Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.
Facebook
TwitterThis dataset contains prices of New York houses, providing valuable insights into the real estate market in the region. It includes information such as broker titles, house types, prices, number of bedrooms and bathrooms, property square footage, addresses, state, administrative and local areas, street names, and geographical coordinates.
- BROKERTITLE: Title of the broker
- TYPE: Type of the house
- PRICE: Price of the house
- BEDS: Number of bedrooms
- BATH: Number of bathrooms
- PROPERTYSQFT: Square footage of the property
- ADDRESS: Full address of the house
- STATE: State of the house
- MAIN_ADDRESS: Main address information
- ADMINISTRATIVE_AREA_LEVEL_2: Administrative area level 2 information
- LOCALITY: Locality information
- SUBLOCALITY: Sublocality information
- STREET_NAME: Street name
- LONG_NAME: Long name
- FORMATTED_ADDRESS: Formatted address
- LATITUDE: Latitude coordinate of the house
- LONGITUDE: Longitude coordinate of the house
- Price analysis: Analyze the distribution of house prices to understand market trends and identify potential investment opportunities.
- Property size analysis: Explore the relationship between property square footage and prices to assess the value of different-sized houses.
- Location-based analysis: Investigate geographical patterns to identify areas with higher or lower property prices.
- Bedroom and bathroom trends: Analyze the impact of the number of bedrooms and bathrooms on house prices.
- Broker performance analysis: Evaluate the influence of different brokers on the pricing of houses.
If you find this dataset useful, your support through an upvote would be greatly appreciated ❤️🙂 Thank you
Facebook
TwitterThe number of U.S. home sales in the United States declined in 2024, after soaring in 2021. A total of four million transactions of existing homes, including single-family, condo, and co-ops, were completed in 2024, down from 6.12 million in 2021. According to the forecast, the housing market is forecast to head for recovery in 2025, despite transaction volumes expected to remain below the long-term average. Why have home sales declined? The housing boom during the coronavirus pandemic has demonstrated that being a homeowner is still an integral part of the American dream. Nevertheless, sentiment declined in the second half of 2022 and Americans across all generations agreed that the time was not right to buy a home. A combination of factors has led to house prices rocketing and making homeownership unaffordable for the average buyer. A survey among owners and renters found that the high home prices and unfavorable economic conditions were the two main barriers to making a home purchase. People who would like to purchase their own home need to save up a deposit, have a good credit score, and a steady and sufficient income to be approved for a mortgage. In 2022, mortgage rates experienced the most aggressive increase in history, making the total cost of homeownership substantially higher. Are U.S. home prices expected to fall? The median sales price of existing homes stood at 413,000 U.S. dollars in 2024 and was forecast to increase slightly until 2026. The development of the S&P/Case Shiller U.S. National Home Price Index shows that home prices experienced seven consecutive months of decline between June 2022 and January 2023, but this trend reversed in the following months. Despite mild fluctuations throughout the year, home prices in many metros are forecast to continue to grow, albeit at a much slower rate.
Facebook
TwitterIn 2021, Allegheny County Economic Development (ACED), in partnership with Urban Redevelopment Authority of Pittsburgh(URA), completed the a Market Value Analysis (MVA) for Allegheny County. This analysis services as both an update to previous MVA’s commissioned separately by ACED and the URA and combines the MVA for the whole of Allegheny County (inclusive of the City of Pittsburgh). The MVA is a unique tool for characterizing markets because it creates an internally referenced index of a municipality’s residential real estate market. It identifies areas that are the highest demand markets as well as areas of greatest distress, and the various markets types between. The MVA offers insight into the variation in market strength and weakness within and between traditional community boundaries because it uses Census block groups as the unit of analysis. Where market types abut each other on the map becomes instructive about the potential direction of market change, and ultimately, the appropriateness of types of investment or intervention strategies. This MVA utilized data that helps to define the local real estate market. The data used covers the 2017-2019 period, and data used in the analysis includes: Residential Real Estate Sales Mortgage Foreclosures Residential Vacancy Parcel Year Built Parcel Condition Building Violations Owner Occupancy Subsidized Housing Units The MVA uses a statistical technique known as cluster analysis, forming groups of areas (i.e., block groups) that are similar along the MVA descriptors, noted above. The goal is to form groups within which there is a similarity of characteristics within each group, but each group itself different from the others. Using this technique, the MVA condenses vast amounts of data for the universe of all properties to a manageable, meaningful typology of market types that can inform area-appropriate programs and decisions regarding the allocation of resources. Please refer to the presentation and executive summary for more information about the data, methodology, and findings.
Facebook
TwitterTurkey experienced the highest annual change in house prices in 2025, followed by North Macedonia and Portugal. In the second quarter of the year, the nominal house price in Turkey grew by **** percent, while in North Macedonia and Portugal, the increase was **** and **** percent, respectively. Meanwhile, some countries saw prices fall throughout the year. That has to do with an overall cooling of the global housing market that started in 2022. When accounting for inflation, house price growth was slower, and even more countries saw the market shrink.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.
| Column Name | Description |
|---|---|
Country | The country where the housing market data is recorded 🌍 |
Year | The year of observation 📅 |
Average House Price ($) | The average price of houses in USD 💰 |
Median Rental Price ($) | The median monthly rent for properties in USD 🏠 |
Mortgage Interest Rate (%) | The average mortgage interest rate percentage 📉 |
Household Income ($) | The average annual household income in USD 🏡 |
Population Growth (%) | The percentage increase in population over the year 👥 |
Urbanization Rate (%) | Percentage of the population living in urban areas 🏙️ |
Homeownership Rate (%) | The percentage of people who own their homes 🔑 |
GDP Growth Rate (%) | The annual GDP growth percentage 📈 |
Unemployment Rate (%) | The percentage of unemployed individuals in the labor force 💼 |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nahb Housing Market Index in the United States increased to 38 points in November from 37 points in October of 2025. This dataset provides the latest reported value for - United States Nahb Housing Market Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.
Facebook
TwitterRedfin is a real estate brokerage and publishes the US housing market data on a regular basis. Using this dataset, you can analyze and visualize housing market data for US cities. Timeline: Starting from February 2012 until the present time (Data is refreshed and updated on a monthly basis)
The dataset has the following columns:
- period_begin
- period_end
- period_duration
- region_type
- region_type_id
- table_id
- is_seasonally_adjusted. (indicates if prices are seasonally adjusted; f represents False)
- region
- city
- state
- state_code
- property_type
- property_type_id
- median_sale_price
- median_sale_price_mom (median sale price changes month over month)
- median_sale_price_yoy (median sale price changes year over year)
- median_list_price
- median_list_price_mom (median list price changes month over month)
- median_list_price_yoy (median list price changes year over year)
- median_ppsf (median sale price per square foot)
- median_ppsf_mom (median sale price per square foot changes month over month)
- median_ppsf_yoy (median sale price per square foot changes year over year)
- median_list_ppsf (median list price per square foot)
- median_list_ppsf_mom (median list price per square foot changes month over month)
- median_list_ppsf_yoy. (median list price per square foot changes year over year)
- homes_sold (number of homes sold)
- homes_sold_mom (number of homes sold month over month)
- homes_sold_yoy (number of homes sold year over year)
- pending_sales
- pending_sales_mom
- pending_sales_yoy
- new_listings
- new_listings_mom
- new_listings_yoy
- inventory
- inventory_mom
- inventory_yoy
- months_of_supply
- months_of_supply_mom
- months_of_supply_yoy
- median_dom (median days on market until property is sold)
- median_dom_mom (median days on market changes month over month)
- median_dom_yoy (median days on market changes year over year)
- avg_sale_to_list (average sale price to list price ratio)
- avg_sale_to_list_mom (average sale price to list price ratio changes month over month)
- avg_sale_to_list_yoy (average sale price to list price ratio changes year over year)
- sold_above_list
- sold_above_list_mom
- sold_above_list_yoy
- price_drops
- price_drops_mom
- price_drops_yoy
- off_market_in_two_weeks (number of properties that will be taken off the market within 2 weeks)
- off_market_in_two_weeks_mom (changes in number of properties that will be taken off the market within 2 weeks, month over month)
- off_market_in_two_weeks_yoy (changes in number of properties that will be taken off the market within 2 weeks, year over year)
- parent_metro_region
- parent_metro_region_metro_code
- last_updated
Filetype: gzip (gz) Support for gzip files in Python: https://docs.python.org/3/library/gzip.html
Data Source & Credit: Redfin.com
Facebook
TwitterMost of the public concern about housing markets is based on claims that house prices have increased at historically anomalous rates and that house prices have outpaced incomes. The first claim is based on inaccurate historical data. The second is linked to relaxed credit constraints. House prices are likely to fall further, but not for the reasons usually proposed.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Median Days on Market in the United States (MEDDAYONMARUS) from Jul 2016 to Oct 2025 about median and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in China remained unchanged at -2.20 percent in October. This dataset provides the latest reported value for - China Newly Built House Prices YoY Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAccording to a survey conducted in South Korea in January 2025, around ** percent of respondents stated that housing prices would fall over the next year. According to the source, most respondents in the previous year's survey had an overall negative opinion on the government's policies on real estate.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q3 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
The Housing Data Extracted from Homes.com (USA) dataset is a comprehensive collection of 2 million real estate listings sourced from Homes.com, one of the leading real estate platforms in the United States. This dataset offers detailed insights into the U.S. housing market, making it an invaluable resource for real estate professionals, investors, researchers, and analysts.
The dataset contains extensive property details, including location, price, property type (single-family homes, condos, apartments), number of bedrooms and bathrooms, square footage, lot size, year built, and availability status. Organized in CSV format, it provides users with easy access to structured data for analyzing trends, developing investment strategies, or building real estate applications.
Key Features:
Facebook
TwitterThe homebuyer sentiment in the United States worsened substantially in 2021 and remained negative until August 2025. As of August 2025, the net homebuyer sentiment measured negative **. This means that the share of respondents who thought it was a bad time to buy a home outweighed the share of respondents who said the contrary by 44 percent. The decline in sentiment is correlated with the falling homeowner affordability. In 2023, the U.S. homeowner affordability index fell to the lowest level on record.
Facebook
TwitterIn 2025, India was the country with the highest increase in house prices since 2010 among the Asia-Pacific (APAC) countries under observation. In the second quarter of the year, the nominal house price index in India reached over 359 index points. This suggests an increase of 259 percent since 2010, the baseline year when the index value was set to 100. It is important to note that the nominal index does not account for the effects of inflation, meaning when adjusted for inflation, price growth in real terms was slower.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in the United States decreased to 435.40 points in September from 435.60 points in August of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.