Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supplementary information files for article: 'The future scope of large-scale solar in the UK: site suitability and target analysis'.Abstract:This paper uses site suitability analysis to identify locations for solar farms in the UK to help meet climate change targets. A set of maps, each representing a given suitability criterion, is created with geographical information systems (GIS) software. These are combined to give a Boolean map of areas which are appropriate for large-scale solar farm installation. Several scenarios are investigated by varying the criteria, which include geographical (land use) factors, solar energy resource and electrical distribution network constraints. Some are dictated by the physical and technical requirements of large-scale solar construction, and some by government or distribution network operator (DNO) policy. It is found that any suitability map which does not heed planning permission and grid constraints will overstate potential solar farm area by up to 97%. This research finds sufficient suitable land to meet Future Energy Scenarios (UK National Grid outlines for the coming energy landscape).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Land Suitability Rating System (LSRS) is a rule-based set of algorithms that integrate soil, climate and landscape factors to calculate a classed suitability rating for a given landscape to support commercial field crop production. The attributes used to define each of the factors are based on their proven ability to affect crop growth, their ability to be measured (or estimated by proxy) and their availability in accessible databases. The LSRS was first published in 1995 by Agriculture and Agri-Food Canada as a site-specific, manual calculator for spring-seeded small grains that incorporated sets of attribute point deduction curves based on expert knowledge. Since that time the system has been expanded to include additional crop modules and all data handling and calculations are automated through a set of web-based applications. The current version of LSRS (version 5) is implemented in Ruby on Rails® software as a suite of web services. The system runs against any soil map with standardized Canadian Soil Information Service soil data tables to process soil attributes and calculate limitations to crop growth. A climate factor rating is based on crop-specific agro-climatic indices and thresholds. Climatic indices have historically been calculated from 30-year climate normal periods using monthly data but LSRS can now also utilize daily data records which facilitate trend analyses within annual historic records. The use of available gridded climate datasets enables direct overlay and extraction of climate attributes to the spatial extent of soil map polygons. Lastly, the system incorporates a landscape factor related to land erodibility and constraints to management. Each of the three suitability factors is assigned a class rating between 1 (no limitations) and 7 (unsuitable) with the final overall rating being the most limiting of the three factors. Recent improvements in the ability of the system to process multiple climate datasets mean outputs from Global Circulation Models may also be useful for the LSRS model in assessing possible impacts of climate change on crop suitability. LSRS is used increasingly as a spatial research tool in assessing potential changes in crop distributions at both national and regional scales.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Agricultural land resources – a global suitability evaluation
An inventory is required on the changing potentially suitable areas for agriculture under changing climate conditions. Within the context of the GLUES project, researchers at the Ludwig-Maximilians University (LMU) investigated the global agricultural suitability of land under changing climate conditions at high spatial resolution. The growing demand for food, feed, fiber and bioenergy increases pressure on land and causes land use/cover change and trade-offs between different uses of land and ecosystem services. In order to ensure food security, agricultural potentials need to be used more efficiently in the future. Therefore, the agricultural suitability of land are important information e.g. in order to identify todays suitable areas and possible future changes. The potential suitability of todays forested and protected areas can be used to identify possible hotspots of land use/cover change. Therefore, LMU is working on improving the knowledge of global agricultural potentials of land and better understanding the interdependencies between ecological and socio-economic systems which are driving land use/cover change.
Determining Agricultural Suitability
Local climate, soil and topography determine the available energy, water and nutrient supply for agricultural crops and thus their natural suitability. In order to allow for computing the natural agricultural constraints on the globe at 30 arc seconds (1km) spatial resolution, the following high resolution data were applied:
Daily data for temperature, precipitation and solar radiation from the global climate model ECHAM5. Soil data comes from the Harmonized World Soil Database (HWSD). Considered soil properties are texture, proportion of coarse fragments and gypsum, base saturation, pH content, organic carbon content, salinity, sodicity. Topography data was applied from the Shuttle Radar Topography Mission (SRTM). Irrigation has strong impact on the crop’s suitability. It is considered on todays irrigated areas as given by the FAO Aquastat Global Maps of Irrigated Areas (GMIA) dataset. The determinant factors are contrasted with the crop-specific requirements, using a fuzzy-logic approach. The crop requirements are taken from literature.
Agricultural Suitability
General agricultural suitability at a spatial resolution of 30 arcsec, considering rainfed conditions and irrigation on currently irrigated areas. The agricultural suitability represents for each pixel the maximum suitability value of the considered 16 plants. The dataset contains four time periods (1961-1990, 1981-2010, 2011-2040, 2071-2100).
Suitability Change due to Climate until 2100
Change in agricultural suitability and crop suitability due to climate change for SRES A1B scenario conditions for 16 crops between 1981-2010 and 2071-2100 at a spatial resolution of 30 arcsec.
Multiple Cropping
Potential number of suitable crop cycles for 16 crops at a spatial resolution of 30 arcsec, considering rainfed conditions and irrigation on currently irrigated areas. The dataset contains four time periods (1961-1990, 1981-2010, 2011-2040, 2071-2100).
Growing Cycle
Start of the growing cycle for 16 crops at a spatial resolution of 30 arcsec, considering rainfed conditions and irrigation on currently irrigated areas. In case of multiple cropping, the start of the first growing cycle is shown. The dataset contains four time periods (1961-1990, 1981-2010, 2011-2040, 2071-2100).
Further information
Detailled information are available in the following publication: Zabel F., Putzenlechner B., Mauser W. (2014): Global agricultural land resources – a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. Online available: PLOS ONE. DOI: 10.1371/journal.pone.0107522
Improvements in v2.0
Compared to previous versions, v2.0 uses updated input data for soil and minor improvements of the statistical downscaling and the bias correction of the climate model data.
Contact
Please contact: Dr. Florian Zabel, f.zabel@lmu.de, Department für Geographie, LMU München (www.geografie.uni-muenchen.de)
Facebook
TwitterSoil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary SphereExtent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaVisible Scale: 1:144,000 to 1:1,000Resolution/Tolerance: 1 meter/2 metersNumber of Features: 36,543,233Feature Request Limit: 10,000Source: USDA Natural Resources Conservation ServicePublication Date: October 1, 2019ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/rest/servicesData from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some mapunits have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Mapunit Name (muname) fields. This field was created using the dominant soil order of each mapunit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the preceding 11 soil order fields. In the case of tied values the component with the lowest average slope value (slope_r) was selected. If both soil order and slope
Facebook
TwitterThis service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us online at https://goto.arcgisonline.com/landscape11/USA_Soils_Map_Units.Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary SphereExtent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaVisible Scale: 1:144,000 to 1:1,000Resolution/Tolerance: 1 meter/2 metersNumber of Features: 36,543,233Feature Request Limit: 10,000Source: USDA Natural Resources Conservation ServicePublication Date: October 1, 2019ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/rest/servicesData from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some mapunits have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Mapunit Name (muname) fields. This field was created using the dominant soil order of each mapunit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the
Facebook
TwitterSoil mapunits are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Mapunits delineate the extent of different soils. Data for each mapunit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryThe map packages were created from the January 2018 SSURGO snapshot. The dataset covers the 48 contiguous United States plus Hawaii and portions of Alaska. Map packages are available for Puerto Rico and the US Virgin Islands. A map package for US Island Territories and associated states of the Pacific Ocean can be downloaded by clicking one of the included areas in the map. The Pacific Map Package includes: Guam, the Marshall Islands, the Northern Marianas Islands, Palau, the Federated States of Micronesia, and American Samoa.Not all areas within SSURGO have completed soil surveys and many attributes have areas with no data. AttributesKey fields from eight commonly used SSURGO tables were compiled to create the 155 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueValu1 table (gSSURGO)The fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Crop Productivity Index (ncppi_all field)Esri Symbology This field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some mapunits have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Mapunit Name (muname) fields. This field was created using the dominant component of each mapunit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the preceding 11 soil order fields. In the case of tied values the component with the lowest average slope value (slope_r) was selected. If both soil order and slope were tied the first value in the table was selected.Percent AlfisolsPercent AndisolsPercent AridisolsPercent EntisolsPercent GelisolsPercent HistosolsPercent
Facebook
TwitterRetirement Notice: This item is in mature support as of March 2025 and will be retired in December 2027. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This application provides quick access to ready-to-use project packages filled with useful soil data derived from the SSURGO dataset. To use this application, navigate to your study area and click the map. A pop-up window will open. Click download and the project package will be copied to your computer. Double click the downloaded package to open it in ArcGIS Pro. Alt + click on the layer in the table of contents to zoom to the subbasin. Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Dataset Summary The map packages were created from the October 2023 SSURGO snapshot. The dataset covers the 48 contiguous United States plus Hawaii and portions of Alaska. Map packages are available for Puerto Rico and the US Virgin Islands. A project package for US Island Territories and associated states of the Pacific Ocean can be downloaded by clicking one of the included areas in the map. The Pacific Project Package includes: Guam, the Marshall Islands, the Northern Marianas Islands, Palau, the Federated States of Micronesia, and American Samoa. Not all areas within SSURGO have completed soil surveys and many attributes have areas with no data. The soil data in the packages is also available as a feature layer in the ArcGIS Living Atlas of the World. AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Map Unit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Map Unit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity Index Esri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some map units have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Map Unit Name (muname) fields. This field was created using the dominant soil order of each map unit. Esri Symbology Horizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock Free Esri Soil OrderThese fields were calculated from
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supplementary information files for article: 'The future scope of large-scale solar in the UK: site suitability and target analysis'.Abstract:This paper uses site suitability analysis to identify locations for solar farms in the UK to help meet climate change targets. A set of maps, each representing a given suitability criterion, is created with geographical information systems (GIS) software. These are combined to give a Boolean map of areas which are appropriate for large-scale solar farm installation. Several scenarios are investigated by varying the criteria, which include geographical (land use) factors, solar energy resource and electrical distribution network constraints. Some are dictated by the physical and technical requirements of large-scale solar construction, and some by government or distribution network operator (DNO) policy. It is found that any suitability map which does not heed planning permission and grid constraints will overstate potential solar farm area by up to 97%. This research finds sufficient suitable land to meet Future Energy Scenarios (UK National Grid outlines for the coming energy landscape).