. Each participant contributes approximately 15 unique facial images, captured to reflect natural variations in appearance and context.
To ensure robust model training and generalizability, images are captured under varied natural conditions:
Each child’s image set is paired with detailed, structured metadata, enabling granular control and filtering during model training:
This metadata is essential for applications that require demographic awareness, such as region-specific facial recognition or bias mitigation in AI models.
This dataset is ideal for a wide range of computer vision use cases, including:
We maintain the highest ethical and security standards throughout the data lifecycle:

 Facebook
Facebook Twitter
Twitter Email
Email
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the South Asian Human Face with Occlusion Dataset, carefully curated to support the development of robust facial recognition systems, occlusion detection models, biometric identification technologies, and KYC verification tools. This dataset provides real-world variability by including facial images with common occlusions, helping AI models perform reliably under challenging conditions.
The dataset comprises over 5,000 high-quality facial images, organized into participant-wise sets. Each set includes:
To ensure robustness and real-world utility, images were captured under diverse conditions:
Each image is paired with detailed metadata to enable advanced filtering, model tuning, and analysis:
This rich metadata helps train models that can recognize faces even when partially obscured.
This dataset is ideal for a wide range of real-world and research-focused applications, including:

 Facebook
Facebook Twitter
Twitter Email
Email
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Face Recognition, Face Detection, Male Photo Dataset 👨
  The dataset is created on the basis of Selfies and ID Dataset
110,000+ photos of 74,000+ men from 141 countries. The dataset includes photos of people's faces. All people presented in the dataset are men. The dataset contains a variety of images capturing individuals from diverse backgrounds and age groups. Our dataset will diversify your data by adding more photos of men of different ages and ethnic groups… See the full description on the dataset page: https://huggingface.co/datasets/UniqueData/male-selfie-image-dataset.

 Facebook
Facebook Twitter
Twitter Email
Email
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Black people Face Detection Dataset: 3M+ Identities
Large human faces dataset for face recognition models (10M+ images) Share with us your feedback and recieve additional samples for free!😊 Full version of dataset is availible for commercial usage - leave a request on our website Axon Labs to purchase the dataset 💰 Dataset targeting 1:N and 1:1 NIST face recognition tests. Dataset contains 3M individuals, each with 3-5 images containing their faces The dataset is “cleaned” and has… See the full description on the dataset page: https://huggingface.co/datasets/AxonData/Black_People_Face_Recognition.

 Facebook
Facebook Twitter
Twitter Email
Email
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset of friends series character sets for face detection and recognition consists of two parts: training and testing. The training section has fifty photos of each of the six characters, and the test section has fifty photos featuring two or more of the characters in each photo from the Friends series for facial detection and recognition.

 Facebook
Facebook Twitter
Twitter Email
Email
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the East Asian Multi-Year Facial Image Dataset, thoughtfully curated to support the development of advanced facial recognition systems, biometric identification models, KYC verification tools, and other computer vision applications. This dataset is ideal for training AI models to recognize individuals over time, track facial changes, and enhance age progression capabilities.
This dataset includes over 10,000+ high-quality facial images, organized into individual participant sets, each containing:
To ensure model generalization and practical usability, images in this dataset reflect real-world diversity:
Each participant’s dataset is accompanied by rich metadata to support advanced model training and analysis, including:
This dataset is highly valuable for a wide range of AI and computer vision applications:
To keep pace with evolving AI needs, this dataset is regularly updated and customizable. Custom data collection options include:

 Facebook
Facebook Twitter
Twitter Email
Email
Instagram Faces Image dataset with diverse single-face images for facial recognition, anti-spoofing, and computer vision

 Facebook
Facebook Twitter
Twitter Email
Email
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Accurately estimated foreground object in images. Dataset for editing applications for creating visual effects.
Includes 2 folders: - images - original images of faces - masks - matting masks for images
keywords: head segmentation dataset, face-generation, segmentation, human faces, portrait segmentation, human face extraction, image segmentation, annotation, biometric dataset, biometric data dataset, face recognition database, facial recognition, face forgery detection, face shape, ar, augmented reality, face detection dataset, facial analysis, human images dataset, hair segmentation, matting, image matting, computer vision, deep learning, potrait matting, natural image matting

 Facebook
Facebook Twitter
Twitter Email
Email
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
The dataset consists of images capturing people displaying 7 distinct emotions (anger, contempt, disgust, fear, happiness, sadness and surprise). Each image in the dataset represents one of these specific emotions, enabling researchers and machine learning practitioners to study and develop models for emotion recognition and analysis. The images encompass a diverse range of individuals, including different genders, ethnicities, and age groups*. The dataset aims to provide a comprehensive representation of human emotions, allowing for a wide range of use cases.

 Facebook
Facebook Twitter
Twitter Email
Email
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The unavailability of a unified standard dataset for face mask detection and masked facial recognition motivated us to develop an in-house MDMFR dataset (MDMFR, 2022) to measure the performance of face mask detection and masked facial recognition methods. Both of these tasks have different dataset requirements. Face mask detection requires the images of multiple persons with and without mask. Whereas, masked face recognition requires multiple masked face images of the same person. Our MDMFR dataset consists of two main collections, 1) face mask detection, and 2) masked facial recognition. There are 6006 images in our MDMFR dataset. The face mask detection collection contains two categories of face images i.e., mask and unmask. Our detection database consists of 3174 with mask and 2832 without mask (unmasked) images. To construct the dataset, we captured multiple images of the same person in two configurations (mask and without mask). The masked facial recognition collection contains a total of 2896 masked images of 226 persons. More specifically, our dataset includes the images of both male and female persons of all ages including the children. The images of our dataset are diverse in terms of gender, race, and age of users, types of masks, illumination conditions, face angles, occlusions, environment, format, dimensions, and size, etc. Before being fed to our DeepMaskNet model, all images are scaled to a width and height of 256 pixels. All images have a bit depth of 24. We prepared the images of our dataset for the proposed DeepMaskNet model during preprocessing where images are cropped in Adobe-Photoshop to exclude the extra information like neck and shoulder. As the input size of our Deepmasknet model was 256-by-256, so images were resized to 256-by-256 in publicly available Plastiliq Image Resizer software (Plastiliq, 2022).

 Facebook
Facebook Twitter
Twitter Email
Email
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the African Facial Expression Image Dataset, curated to support the development of advanced facial expression recognition systems, biometric identification models, KYC verification processes, and a wide range of facial analysis applications. This dataset is ideal for training robust emotion-aware AI solutions.
The dataset includes over 2000 high-quality facial expression images, grouped into participant-wise sets. Each participant contributes:
To ensure generalizability and robustness in model training, images were captured under varied real-world conditions:
Each participant's image set is accompanied by detailed metadata, enabling precise filtering and training:
This metadata helps in building expression recognition models that are both accurate and inclusive.
This dataset is ideal for a variety of AI and computer vision applications, including:
To support evolving AI development needs, this dataset is regularly updated and can be tailored to project-specific requirements. Custom options include:

 Facebook
Facebook Twitter
Twitter Email
Email
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Recently, many applications from biometrics,to entertainment use the information extracted from face images that contain information about age, gender, ethnic background, and emotional state. Automatic age estimation from facial images is one of the popular and challenging tasks that have different fields of applications such as controlling the content of the watched media depending on the customer's age. So facial feature analysis has been a topic of interest mainly due to its applicability and Deep Learning techniques are now making it possible for face analysis to be not just a dream but a reality. This simple practice dataset can get you more acquainted with application of deep learning in age detection. #
https://media.gettyimages.com/photos/facial-recognition-technology-picture-id1139859279?k=6&m=1139859279&s=612x612&w=0&h=H-i0yAM3A49I_r44424-jACD667nxiKb7bZR52ByOA=" alt="im">
#  
Indian Movie Face database (IMFDB) is a large unconstrained face database consisting of 34512 images of 100 Indian actors collected from more than 100 videos. All the images are manually selected and cropped from the video frames resulting in a high degree of variability interms of scale, pose, expression, illumination, age, resolution, occlusion, and makeup. IMFDB is the first face database that provides a detailed annotation of every image in terms of age, pose, gender, expression and type of occlusion that may help other face related applications.
The dataset provided a total of 19906 images.The attributes of data are as follows:
#
https://ars.els-cdn.com/content/image/1-s2.0-S0925231215017348-gr1.jpg" alt="face">
image ref : Automatic age estimation based on CNN
# 
CVIT focuses on basic and advanced research in image processing, computer vision, computer graphics and machine learning. This center deals with the generation, processing, and understanding of primarily visual data as well as with the techniques and tools required doing so efficiently. The activity of this center overlaps the traditional areas of Computer Vision, Image Processing, Computer Graphics, Pattern Recognition and Machine Learning. CVIT works on both theoretical as well as practical aspects of visual information processing. Center aims to keep the right balance between the cutting edge academic research and impactful applied research.
The main task is to predict the age of a person from his or her facial attributes. For simplicity, the problem has been converted to a multiclass problem with classes as Young, Middle and Old.
UTKFace dataset is a large-scale face dataset with long age span (range from 0 to 116 years old). The dataset consists of over 20,000 face images with annotations of age, gender, and ethnicity. The images cover large variation in pose, facial expression, illumination, occlusion, resolution, etc. This dataset could be used on a variety of tasks, e.g., face detection, age estimation, age progression/regression, landmark localization, etc. Some sample images are shown as following:
https://susanqq.github.io/UTKFace/icon/samples.png" alt="face2">
Complete Dataset: https://susanqq.github.io/UTKFace/
The labels of each face image is embedded in the file name, formated like [age]_[gender]_[race]_[date&time].jpg
*If you download and find the data useful your upvote is an explicit feedback for future works*

 Facebook
Facebook Twitter
Twitter Email
Email
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The BioID Face Database has been recorded and is published to give all researchers working in the area of face detection the possibility to compare the quality of their face detection algorithms with others. During the recording special emphasis has been laid on real world conditions. Therefore the testset features a large variety of illumination, background and face size. The dataset consists of 1521 gray level images with a resolution of 384x286 pixel. Each one shows the frontal view of a face of one out of 23 different test persons. For comparison reasons the set also contains manually set eye postions. The images are labeled BioID_xxxx.pgm where the characters xxxx are replaced by the index of the current image (with leading zeros). Similar to this, the files BioID_xxxx.eye contain the eye positions for the corresponding images.