2 datasets found
  1. R

    Data from: Fashion Mnist Dataset

    • universe.roboflow.com
    • opendatalab.com
    • +3more
    zip
    Updated Aug 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Popular Benchmarks (2022). Fashion Mnist Dataset [Dataset]. https://universe.roboflow.com/popular-benchmarks/fashion-mnist-ztryt/model/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 10, 2022
    Dataset authored and provided by
    Popular Benchmarks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Clothing
    Description

    Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms

    Authors:

    Dataset Obtained From: https://github.com/zalandoresearch/fashion-mnist

    All images were sized 28x28 in the original dataset

    Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. We intend Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits. * Source

    Here's an example of how the data looks (each class takes three-rows): https://github.com/zalandoresearch/fashion-mnist/raw/master/doc/img/fashion-mnist-sprite.png" alt="Visualized Fashion MNIST dataset">

    Version 1 (original-images_Original-FashionMNIST-Splits):

    • Original images, with the original splits for MNIST: train (86% of images - 60,000 images) set and test (14% of images - 10,000 images) set only.
    • This version was not trained

    Version 3 (original-images_trainSetSplitBy80_20):

    • Original, raw images, with the train set split to provide 80% of its images to the training set and 20% of its images to the validation set
    • https://blog.roboflow.com/train-test-split/ https://i.imgur.com/angfheJ.png" alt="Train/Valid/Test Split Rebalancing">

    Citation:

    @online{xiao2017/online,
     author    = {Han Xiao and Kashif Rasul and Roland Vollgraf},
     title    = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms},
     date     = {2017-08-28},
     year     = {2017},
     eprintclass = {cs.LG},
     eprinttype  = {arXiv},
     eprint    = {cs.LG/1708.07747},
    }
    
  2. Rescaled Fashion-MNIST with translations dataset

    • zenodo.org
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrzej Perzanowski; Andrzej Perzanowski; Tony Lindeberg; Tony Lindeberg (2025). Rescaled Fashion-MNIST with translations dataset [Dataset]. http://doi.org/10.5281/zenodo.15188439
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrzej Perzanowski; Andrzej Perzanowski; Tony Lindeberg; Tony Lindeberg
    Time period covered
    Apr 10, 2025
    Description

    Motivation

    The goal of introducing the Rescaled Fashion-MNIST with translations dataset is to provide a dataset that contains scale variations (up to a factor of 4), to evaluate the ability of networks to generalise to scales not present in the training data, and to additionally provide a way to test network object detection and object localisation abilities on image data where the objects are not centred.

    The Rescaled Fashion-MNIST with translations dataset was introduced in the paper:

    [1] A. Perzanowski and T. Lindeberg (2025) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, Journal of Mathematical Imaging and Vision, 67(29), https://doi.org/10.1007/s10851-025-01245-x.

    with a pre-print available at arXiv:

    [2] Perzanowski and Lindeberg (2024) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, arXiv preprint arXiv:2409.11140.

    Importantly, the Rescaled Fashion-MNIST with translations dataset is more challenging than the MNIST Large Scale dataset, introduced in:

    [3] Y. Jansson and T. Lindeberg (2022) "Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales", Journal of Mathematical Imaging and Vision, 64(5): 506-536, https://doi.org/10.1007/s10851-022-01082-2.

    Access and rights

    The Rescaled Fashion-MNIST with translations dataset is provided on the condition that you provide proper citation for the original Fashion-MNIST dataset:

    [4] Xiao, H., Rasul, K., and Vollgraf, R. (2017) “Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms”, arXiv preprint arXiv:1708.07747

    and also for this new rescaled version, using the reference [1] above.

    The data set is made available on request. If you would be interested in trying out this data set, please make a request in the system below, and we will grant you access as soon as possible.

    The dataset

    The Rescaled FashionMNIST with translations dataset is generated by rescaling 28×28 gray-scale images of clothes from the original FashionMNIST dataset [4]. The scale variations are up to a factor of 4, and the images are embedded within black images of size 72x72. The objects within the images have also been randomly shifted in the spatial domain, with the object always at least 4 pixels away from the image boundary. The imresize() function in Matlab was used for the rescaling, with default anti-aliasing turned on, and bicubic interpolation overshoot removed by clipping to the [0, 255] range. The details of how the dataset was created can be found in [1].

    There are 10 different classes in the dataset: “T-shirt/top”, “trouser”, “pullover”, “dress”, “coat”, “sandal”, “shirt”, “sneaker”, “bag” and “ankle boot”. In the dataset, these are represented by integer labels in the range [0, 9].

    The dataset is split into 50 000 training samples, 10 000 validation samples and 10 000 testing samples. The training dataset is generated using the initial 50 000 samples from the original Fashion-MNIST training set. The validation dataset, on the other hand, is formed from the final 10 000 images of that same training set. For testing, all test datasets are built from the 10 000 images contained in the original Fashion-MNIST test set.

    The h5 files containing the dataset

    The training dataset file (~2.9 GB) for scale 1, which also contains the corresponding validation and test data for the same scale, is:

    fashionmnist_with_scale_variations_and_translations_tr50000_vl10000_te10000_outsize72-72_scte1p000_scte1p000.h5

    Additionally, for the Rescaled FashionMNIST with translations dataset, there are 9 datasets (~415 MB each) for testing scale generalisation at scales not present in the training set. Each of these datasets is rescaled using a different image scaling factor, 2k/4, with k being integers in the range [-4, 4]:

    fashionmnist_with_scale_variations_and_translations_te10000_outsize72-72_scte0p500.h5
    fashionmnist_with_scale_variations_and_translations_te10000_outsize72-72_scte0p595.h5
    fashionmnist_with_scale_variations_and_translations_te10000_outsize72-72_scte0p707.h5
    fashionmnist_with_scale_variations_and_translations_te10000_outsize72-72_scte0p841.h5
    fashionmnist_with_scale_variations_and_translations_te10000_outsize72-72_scte1p000.h5
    fashionmnist_with_scale_variations_and_translations_te10000_outsize72-72_scte1p189.h5
    fashionmnist_with_scale_variations_and_translations_te10000_outsize72-72_scte1p414.h5
    fashionmnist_with_scale_variations_and_translations_te10000_outsize72-72_scte1p682.h5
    fashionmnist_with_scale_variations_and_translations_te10000_outsize72-72_scte2p000.h5

    These dataset files were used for the experiments presented in Figure 8 in [1].

    Instructions for loading the data set

    The datasets are saved in HDF5 format, with the partitions in the respective h5 files named as
    ('/x_train', '/x_val', '/x_test', '/y_train', '/y_test', '/y_val'); which ones exist depends on which data split is used.

    The training dataset can be loaded in Python as:

    with h5py.File(`

    x_train = np.array( f["/x_train"], dtype=np.float32)
    x_val = np.array( f["/x_val"], dtype=np.float32)
    x_test = np.array( f["/x_test"], dtype=np.float32)
    y_train = np.array( f["/y_train"], dtype=np.int32)
    y_val = np.array( f["/y_val"], dtype=np.int32)
    y_test = np.array( f["/y_test"], dtype=np.int32)

    We also need to permute the data, since Pytorch uses the format [num_samples, channels, width, height], while the data is saved as [num_samples, width, height, channels]:

    x_train = np.transpose(x_train, (0, 3, 1, 2))
    x_val = np.transpose(x_val, (0, 3, 1, 2))
    x_test = np.transpose(x_test, (0, 3, 1, 2))

    The test datasets can be loaded in Python as:

    with h5py.File(`

    x_test = np.array( f["/x_test"], dtype=np.float32)
    y_test = np.array( f["/y_test"], dtype=np.int32)

    The test datasets can be loaded in Matlab as:

    x_test = h5read(`

    The images are stored as [num_samples, x_dim, y_dim, channels] in HDF5 files. The pixel intensity values are not normalised, and are in a [0, 255] range.

    There is also a closely related Fashion-MNIST dataset, which in addition to scaling variations keeps the objects in the frame centred, meaning no spatial translations are used.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Popular Benchmarks (2022). Fashion Mnist Dataset [Dataset]. https://universe.roboflow.com/popular-benchmarks/fashion-mnist-ztryt/model/3

Data from: Fashion Mnist Dataset

fashion-mnist-ztryt

fashion-mnist-dataset

Related Article
Explore at:
zipAvailable download formats
Dataset updated
Aug 10, 2022
Dataset authored and provided by
Popular Benchmarks
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Variables measured
Clothing
Description

Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms

Authors:

Dataset Obtained From: https://github.com/zalandoresearch/fashion-mnist

All images were sized 28x28 in the original dataset

Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. We intend Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits. * Source

Here's an example of how the data looks (each class takes three-rows): https://github.com/zalandoresearch/fashion-mnist/raw/master/doc/img/fashion-mnist-sprite.png" alt="Visualized Fashion MNIST dataset">

Version 1 (original-images_Original-FashionMNIST-Splits):

  • Original images, with the original splits for MNIST: train (86% of images - 60,000 images) set and test (14% of images - 10,000 images) set only.
  • This version was not trained

Version 3 (original-images_trainSetSplitBy80_20):

  • Original, raw images, with the train set split to provide 80% of its images to the training set and 20% of its images to the validation set
  • https://blog.roboflow.com/train-test-split/ https://i.imgur.com/angfheJ.png" alt="Train/Valid/Test Split Rebalancing">

Citation:

@online{xiao2017/online,
 author    = {Han Xiao and Kashif Rasul and Roland Vollgraf},
 title    = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms},
 date     = {2017-08-28},
 year     = {2017},
 eprintclass = {cs.LG},
 eprinttype  = {arXiv},
 eprint    = {cs.LG/1708.07747},
}
Search
Clear search
Close search
Google apps
Main menu