Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about South Africa population
Facebook
TwitterThe total population of South Africa amounted to approximately 63.20 million people in 2024. Following a continuous upward trend, the total population has risen by around 34.12 million people since 1980. Between 2024 and 2030, the total population will rise by around 5.88 million people, continuing its consistent upward trajectory.This indicator describes the total population in the country at hand. This total population of the country consists of all persons falling within the scope of the census.
Facebook
TwitterEvery person, household and institution present in South Africa on Census Night, 9-10 October 1996, should have been enumerated in Census '96. The intent was to provide a count of all persons present within the territory of the Republic of South Africa at that time. More specifically, the purpose of this census was to collect, process and disseminate detailed statistics on population size, composition and distribution at a small area level. The 1996 South African population Census contains data collected on HOUSEHOLDS and INSTITUTIONS: dwellling type, home ownership, household assets, access to services and energy sources; INDIVIDUALS: age, population group, language, religion, citizenship, migration, fertility, mortality and disability; and economic characteristics of individuals, including employment activities and unemployment.
The South African Census 1996 has national coverage.
The units of analysis for the South Africa Census 1996 were households, individuals and institutions
The South African Census 1996 covered every person present in South Africa on Census Night, 9-10 October 1996 (except foreign diplomats and their families).
Census/enumeration data [cen]
The data in the South African Census 1996 data file is a 10% unit level sample drawn from Census 1996 as follows:
1) Households: • A 10% sample of all households (excluding special institutions and hostels)
2) Persons: • A 10% sample of all persons as enumerated in the 1996 Population Census in South Africa
The census household records were explicitly stratified according to province and district council. Within each district council the records were further implicitly stratified by local authority. Within each implicit stratum the household records were ordered according to the unique seven-digit census enumerator area number, of which the first three digits are the (old) magisterial district number.
Face-to-face [f2f]
Different methods of enumeration were used to accommodate different situations and a variety of questionnaires were used. The information collected with each questionnaire differed slightly. The questionnaires used were as follows:
Questionnaire 1: (Household and personal questionnaire) This questionnaire was used in private households and within hostels which provided family accommodation. It contained 50 questions for each person and 15 for each household. Every household living in a private dwelling should have been enumerated on a household questionnaire. This questionnaire obtained information about the household and about each person who was present in the household on census night.
Questionnaire 2: (Summary book for hostels) This questionnaire was used to list all persons/households in the hostel and included 9 questions about the hostel. A summary book for hostels should have been completed for each hostel (that is, a compound for workers provided by mines, other employers, municipalities or local authorities). This questionnaire obtained information about the hostel and also listed all household and/or persons enumerated in the hostel. Some hostels contain people living in family groups. Where people were living as a household in a hostel, they were enumerated as such on a household questionnaire (which obtained information about the household and about each person who was present in the household on Census Night). On the final census file, they will be listed as for any other household and not as part of a hostel. Generally, hostels accommodate mostly individual workers. In these situations, persons were enumerated on separate personal questionnaires. These questionnaires obtained the same information on each person as would have been obtained on the household questionnaire. The persons will appear on the census file as part of a hostel. Some hostels were enumerated as special institutions and not on the questionnaires designed specifically for hostels.
Questionnaire 3: (Enumerator's book for special enumeration) This questionnaire was used to obtain very basic information for individuals within institutions such as hotels, prisons, hospitals etc. as well as for homeless persons. Only 6 questions were asked of these people. The questionnaire also included 9 questions about the institution. An enumerator's book for special enumeration should have been completed for each institution such as prisons and hospitals. This questionnaire obtained information on the institution and listed all persons present. Each person was asked a brief sub-set of questions - just 7 compared to around 50 on the household and personal questionnaires. People in institutions could not be enumerated as households. Homeless persons were enumerated during a sweep on census night using a special questionnaire. The results were later transcribed to standard enumerator's books for special enumeration to facilitate coding and data entry.
The final calculation of the undercount of persons, based on analysis of a post-enumeration survey (PES) conducted shortly after the original census, was performed by Statistics South Africa. The estimated reponse rates are detailed below, both according to stratum and for the country as a whole. An estimated 10,7% of the people in South Africa, through the course of the census process, were not enumerated. For more information on the undercount and PES, see the publication, "Calculating the Undercount in Census '96", Statistics South Africa Report No. 03-01-18 (1996) which is included in the external documents section.
Undercount of persons by province (stratum, in %):
Western Cape 8,69
Eastern Cape 10,57
Northern Cape 15,59
Free State 8,75
KwaZulu-Natal 12,81
North West 9,37
Gauteng 9,99
Mpumalanga 10,09
Northern Province 11,28
South Africa 10,69
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The High Resolution Settlement Layer (HRSL) provides estimates of human population distribution at a resolution of 1 arc-second (approximately 30m) for the year 2015. The population estimates are based on recent census data and high-resolution (0.5m) satellite imagery from DigitalGlobe. The population grids provide detailed delineation of settlements in both urban and rural areas, which is useful for many research areas—from disaster response and humanitarian planning to the development of communications infrastructure. The settlement extent data were developed by the Connectivity Lab at Facebook using computer vision techniques to classify blocks of optical satellite data as settled (containing buildings) or not. Center for International Earth Science Information Networks (CIESIN) at Earth Institute Columbia University used proportional allocation to distribute population data from subnational census data to the settlement extents. The data-sets contain the population surfaces, metadata, and data quality layers. The population data surfaces are stored as GeoTIFF files for use in remote sensing or geographic information system (GIS) software. The data can also be explored via an interactive map - http://columbia.maps.arcgis.com/apps/View/index.html?appid=ce441db6aa54494cbc6c6cee11b95917 Citation: Facebook Connectivity Lab and Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. High Resolution Settlement Layer (HRSL). Source imagery for HRSL © 2016 DigitalGlobe.
Facebook
TwitterThe 1998 South Africa Demographic and Health Survey (SADHS) is the first study of its kind to be conducted in South Africa and heralds a new era of reliable and relevant information in South Africa. The SADHS, a nation-wide survey has collected information on key maternal and child health indicators, and in a first for international demographic and health surveys, the South African survey contains data on the health and disease patterns in adults.
Plans to conduct the South Africa Demographic and Health Survey go as far back as 1995, when the Department of Health National Health Information Systems of South Africa (NHIS/SA) committee, recognised serious gaps in information required for health service planning and monitoring.
Fieldwork was conducted between late January and September 1998, during which time 12,247 households were visited, 17,500 people throughout nine provinces were interviewed and 175 interviewers were trained to interview in 11 languages.
The aim of the 1998 South Africa Demographic and Health Survey (SADHS) was to collect data as part of the National Health Information System of South Africa (NHIS/SA). The survey results are intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving health services in the country. A variety of demographic and health indicators were collected in order to achieve the following general objectives:
(i) To contribute to the information base for health and population development programme management through accurate and timely data on a range of demographic and health indicators. (ii) To provide baseline data for monitoring programmes and future planning. (iii) To build research and research management capacity in large-scale national demographic and health surveys.
The primary objective of the SADHS is to provide up-to-date information on: - basic demographic rates, particularly fertility and childhood mortality levels, - awareness and use of contraceptive methods, - breastfeeding practices, - maternal and child health, - awareness of HIV/AIDS, - chronic health conditions among adults, - lifestyles that affect the health status of adults, and - anthropometric indicators.
It was designed principally to produce reliable estimates of demographic rates (particularly fertility and childhood mortality rates), of maternal and child health indicators, and of contraceptive knowledge and use for the country as a whole, the urban and the non-urban areas separately, and for the nine provinces.
The 1998 South African Demographic and Health Survey (SADHS) covered the population living in private households in the country.
Sample survey data
The 1998 South African Demographic and Health Survey (SADHS) covered the population living in private households in the country. The design for the SADHS called for a representative probability sample of approximately 12,000 completed individual interviews with women between the ages of 15 and 49. It was designed principally to produce reliable estimates of demographic rates (particularly fertility and childhood mortality rates), of maternal and child health indicators, and of contraceptive knowledge and use for the country as a whole, the urban and the non-urban areas separately, and for the nine provinces. As far as possible, estimates were to be produced for the four South African population groups. Also, in the Eastern Cape province, estimates of selected indicators were required for each of the five health regions.
In addition to the main survey of households and women 15-49 that followed the DHS model, an adult health module was administered to a sample of adults aged 15 and over in half of the households selected for the main survey. The adult health module collected information on oral health, occupational hazard and chronic diseases of lifestyle.
SAMPLING FRAME
The sampling frame for the SADHS was the list of approximately 86,000 enumeration areas (EAs) created by Central Statistics (now Statistics South Africa, SSA) for the Census conducted in October 1996. The EAs, ranged from about 100 to 250 households, and were stratified by province, urban and non-urban residence and by EA type. The number of households in the EA served as a measure of size of the EA.
CHARACTERISTICS OF THE SADHS SAMPLE
The sample for the SADHS was selected in two stages. Due to confidentiality of the census data, the sampling was carried out by experts at the CSS according to specifications developed by members of the SADHS team. Within each stratum a two stage sample was selected. The primary sampling units (PSUs), corresponded to the EAs and will be selected with probability proportional to size (PPS), the size being the number of households residing in the EA, or where this was not available, the number of census visiting points in the EA. This led to 972 PSUs being selected for the SADHS (690 in urban areas and 282 in non-urban areas. Where provided by SSA, the lists of visiting points together with the households found in these visiting points, or alternatively a map of the EA which showed the households, was used as the frame for second-stage sampling to select the households to be visited by the SADHS interviewing teams during the main survey fieldwork. This sampling was carried out by the MRC behalf of the SADHS working group. If a list of visiting points or a map was not available from SSA, then the survey team took a systematic sample of visiting points in the field. In an urban EA ten visiting points were sampled, while in a non-urban EA twenty visiting points were sampled. The survey team then interviewed the household in the selected visiting point. If there were two households in the selected visiting point, both households were interviewed. If there were three or more households, then the team randomly selected one household for interview. In each selected household, a household questionnaire was administered; all women between the ages of 15 and 49 were identified and interviewed with a woman questionnaire. In half of the selected households (identified by the SADHS working group), all adults over 15 years of age were also identified and interviewed with an adult health questionnaire.
SAMPLE ALLOCATION
Except for Eastern Cape, the provinces were stratified by urban and non-urban areas, for a total of 16 sampling strata. Eastern Cape was stratified by the five health regions and urban and non-urban within each region, for a total of 10 sampling strata. There were thus 26 strata in total.
Originally, it was decided that a sample of 9,000 women 15-49 with complete interviews allocated equally to the nine provinces would be adequate to provide estimates for each province separately; results of other demographic and health surveys have shown that a minimum sample of 1,000 women is required in order to obtain estimates of fertility and childhood mortality rates at an acceptable level of sampling errors. Since one of the objectives of the SADHS was to also provide separate estimates for each of the four population groups, this allocation of 1,000 women per province would not provide enough cases for the Asian population group since they represent only 2.6 percent of the population (according to the results of the 1994 October Household Survey conducted by SSA). The decision was taken to add an additional sample of 1,000 women to the urban areas of KwaZulu-Natal and Gauteng to try to capture as many Asian women as possible as Asians are found mostly in these areas. A more specific sampling scheme to obtain an exact number of Asian women was not possible for two reasons: the population distribution by population group was not yet available from the 1996 census and the sampling frame of EAs cannot be stratified by population group according to SSA as the old system of identifying EAs by population group has been abolished.
An additional sample of 2,000 women was added to Eastern Cape at the request of the Eastern Cape province who funded this additional sample. In Eastern Cape, results by urban and non-urban areas can be given. Results of selected indicators such as contraceptive knowledge and use can also be produced separately for each of the five health regions but not for urban/non-urban within health region.
Result shows the allocation of the target sample of 12,000 women by province and by urban/nonurban residence. Within each province, the sample is allocated proportionately to the urban/non-urban areas.
In the above allocation, the urban areas of KwaZulu-Natal have been oversampled by about 57 percent while those of Gauteng have been oversampled by less than 1 percent. For comparison purposes, it shows a proportional allocation of the 12,000 women to the nine provinces that would result in a completely self-weighting sample but does not allow for reliable estimates for at least four provinces (Northern Cape, Free State, Mpumalanga and North-West).
The number of households to be selected for each stratum was calculated as follows:
-
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa ZA: Completeness of Death Registration with Cause-of-Death Information data was reported at 91.000 % in 2009. This records a decrease from the previous number of 92.300 % for 2008. South Africa ZA: Completeness of Death Registration with Cause-of-Death Information data is updated yearly, averaging 70.400 % from Dec 1992 (Median) to 2009, with 5 observations. The data reached an all-time high of 92.300 % in 2008 and a record low of 0.000 % in 1997. South Africa ZA: Completeness of Death Registration with Cause-of-Death Information data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s South Africa – Table ZA.World Bank: Population and Urbanization Statistics. Completeness of death registration is the estimated percentage of deaths that are registered with their cause of death information in the vital registration system of a country.; ; World Health Organization, Global Health Observatory Data Repository/World Health Statistics (http://apps.who.int/gho/data/node.main.1?lang=en).; Weighted average;
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The tabular and visual dataset focuses on South African basic education and provides insights into the distribution of schools and basic population statistics across the country. This tabular and visual data are stratified across different quintiles for each provincial and district boundary. The quintile system is used by the South African government to classify schools based on their level of socio-economic disadvantage, with quintile 1 being the most disadvantaged and quintile 5 being the least disadvantaged. The data was joined by extracting information from the debarment of basic education with StatsSA population census data. Thereafter, all tabular data and geo located data were transformed to maps using GIS software and the Python integrated development environment. The dataset includes information on the number of schools and students in each quintile, as well as the population density in each area. The data is displayed through a combination of charts, maps and tables, allowing for easy analysis and interpretation of the information.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The ACDIS cohort in rural KwaZulu Natal, South Africa, was established in 2000 by the Africa Health Research Institute (AHRI). The ACDIS covers 438 square kilometers of the Umkhanyakude district in the KwaZulu-Natal province. The system records births, deaths, marriages, and migrations of household members. ACDIS is a member of the INDEPTH network and it utilizes INDEPTH standardized verbal autopsy tools. In mid-2018, the cohort had around 140,000 individuals with a median age of 23 years.
Facebook
TwitterCensuses are principal means of collecting basic population and housing statistics required for social and economic development, policy interventions, their implementation and evaluation.The census plays an essential role in public administration. The results are used to ensure: • equity in distribution of government services • distributing and allocating government funds among various regions and districts for education and health services • delineating electoral districts at national and local levels, and • measuring the impact of industrial development, to name a few The census also provides the benchmark for all surveys conducted by the national statistical office. Without the sampling frame derived from the census, the national statistical system would face difficulties in providing reliable official statistics for use by government and the public. Census also provides information on small areas and population groups with minimum sampling errors. This is important, for example, in planning the location of a school or clinic. Census information is also invaluable for use in the private sector for activities such as business planning and market analyses. The information is used as a benchmark in research and analysis.
Census 2011 was the third democratic census to be conducted in South Africa. Census 2011 specific objectives included: - To provide statistics on population, demographic, social, economic and housing characteristics; - To provide a base for the selection of a new sampling frame; - To provide data at lowest geographical level; and - To provide a primary base for the mid-year projections.
National
Households, Individuals
Census/enumeration data [cen]
Face-to-face [f2f]
About the Questionnaire : Much emphasis has been placed on the need for a population census to help government direct its development programmes, but less has been written about how the census questionnaire is compiled. The main focus of a population and housing census is to take stock and produce a total count of the population without omission or duplication. Another major focus is to be able to provide accurate demographic and socio-economic characteristics pertaining to each individual enumerated. Apart from individuals, the focus is on collecting accurate data on housing characteristics and services.A population and housing census provides data needed to facilitate informed decision-making as far as policy formulation and implementation are concerned, as well as to monitor and evaluate their programmes at the smallest area level possible. It is therefore important that Statistics South Africa collects statistical data that comply with the United Nations recommendations and other relevant stakeholder needs.
The United Nations underscores the following factors in determining the selection of topics to be investigated in population censuses: a) The needs of a broad range of data users in the country; b) Achievement of the maximum degree of international comparability, both within regions and on a worldwide basis; c) The probable willingness and ability of the public to give adequate information on the topics; and d) The total national resources available for conducting a census.
In addition, the UN stipulates that census-takers should avoid collecting information that is no longer required simply because it was traditionally collected in the past, but rather focus on key demographic, social and socio-economic variables.It becomes necessary, therefore, in consultation with a broad range of users of census data, to review periodically the topics traditionally investigated and to re-evaluate the need for the series to which they contribute, particularly in the light of new data needs and alternative data sources that may have become available for investigating topics formerly covered in the population census. It was against this background that Statistics South Africa conducted user consultations in 2008 after the release of some of the Community Survey products. However, some groundwork in relation to core questions recommended by all countries in Africa has been done. In line with users' meetings, the crucial demands of the Millennium Development Goals (MDGs) should also be met. It is also imperative that Stats SA meet the demands of the users that require small area data.
Accuracy of data depends on a well-designed questionnaire that is short and to the point. The interview to complete the questionnaire should not take longer than 18 minutes per household. Accuracy also depends on the diligence of the enumerator and honesty of the respondent.On the other hand, disadvantaged populations, owing to their small numbers, are best covered in the census and not in household sample surveys.Variables such as employment/unemployment, religion, income, and language are more accurately covered in household surveys than in censuses.Users'/stakeholders' input in terms of providing information in the planning phase of the census is crucial in making it a success. However, the information provided should be within the scope of the census.
Individual particulars Section A: Demographics Section B: Migration Section C: General Health and Functioning Section D: Parental Survival and Income Section E: Education Section F: Employment Section G: Fertility (Women 12-50 Years Listed) Section H: Housing, Household Goods and Services and Agricultural Activities Section I: Mortality in the Last 12 Months The Household Questionnaire is available in Afrikaans; English; isiZulu; IsiNdebele; Sepedi; SeSotho; SiSwati;Tshivenda;Xitsonga
The Transient and Tourist Hotel Questionnaire (English) is divided into the following sections:
Name, Age, Gender, Date of Birth, Marital Status, Population Group, Country of birth, Citizenship, Province.
The Questionnaire for Institutions (English) is divided into the following sections:
Particulars of the institution
Availability of piped water for the institution
Main source of water for domestic use
Main type of toilet facility
Type of energy/fuel used for cooking, heating and lighting at the institution
Disposal of refuse or rubbish
Asset ownership (TV, Radio, Landline telephone, Refrigerator, Internet facilities)
List of persons in the institution on census night (name, date of birth, sex, population group, marital status, barcode number)
The Post Enumeration Survey Questionnaire (English)
These questionnaires are provided as external resources.
Data editing and validation system The execution of each phase of Census operations introduces some form of errors in Census data. Despite quality assurance methodologies embedded in all the phases; data collection, data capturing (both manual and automated), coding, and editing, a number of errors creep in and distort the collected information. To promote consistency and improve on data quality, editing is a paramount phase in identifying and minimising errors such as invalid values, inconsistent entries or unknown/missing values. The editing process for Census 2011 was based on defined rules (specifications).
The editing of Census 2011 data involved a number of sequential processes: selection of members of the editing team, review of Census 2001 and 2007 Community Survey editing specifications, development of editing specifications for the Census 2011 pre-tests (2009 pilot and 2010 Dress Rehearsal), development of firewall editing specifications and finalisation of specifications for the main Census.
Editing team The Census 2011 editing team was drawn from various divisions of the organisation based on skills and experience in data editing. The team thus composed of subject matter specialists (demographers and programmers), managers as well as data processors. Census 2011 editing team was drawn from various divisions of the organization based on skills and experience in data editing. The team thus composed of subject matter specialists (demographers and programmers), managers as well as data processors.
The Census 2011 questionnaire was very complex, characterised by many sections, interlinked questions and skipping instructions. Editing of such complex, interlinked data items required application of a combination of editing techniques. Errors relating to structure were resolved using structural query language (SQL) in Oracle dataset. CSPro software was used to resolve content related errors. The strategy used for Census 2011 data editing was implementation of automated error detection and correction with minimal changes. Combinations of logical and dynamic imputation/editing were used. Logical imputations were preferred, and in many cases substantial effort was undertaken to deduce a consistent value based on the rest of the household’s information. To profile the extent of changes in the dataset and assess the effects of imputation, a set of imputation flags are included in the edited dataset. Imputation flags values include the following: 0 no imputation was performed; raw data were preserved 1 Logical editing was performed, raw data were blank 2 logical editing was performed, raw data were not blank 3 hot-deck imputation was performed, raw data were blank 4 hot-deck imputation was performed, raw data were not blank
Independent monitoring and evaluation of Census field activities Independent monitoring of the Census 2011 field activities was carried out by a team of 31 professionals and 381 Monitoring
Facebook
TwitterIn the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.
Facebook
TwitterThe 2003 South African Demographic and Health Survey is the second national health survey to be conducted by the Department of Health, following the first in 1998. Compared with the first survey, the new survey has more extensive questions around sexual behaviour and for the first time included such questions to a sample of men. Anthropometric measurements were taken on children under five years, and the adult health module has been enhanced with questions relating to physical activity and micro-nutrient intake, important risk factors associated with chronic diseases. The 2003 SADHS has introduced a chapter reporting on the health, health service utilisation and living conditions of South Africa's older population (60 years or older) and how they have changed since 1998. This has been introduced because this component of the population is growing at a much higher rate than the other age groups. The chapter on adolescent health in 1998 focussed on health risk-taking behaviours of people aged 15-19 years. The chapter has been extended in the 2003 SADHS to include indicators of sexual behaviour of youth aged 15-24 years.
A total of 10 214 households were targeted for inclusion in the survey and 7 756 were interviewed, reflecting an 85 percent response rate. The survey comprised a household schedule to capture basic information about all the members of the household, comprehensive questionnaires to all women aged 15-49, as well as anthropometry of all children five years and younger. In every second household, interviews of all men 15-59 were conducted and in the alternate households, interviews and measurements of all adults 15 years and older were done including heights, weights, waist circumference, blood pressure and peak pulmonary flow. The overall response rate was 75 percent for women, 67 percent for men, 71 percent for adults, and 84 percent for children. This is slightly lower than the overall response rate for the 1998 SADHS, but varied substantially between provinces with a particularly low response rate in the Western Cape.
OBJECTIVES
In 1995 the National Health Information System of South Africa (NHIS/SA) committee identified the need for improved health information for planning services and monitoring programmes. The first South African Demographic and Health Survey (SADHS) was planned and implemented in 1998. At the time of the survey it was agreed that the survey had to be conducted every five years to enable the Department of Health to monitor trends in health services.
Information on a variety of demographic and health indicators were collected. The results of these surveys are intended to assist policy makers and programme managers in evaluating and designing programmes and strategies for improving health services in the country. In addition to the aspects covered in the 1998 SADHS, information on the following additional aspects was included in the 2003 SADHS:
- Information on children living in households where the biological mother is not staying in the household i.e. mother is dead, etc.
- Child anthropometric data
- Information on reproductive health and sexual behaviour of men
- Information on malaria
- Information on pensions/grants received by members of the household.
The primary objective of the 2003 SADHS was to provide up-to-date information on: - Characteristics of households and respondents - Fertility - Contraception and fertility preferences - Sexual behaviour, HIV and AIDS - Infant and child mortality - Maternal and child health - Infant and child feeding - Adolescent health - Mortality and morbidity in adults - Utilisation of health services - Adult health: hypertension, chronic pulmonary disease and Asthma - Risk factors for chronic diseases - Oral health - Health of older persons
STUDY LIMITATIONS AND RECOMMENDATIONS
Comparison of the socio-demographic characteristics of the sample with the 2001 Population Census shows an over-representation of urban areas and the African population group, and an under-representation of whites and Indian females. It also highlights many anomalies in the ages of the sample respondents, indicating problems in the quality of the data of the 2003 survey. Careful analysis has therefore been required to distinguish the findings that can be considered more robust and can be used for decision making. This has involved considering the internal consistency in the data, and the extent to which the results are consistent with other studies.
Some of the key demographic and adult health indicators show signs of data quality problems. In particular, the prevalence of hypertension, and the related indicators of quality of care are clearly problematic and difficult to interpret. In addition, the fertility levels and the child mortality estimates are not consistent with other data sources. The data problems appear to arise from poor fieldwork, suggesting that there was inadequate training, supervision and quality control during the implementation of the survey. It is imperative that the next SADHS is implemented with stronger quality control mechanisms in place. Moreover, consideration should be given to the frequency of future surveys. It is possible that the SADHS has become overloaded - with a complex implementation required in the field. Thus it may be appropriate to consider a more frequent survey with a rotation of modules as has been suggested by the WHO.
The SADHS sample was designed to be a nationally representative probability sample of approximately 10000 households. The country was stratified into the nine provinces and each province was further stratified into urban and non-urban areas.
The population covered by the 2003 SADHS is defined as the universe of all women age 15-49, all men 15-59 in South Africa.
Sample survey data
The SADHS sample was designed to be a nationally representative probability sample of approximately 10000 households. The country was stratified into the nine provinces and each province was further stratified into urban and non-urban areas.
The sampling frame for the SADHS was provided by Statistics South Africa (Stats SA) based on the enumeration areas (EAs) list of approximately 86000 EAs created during the 2001 census. Since the Indian population constitutes a very small fraction of the South African population, the Census 2001 EAs were stratified into Indian and non-Indian. An EA was classified as Indian if the proportion of persons who classified themselves as Indian during Census 2001 enumeration in that EA was 80 percent or more, otherwise it was classified as Non-Indian. Within the Indian stratum, EAs were sorted descending by the proportion of persons classified as Indian. It should be noted that some provinces and non-urban areas have a very small proportion of the Indian population hence the Indian stratum could not be further stratified by province or urban/non-urban. A sample of 1000 households was allocated to the stratum. Probability proportional to size (PPS) systematic sampling was used to sample EAs and the proportion of Indian persons in an EA was the measure of size. The non-Indian stratum was stratified explicitly by province and within province by the four geo types, i.e. urban formal, urban informal, rural formal and tribal. Each province was allocated a sample of 1000 households and within province the sample was proportionally allocated to the secondary strata, i.e. geo type. For both the Indian and Non-Indian strata the sample take of households within an EA was sixteen households. The number of visited households in an EA as recorded in the Census 2001, 09 Books was used as the measure of size (MOS) in the Non-Indian stratum.
The second stage of selection involved the systematic sampling of households/stands from the selected EAs. Funds were insufficient to allow implementation of a household listing operation in selected EAs. Fortunately, most of the country is covered by aerial photographs, which Statistics SA has used to create EA-specific photos. Using these photos, ASRC identified the global positioning system (GPS) coordinates of all the stands located within the boundaries of the selected EAs and selected 16 in each EA, for a total of 10080 selected. The GPS coordinates provided a means of uniquely identifying the selected stand. As a result of the differing sample proportions, the SADHS sample is not self-weighting at the national level and weighting factors have been applied to the data in this report.
A total of 630 Primary Sampling Units (PSUs) were selected for the 2003 SADHS (368 in urban areas and 262 in non-urban areas). This resulted in a total of 10214 households being selected throughout the country1. Every second household was selected for the adult health survey. In this second household, in addition to interviewing all women aged 15-49, all adults aged 15 and over were eligible to be interviewed with the adult health questionnaire. In every alternate household selected for the survey, not interviewed with the adult health questionnaire, all men aged 15-59 years were also eligible to be interviewed. It was expected that the sample would yield interviews with approximately 10000 households, 12500 women aged 15-49, 5000 adults and 5000 men.
Face-to-face
The survey utilised five questionnaires: a Household Questionnaire, a Women's Questionnaire, a Men's Questionnaire, an Adult Health Questionnaire and an Additional Children Questionnaire. The contents of the
Facebook
TwitterThe African Cities Population Database (ACPD) has been produced by the Birkbeck College of the University of London in 1990 at the request of the United Nations Environment Programme (UNEP) in Nairobi, Kenya. The database contains head counts for 479 cities in Africa which either have a population of over 20,000 or are capitals of their nation state. Listed are the geographical location of the cities and their population sizes. The material is primarily derived from a 1988 report of the Economic Commission for Africa (ECA) and several issues of the United Nations Demographic Yearbook (1973-81). Severe problems were found with several countries such as Togo, Ghana and South Africa. For South Africa, the data were derived from the United Nations Demographic Yearbook 1987.
WCPD is an Arc/Info point coverage. It has no projection, as the cities are located on the basis of their latitude and longitude. Coordinates were assigned on the basis of gazetteers or African maps. Each record in the data base contains details of the city name, country name, latitude and longitude of the city, and its population at a defined time. The Arc/Info attribute table contains the following fields:
AREA Arc/Info item PERIMETER Arc/Info item ACPD# Arc/Info item ACPD-ID Arc/Info item ID-NUM Unique number for each city CITY City name COUNTRY Country name CITY-POP Population of city proper YEAR Latest available year of collection
ACPD comes as an Arc/Info EXPORT file originally called "ACPD.E00" and contains 67 Kb of data. The file has a record length of 80 and a block size of 8000 (blocking factor = 100). The file can be read from tape using Arc/Info's TAPEREAD command or any other generic copy utility. If distributed on a diskette it can be read using the ordinary DOS 'COPY' command. The file has to be converted to Arc/Info internal format using its IMPORT command.
References to the WCPD data set can be found in:
The source of the WCPD data set as held by GRID is Birkbeck College, University of London, Department of Geography, London, UK.
Facebook
TwitterEvery person, household and institution present in South Africa on Census Night, 9-10 October 1996, should have been enumerated in Census 1996. The purpose of the census was to provide a count of all persons present within the territory of the Republic of South Africa at that time. More specifically, the purpose of this census was to collect, process and disseminate detailed statistics on population size, composition and distribution at a small area level.
The South African Census 1996 has national coverage.
Households and individuals
The South African census 1996 covered every person present in South Africa on Census Night, 9-10 October 1996 (except foreign diplomats and their families).
Census enumeration data
The data in the South African Census 1996 data file is a 10% unit level sample drawn from Census 1996 as follows:
1) Households: • A 10% sample of all households (excluding special institutions and hostels)
2) Persons: • A 10% sample of all persons as enumerated in the 1996 Population Census in South Africa
The census household records were explicitly stratified according to province and district council. Within each district council the records were further implicitly stratified by local authority. Within each implicit stratum the household records were ordered according to the unique seven-digit census enumerator area number, of which the first three digits are the (old) magisterial district number.
Face-to-face [f2f]
Different methods of enumeration were used to accommodate different situations and a variety of questionnaires were used. The information collected with each questionnaire differed slightly. The questionnaires used were as follows:
Questionnaire 1: (Household and personal questionnaire) This questionnaire was used in private households and within hostels which provided family accommodation. It contained 50 questions for each person and 15 for each household. Every household living in a private dwelling should have been enumerated on a household questionnaire. This questionnaire obtained information about the household and about each person who was present in the household on census night.
Questionnaire 2: (Summary book for hostels) This questionnaire was used to list all persons/households in the hostel and included 9 questions about the hostel. A summary book for hostels should have been completed for each hostel (that is, a compound for workers provided by mines, other employers, municipalities or local authorities). This questionnaire obtained information about the hostel and also listed all household and/or persons enumerated in the hostel. Some hostels contain people living in family groups. Where people were living as a household in a hostel, they were enumerated as such on a household questionnaire (which obtained information about the household and about each person who was present in the household on Census Night). On the final census file, they will be listed as for any other household and not as part of a hostel. Generally, hostels accommodate mostly individual workers. In these situations, persons were enumerated on separate personal questionnaires. These questionnaires obtained the same information on each person as would have been obtained on the household questionnaire. The persons will appear on the census file as part of a hostel. Some hostels were enumerated as special institutions and not on the questionnaires designed specifically for hostels.
Questionnaire 3: (Enumerator's book for special enumeration) This questionnaire was used to obtain very basic information for individuals within institutions such as hotels, prisons, hospitals etc. as well as for homeless persons. Only 6 questions were asked of these people. The questionnaire also included 9 questions about the institution. An enumerator's book for special enumeration should have been completed for each institution such as prisons and hospitals. This questionnaire obtained information on the institution and listed all persons present. Each person was asked a brief sub-set of questions - just 7 compared to around 50 on the household and personal questionnaires. People in institutions could not be enumerated as households. Homeless persons were enumerated during a sweep on census night using a special questionnaire. The results were later transcribed to standard enumerator's books for special enumeration to facilitate coding and data entry.
The final calculation of the undercount of persons, based on analysis of a post-enumeration survey (PES) conducted shortly after the original census, was performed by Statistics South Africa. The estimated reponse rates are detailed below, both according to stratum and for the country as a whole. An estimated 10,7% of the people in South Africa, through the course of the census process, were not enumerated. For more information on the undercount and PES, see the publication, "Calculating the Undercount in Census '96", Statistics South Africa Report No. 03-01-18 (1996) which is included in the external documents section.
Undercount of persons by province (stratum, in %):
Western Cape 8,69
Eastern Cape 10,57
Northern Cape 15,59
Free State 8,75
KwaZulu-Natal 12,81
North West 9,37
Gauteng 9,99
Mpumalanga 10,09
Northern Province 11,28
South Africa 10,69
Facebook
TwitterThe Survey of Activities of Young People was conducted by Statistics South Africa and commissioned by the Department of Labour, primarily to gather information necessary for formulating an effective programme of action to address the issue of harmful work done by children in South Africa. Technical assistance for the survey was provided by the International Labour Organisation (ILO) and a consultant appointed by the Department of Labour. Stats SA also worked with an advisory committee, consisting of representatives from national government departments most directly concerned with child labour (the Departments of Labour,Welfare,Education and Health), non-governmental organisations, and the United Nations Children's Fund (Unicef).
The survey has national coverage
Households and individuals
The sampled population was household members in South Africa. The survey excluded all people in prison, patients in hospitals, people residing in boarding houses and hotels, and boarding schools. Any single person households were screened out in all areas before the sample was drawn. Families living in hostels were treated as households.
Sample survey data
The sample frame was based on the 1996 Population Census Enumerator Areas (EA) and the number of households counted in 1996 Population Census. The sampled population excluded all prisoners in prison, patients in hospitals, people residing in boarding houses and hotels (whether temporary or semi-permanent), and boarding schools. Any single person households were screened out in all areas before the sample was drawn. Families living in hostels were treated as households. Coverage rules for the survey were that all children of usual residents were to be included even if they were not present. This means that most boarding school pupils were included in their parents’ household. The 16 EA types from the 1996 Population Census were condensed into four area types. The four area types were Formal Urban, Informal Urban, Tribal, and Commercial Farms. A decision was made to drop the Institution type EAs.
The EAs were stratified by province, and within a province by the four area types defined above. The sample size (6110 households) was disproportionately allocated to strata by using the square root method. Within the strata the EAs were ordered by magisterial district and the EA-types included in the area type (implicit stratification). PSUs consisted of ONE or more EAs of size 100 households to ensure sufficient numbers for screening. Statistics SA was advised by child labour experts that there was a likelihood of high rates of child labour in the Urban Informal and Rural Farm areas. The sample allocation to Rural Commercial Farms was therefore increased to a minimum of 20 PSUs.
Face-to-face [f2f]
The Phase one questionnaire covered the following topics: Living conditions of the household, including the type of dwelling, fuels used for cooking, lighting and heating,water source for domestic use, land ownership,tenure and cultivation; demographic information on members of the household, both adults and children. Questions covered the age, gender and population group of each household member, their marital status, their relationships to each other, and their levels of education; migration details; household income; school attendance of children aged 5 -17 years; information on economic and non-economic activities of children aged 5-17 years in the 12 months prior to the survey
Phase two questionnaire The second phase questionnaire was administered to the sampled sub-set of households in which at least one child was involved in some form of work in the year prior to the interview. It covered activities of children in much more detail than in phase one, and the work situation of related adults in the household. Both adults and children were asked to respond.
The data files contain data from sections of the questionnaires as follows:
PERSON: Data from Section 1, 2 and 3 of the questionnaire HHOLD : Data from Section 4 ADULT : Data from Section 5 YOUNGP: Data from Section 6, 7, 8 and 9
Facebook
TwitterIn October 2001, South Africans were enumerated to collect information on persons and households throughout the country, using a uniform methodology. Household data collected included data on each household and each person present in the household on Census night, as well as data on services available to the household. Data on household residents, and residents of hostels and the other types of collective living quarters was also captured, as well as data on individuals who spent census night in institutions and hotels.
The South African Census 2001 has national coverage.
The units of analysis for the South Africa Census 2001 were households and individuals
The South African Census 2001 covered every person present in South Africa on Census Night, 9-10 October 2001 including all de jure household members and residents of institutions.
Census/enumeration data [cen]
The data in the South African Census 2001 dataset is a 10% unit level sample drawn from Census 2001 as follows: 1) Households: • A 10% sample of households in housing units, and • A 10% sample of collective living quarters (both institutional and non-institutional) and the homeless.
2) Persons: • A sample consisting of all persons in the households and collective living quarters, and the homeless, drawn for the samples described above
3) Mortality: • A sample consisting of all mortality information for the households in housing units drawn in the 10% sample of households.
Face-to-face [f2f]
Three questionnaires were administered for the South African Census 2001, questionnaire A (for persons in households), questionnaire B (for persons in institutions) and questionnaire C (for institutions). The Household questionnaire covered household characteristics, such as dwellling type, home ownership, household assets, access to services and energy sources. A component of the questionnaire captures fertility data. Both the household and persons in institutions questionnaires collected data on individuals' characteristics, including age, population group, language, religion, citizenship, migration, mortality and disability, as well as means of travel. Economic characteristics of individuals included employment activities and data on unemployment.
The following publication can be consulted for a detailed account of the editing undertaken for the South African Census 2001: Computer editing specifications / Statistics South Africa. Pretoria: Statistics South Africa, 2003 369p. [Report No. 03-02-43 (2001)]. ISBN 0-621-34566-0.
As part of the quality check for Census 2001, a Post-Enumeration Survey (PES) was conducted in November 2001, approximately one month after the census. Fieldworkers re-visited a scientifically selected sample of almost 1% of the census enumeration areas, to do an independent recount. The published census results are adjusted for undercount according to the findings of the PES. In addition to the check on coverage, the PES also involved an independent re-measurement of the basic characteristics of the population. Details on this process are available in the publication:
Statistics South Africa. 2004. Census 2001: post-enumeration survey: results and methodology. Report no. 03-02-17 (2001).
Facebook
TwitterThe primary objective of the South Africa Demographic and Health Survey (SADHS) 2016 is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the SADHS 2016 collected information on fertility levels; marriage; sexual activity; fertility preferences; awareness and use of contraceptives; breastfeeding practices; nutrition; childhood and maternal mortality; maternal health, including antenatal and postnatal care; key aspects of child health, including immunisation coverage and prevalence and treatment of acute respiratory infection (ARI), fever, and diarrhoea; potential exposure to the risk of HIV infection; coverage of HIV counselling and testing (HCT); and physical and sexual violence against women. Another critical objective of the SADHS 2016 is to provide estimates of health and behaviour indicators for adults age 15 and older, including use of tobacco, alcohol, and codeine-containing medications. In addition, the SADHS 2016 provides estimates of the prevalence of anaemia among children age 6-59 months and adults age 15 and older, and the prevalence of hypertension, anaemia, high HbA1c levels (an indicator of diabetes), and HIV among adults age 15 and older.
The information collected through the SADHS 2016 is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population.
National
The survey covered all de jure household members (usual residents), children age 0-5 years, women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the SADHS 2016 is the Statistics South Africa Master Sample Frame (MSF), which was created using Census 2011 enumeration areas (EAs). In the MSF, EAs of manageable size were treated as primary sampling units (PSUs), whereas small neighbouring EAs were pooled together to form new PSUs, and large EAs were split into conceptual PSUs. The frame contains information about the geographic type (urban, traditional, or farm) and the estimated number of residential dwelling units (DUs) in each PSU. The sampling convention used by Stats SA is DUs. One or more households may be located in any given DU; recent surveys have found 1.03 households per DU on average.
Administratively, South Africa is divided into nine provinces. The sample for the SADHS 2016 was designed to provide estimates of key indicators for the country as a whole, for urban and non-urban areas separately, and for each of the nine provinces in South Africa. To ensure that the survey precision is comparable across provinces, PSUs were allocated by a power allocation rather than a proportional allocation. Each province was stratified into urban, farm, and traditional areas, yielding 26 sampling strata.
The SADHS 2016 followed a stratified two-stage sample design with a probability proportional to size sampling of PSUs at the first stage and systematic sampling of DUs at the second stage. The Census 2011 DU count was used as the PSU measure of size. A total of 750 PSUs were selected from the 26 sampling strata, yielding 468 selected PSUs in urban areas, 224 PSUs in traditional areas, and 58 PSUs in farm areas.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Five questionnaires were used in the SADHS 2016: the Household Questionnaire, the individual Woman’s Questionnaire, the individual Man’s Questionnaire, the Caregiver’s Questionnaire, and the Biomarker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to South Africa. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After the preparation of the questionnaires in English, the questionnaires were translated into South Africa’s 10 other official languages. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.
All electronic data files for the SADHS 2016 were transferred via the IFSS to the Stats SA head office in Pretoria, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. The data were processed by a core group of four people; secondary editing was completed by 11 people. All persons involved in data processing took part in the main fieldwork training, and they were supervised by senior staff from Stats SA with support from ICF. Data editing was accomplished using CSPro software. Secondary editing was initiated in October 2016 and completed in February 2017. Checking inconsistencies in dates of immunisations was aided by the digital images of the immunisation page of the Road-to-Health booklet that had been collected on the tablet by fieldworkers at the time of the interview for that purpose.
A total of 15,292 households were selected for the sample, of which 13,288 were occupied. Of the occupied households, 11,083 were successfully interviewed, yielding a response rate of 83%.
In the interviewed households, 9,878 eligible women age 15-49 were identified for individual interviews; interviews were completed with 8,514 women, yielding a response rate of 86%. In the subsample of households selected for the male survey, 4,952 eligible men age 15-59 were identified and 3,618 were successfully interviewed, yielding a response rate of 73%. In this same subsample, 12,717 eligible adults age 15 and older were identified and 10,336 were successfully interviewed with the adult health module, yielding a response rate of 81%. Response rates were consistently lower in urban areas than in nonurban areas.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the SADHS 2016 to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the SADHS 2016 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the SADHS 2016 sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Height and weight data completeness and quality for children - Completeness of information on siblings - Sibship size and sex ratio of siblings
See details of the data quality tables in Appendix C of the survey final report.
Facebook
TwitterThe number of Facebook users in Africa was forecast to continuously increase between 2024 and 2028 by in total 141.6 million users (+56.79 percent). After the ninth consecutive increasing year, the Facebook user base is estimated to reach 390.94 million users and therefore a new peak in 2028. Notably, the number of Facebook users of was continuously increasing over the past years.User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Facebook users in countries like Europe and Asia.
Facebook
TwitterLongitudinal datasets of demographic, social, medical and economic information from a rural demographic in northern KwaZulu-Natal, South Africa where HIV prevalence is extremely high. The data may be filtered by demographics, years, or by individuals questionnaires. The datasets may be used by other researchers but the Africa Centre requests notification that anyone contact them when downloading their data. The datasets are provided in three formats: Stata11 .dta; tables in a MS-Access .accdb database; and worksheets in a MS-Excel .xlsx workbook. Datasets are generated approximately every six months containing information spanning the whole period of surveillance from 1/1/2000 to present.
Facebook
TwitterThe Project for Statistics on Living standards and Development was a countrywide World Bank Living Standards Measurement Survey. It covered approximately 9000 households, drawn from a representative sample of South African households. The fieldwork was undertaken during the nine months leading up to the country's first democratic elections at the end of April 1994. The purpose of the survey was to collect statistical information about the conditions under which South Africans live in order to provide policymakers with the data necessary for planning strategies. This data would aid the implementation of goals such as those outlined in the Government of National Unity's Reconstruction and Development Programme.
National
Households
Sample survey data [ssd]
(a) SAMPLE SIZE
Sample size is 9,000 households. The sample design adopted for the study was a two-stage self-weighting design in which the first stage units were Census Enumerator Subdistricts (ESDs, or their equivalent) and the second stage were households. The advantage of using such a design is that it provides a representative sample that need not be based on accurate census population distribution.in the case of South Africa, the sample will automatically include many poor people, without the need to go beyond this and oversample the poor. Proportionate sampling as in such a self-weighting sample design offers the simplest possible data files for further analysis, as weights do not have to be added. However, in the end this advantage could not be retained, and weights had to be added. The sampling frame was drawn up on the basis of small, clearly demarcated area units, each with a population estimate. The nature of the self-weighting procedure adopted ensured that this population estimate was not important for determining the final sample, however. For most of the country, census ESDs were used. Where some ESDs comprised relatively large populations as for instance in some black townships such as Soweto, aerial photographs were used to divide the areas into blocks of approximately equal population size. In other instances, particularly in some of the former homelands, the area units were not ESDs but villages or village groups. In the sample design chosen, the area stage units (generally ESDs) were selected with probability proportional to size, based on the census population.
(b) SAMPLE DESIGN
Systematic sampling was used throughout that is, sampling at fixed interval in a list of ESDs, starting at a randomly selected starting point. Given that sampling was self-weighting, the impact of stratification was expected to be modest. The main objective was to ensure that the racial and geographic breakdown approximated the national population distribution. This was done by listing the area stage units (ESDs) by statistical region and then within the statistical region by urban or rural. Within these sub-statistical regions, the ESDs were then listed in order of percentage African. The sampling interval for the selection of the ESDs was obtained by dividing the 1991 census population of 38,120,853 by the 300 clusters to be selected. This yielded 105,800. Starting at a randomly selected point, every 105,800th person down the cluster list was selected. This ensured both geographic and racial diversity (ESDs were ordered by statistical sub-region and proportion of the population African). In three or four instances, the ESD chosen was judged inaccessible and replaced with a similar one. In the second sampling stage the unit of analysis was the household. In each selected ESD a listing or enumeration of households was carried out by means of a field operation. From the households listed in an ESD a sample of households was selected by systematic sampling. Even though the ultimate enumeration unit was the household, in most cases "stands" were used as enumeration units. However, when a stand was chosen as the enumeration unit all households on that stand had to be interviewed. Census population data, however, was available only for 1991. An assumption on population growth was thus made to obtain an approximation of the population size for 1993, the year of the survey. The sampling interval at the level of the household was determined in the following way: Based on the decision to have a take of 125 individuals on average per cluster (i.e. assuming 5 members per household to give an average cluster size of 25 households), the interval of households to be selected was determined as the census population divided by 118.1, i.e. allowing for population growth since the census. It was subsequently discovered that population growth was slightly over-estimated, but this had little effect on the findings of the survey. Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described above for the households in ESDs.
Face-to-face [f2f]
All the questionnaires were checked when received. Where information was incomplete or appeared contradictory, the questionnaire was sent back to the relevant survey organization. As soon as the data was available, it was captured using local development platform ADE. This was completed in February 1994. Following this, a series of exploratory programs were written to highlight inconsistencies and outlier. For example, all person level files were linked together to ensure that the same person code reported in different sections of the questionnaire corresponded to the same person. The error reports from these programs were compared to the questionnaires and the necessary alterations made. This was a lengthy process, as several files were checked more than once, and completed at the beginning of August 1994. In some cases, questionnaires would contain missing values, or comments that the respondent did not know, or refused to answer a question. These responses are coded in the data files with the following values:
VALUE MEANING -1 : The data was not available on the questionnaire or form -2 : The field is not applicable -3 : Respondent refused to answer -4 : Respondent did not know answer to question
The data collected in clusters 217 and 218 should be viewed as highly unreliable and therefore removed from the data set. The data currently available on the web site has been revised to remove the data from these clusters. Researchers who have downloaded the data in the past should revise their data sets. For information on the data in those clusters, contact SALDRU http://www.saldru.uct.ac.za/.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.