This statistics shows the top 20 fastest growing large-metropolitan areas in the United States between July 1st, 2022 and July 1st, 2023. The total population in the Wilmington, North Carolina, metropolitan area increased by 0.05 percent from 2022 to 2023.
This statistic shows the population growth rate of the top twenty largest urban agglomerations in the United States from 2000 to 2030. Between 2025 and 2030, the average annual population growth rate of the New York-Newark agglomeration is projected to be roughly 0.82 percent.
This statistic represents the percent increase of the 15 fastest-growing large cities in the U.S. between July 1, 2020 and July 1, 2021. Georgetown city in Texas is at the top of the fastest-growing large cities, with a growth rate of 10.5 percent over this period.
Cambridge was the fastest growing city in the United Kingdom between 2012 and 2022, with its population increasing by 17.9 percent. Peterborough, Milton Keynes and Exeter also grew quite fast, with their populations increasing by 15.4 percent, 15 percent, and 14.4 percent, respectively. Largest UK urban areas When looking at cities defined by their urban agglomerations, as of 2023, London had approximately 9.65 million people living there, far larger than any other city in the United Kingdom. The urban agglomeration around the city of Birmingham had a population of approximately 2.67 million, while the urban areas around Manchester and Leeds had populations of 2.79 and 1.92 million respectively. London not only dominated other UK cities in terms of its population, but in its importance to the UK economy. In 2022, the gross domestic product of Greater London was approximately 508.3 billion British pounds, compared with 90.8 billion for Greater Manchester, and 77 billion in the West Midlands Metropolitan Area centered around Birmingham. UK population growth In 2022, the overall population of the United Kingdom was estimated to have reached approximately 67.6 million, compared with around 58.9 million in 2000. Since 1970, the year with the highest population growth rate was 2016 when the population grew by around 0.86 percent, and was at its lowest in 1982 when it shrank by 0.12 percent. Although the UK's birth rate has declined considerably in recent years, immigration to the UK has been high enough to drive population growth in the UK, which has had a positive net migration rate since 1994.
This multi-scale map shows counts of the total population the US. Data is from U.S. Census Bureau's 2020 PL 94-171 data for county, tract, block group, and block.County and metro area highlights:The largest county in the United States in 2020 remains Los Angeles County with over 10 million people.The largest city (incorporated place) in the United States in 2020 remains New York with 8.8 million people.312 of the 384 U.S. metro areas gained population between 2010 and 2020.The fastest-growing U.S. metro area between the 2010 Census and 2020 Census was The Villages, FL, which grew 39% from about 93,000 people to about 130,000 people.72 U.S. metro areas lost population from the 2010 Census to the 2020 Census. The U.S. metro areas with the largest percentage declines were Pine Bluff, AR, and Danville, IL, at -12.5 percent and -9.1 percent, respectively.View more 2020 Census statistics highlights on local populations changes.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
According to population estimates recently released by the California Department of Housing and Community Development, the San Francisco Bay Region is the fastest growing region in the state.San Jose, followed by San Francisco and Oakland have the highest populations in the region, and three bay area cities made the top 10 ranking. In addition, our region also has 4 counties; Santa Clara (1), Alameda (2), San Francisco (5) and San Mateo (9), in the top 10 fastest growing counties. Dublin (3), Campbell (7) and Rio Vista (8) each had a significant percentage change in their population growth. The state data reports population and housing trends for 482 California cities. Last year, all but 43 cities saw an increase in residents, with the declines typically experienced in the state's rural areas.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Austin metro area from 1950 to 2025. United Nations population projections are also included through the year 2035.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Fort Wayne metro area from 1950 to 2025. United Nations population projections are also included through the year 2035.
https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/
50 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2050.
By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents. Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley. How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.
These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life? Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.
Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.
This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.
This graph shows the 15 fastest growing cities in the United States, by percentage increase in population, from the period April 1, 2010 to July 1, 2011. Over this time New Orleans was the fastest growing city at a rate of 4.9 percent.
This collection contains two datasets: one, data used in TI-City model to predict future urban expansion in Accra, Ghana; and two, residential electricity consumption data used to map intra-urban living standards in Karachi, Pakistan. The TI-City model data are ASCII files of infrastructure and amenities that affect location decisions of households and developers. The residential electricity consumption data consist of average kilowatt hours (kw/h) of electricity consumed per month by ~ 2 million households in Karachi. The electricity consumption data is aggregated into 30m grid cells (count = 193050), with centroids and consumption values provided. The values of the points (centroids), captured under the field "Avg_Avg_Cs", represents the median of average monthly consumption of households within the 30m grid cells.
Our project addresses a critical gap in social research methodology that has important implications for combating urban poverty and promoting sustainable development in low and middle-income countries. Simply put, we're creating a low-cost tool for gathering critical information about urban population dynamics in cities experiencing rapid spatial-demographic and socioeconomic change. Such information is vital to the success of urban planning and development initiatives, as well as disaster relief efforts. By improving the information base of the actors involved in such activities we aim to improve the lives of urban dwellers across the developing world, particularly the poorest and most vulnerable. The key output for the project will be a freely available 'City Sampling Toolkit' that provides detailed instructions and opensource software tools for replicating the approach at various spatial scales.
Our research is motivated by the growing recognition that cities are critical arenas for action in global efforts to tackle poverty and transition towards more environmentally sustainable economic growth. Between now and 2050 the global urban population is projected to grow by over 2 billion, with the overwhelming majority of this growth taking place in low and middle-income countries in Africa and Asia. Developing evidence-based policies for managing this growth is an urgent task. As UN Secretary General Ban Ki Moon has observed: "Cities are increasingly the home of humanity. They are central to climate action, global prosperity, peace and human rights...To transform our world, we must transform its cities."
Unfortunately, even basic data about urban populations are lacking in many of the fastest growing cities of the world. Existing methods for gathering vital information, including censuses and sample surveys, have critical limitations in urban areas experiencing rapid change. And 'big data' approaches are not an adequate substitute for representative population data when it comes to urban planning and policymaking. We will overcome these limitations through a combination of conceptual innovation and creative integration of novel tools and techniques that have been developed for sampling, surveying and estimating the characteristics of populations that are difficult to enumerate. This, in turn, will help us capture the large (and sometimes uniquely vulnerable) 'hidden populations' in cities missed by traditional approaches.
By using freely available satellite imagery, we can get an idea of the current shape of a rapidly changing city and create a 'sampling frame' from which we then identify respondents for our survey. Importantly, and in contrast with previous approaches, we aren't simply going to count official city residents. We are interested in understanding the characteristics of the actually present population, including recent migrants, temporary residents, and those living in informal or illegal settlements, who are often not considered formal residents in official enumeration exercises. In other words, our 'inclusion criterion' for the survey exercise is presence not residence. By adopting this approach, we hope to capture a more accurate picture of city populations. We will also limit the length of our survey questionnaire to maximise responses and then use novel statistical techniques to reconstruct a rich statistical portrait that reflects a wide range of demographic and socioeconomic information.
We will pilot our methodology in a city in Pakistan, which recently completed a national census exercise that has generated some controversy with regard to the accuracy of urban population counts. To our knowledge this would be the first project ever to pilot and validate a new sampling and survey methodology at the city scale in a developing country.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global smart city platforms market size will be USD 192541.2 million in 2024. It will expand at a compound annual growth rate (CAGR) of 9.00% from 2024 to 2031.
North America held the major market share for more than 40% of the global revenue with a market size of USD 77016.48 million in 2024 and will grow at a compound annual growth rate (CAGR) of 7.2% from 2024 to 2031.
Europe accounted for a market share of over 30% of the global revenue with a market size of USD 57762.36 million.
Asia Pacific held a market share of around 23% of the global revenue with a market size of USD 44284.48 million in 2024 and will grow at a compound annual growth rate (CAGR) of 11.0% from 2024 to 2031.
Latin America had a market share of more than 5% of the global revenue with a market size of USD 9627.06 million in 2024 and will grow at a compound annual growth rate (CAGR) of 8.4% from 2024 to 2031.
Middle East and Africa had a market share of around 2% of the global revenue and was estimated at a market size of USD 3850.82 million in 2024 and will grow at a compound annual growth rate (CAGR) of 8.7% from 2024 to 2031.
The data management platform is the fastest growing segment of the smart city platforms industry
Market Dynamics of Smart city platforms Market
Key Drivers for Smart city platforms Market
Urbanization and population growth to drive market growth
Urbanization and population growth are key drivers of the Smart City Platforms Market, as they create the need for more efficient urban management solutions. Rapid migration to cities places immense pressure on infrastructure, transportation, energy, and public services. To address these challenges, smart city platforms enable cities to optimize resource allocation, improve traffic management, and enhance public safety through data-driven decision-making. As urban populations grow, the demand for sustainable and scalable solutions increases, leading to investments in technologies like IoT, artificial intelligence, and data analytics. These platforms allow city administrators to manage services in real time, ensuring smoother operations and better living conditions. Furthermore, governments worldwide are supporting smart city initiatives to handle the socio-economic impacts of urbanization, boosting the market's expansion.
Increased demand for efficient public services to boost market growth
The increased demand for efficient public services is a major driver of growth in the Smart City Platforms Market. As urban populations expand, cities face pressure to improve the efficiency and quality of essential services such as transportation, healthcare, energy management, and waste disposal. Smart city platforms provide a solution by integrating various urban services through the use of IoT devices, big data, and real-time analytics. By leveraging these technologies, cities can streamline operations, reduce costs, and respond more effectively to residents' needs. For example, smart traffic systems can alleviate congestion, while intelligent energy grids optimize power consumption. Citizens also expect more responsive and transparent services, pushing governments to adopt smart platforms to enhance service delivery and public engagement. This rising demand for smarter, more efficient services is a key factor driving market growth.
Restraint Factor for the Smart city platforms Market
Data privacy and security concerns to limit market growth
Data privacy and security concerns pose significant challenges to the growth of the Smart City Platforms Market. As these platforms rely on massive amounts of data collected from IoT devices, sensors, and city infrastructure, they become potential targets for cyberattacks and unauthorized access. Breaches in public data can compromise critical systems, including transportation, healthcare, and public safety, leading to severe consequences. Citizens are increasingly concerned about how their personal information is being used and protected, which raises issues around trust and transparency. Furthermore, stringent regulations like GDPR and other regional data protection laws require cities to ensure robust security measures, which can increase implementation costs and complexity. The fear of potential data misuse or leaks can slow down the adoption of smart city technologies, limiting market growth despite their benefits.
Impact of Covid-19 on the ...
The Urban Growth Area is used to manage future growth around densely populated areas. The urban growth area is the city/town and adjacent unincorporated growth area identified by the cities/towns/county to receive urban growth in the future. Outside of the boundary only rural growth is permissible.
Correction to this data can only be made through a Comprehensive Plan change or at the direction of Thurston County Long Range Planning due to a scrivener's error. The 1990 Washington State Growth Management Act requires the state's fastest growing cities and counties to designate UGAs around each city and town to accommodate the expected population growth over the next 20 years. In Thurston County, UGAs surround Bucoda, Lacey, Olympia, Rainier, Tumwater, Tenino, and Yelm. The current boundaries of the UGAs were established in 1990 and updated via the 2015 adoption of the Thurston County Comprehensive Plan: CHAPTER II - LAND USE II.URBAN GROWTH AREAS History and Purpose of Thurston County's Urban Growth Areas: In 1983, Thurston County, along with the cities of Olympia, Lacey and Tumwater, blazed the trail for growth management in Washington State by signing an interlocal government agreement called the "Urban Growth Management Agreement." That early agreement included an Urban Growth Management Boundary around the three cities to serve as a limit for the cities' expansion for 20 years. The purposes of the county's original growth areas remain relevant today: To provide for higher intensity development around the county's incorporated cities and towns and unincorporated community centers in order to concentrate development in areas where minimal impact to the environment, natural resources and rural atmosphere will occur. To minimize public costs and conserve energy by using services and facilities efficiently through concentration of development and integration of jobs, shopping, services and housing. To phase urban growth and infill with the provision of urban public services and facilities. One of the main effects of an urban growth area is to provide a limit for the extension of urban utilities, especially sewer service. To that end, overall residential density in urban growth areas should be high enough to support urban public services and to provide affordable housing choices. There should be a variety of housing types, with most densities ranging from 4 to 16 dwelling units per acre. Map M-14 identifies the urban growth areas for each city or town in Thurston County. The UGAs must accommodate the urban growth projected over the next 20 years including a reasonable market factor. Policies and actions emphasize the provision of urban land uses and services and include provisions specifically aimed at reducing low density residential sprawl. Joint plans established with each city and town include planning policies for each UGA. Joint plans are contained in separate documents, but are incorporated as part of the Thurston County Comprehensive Plan. Detailed land use designations for all UGAs around cities and towns are provided in the following joint plans (Map M-14 is keyed to the numbering below):Olympia/Thurston County Joint PlanLacey/Thurston County Joint Plan Tumwater/Thurston County Joint PlanYelm/Thurston County Joint PlanRainier/Thurston County Joint PlanTenino/Thurston County Joint PlanBucoda/Thurston County Joint PlanList of Map Correction's (Correction can only be made through a Comprehensive Plan change or at the direction of Thurston County Long Range Planning due to a scrivener's error.)Made on 5 AUG 2014 by KLW. Made on 15 July 2016 by KAH. - Correction of scrivener's error in Tenino UGA Boundary at the Teitge Annexations. This error was due to parcel and city mapping issues. The UGA has been fixed to be consistent with the parcel legal descriptions and the legal description included in the annexation ordinance approved by the City of Tenino, and the annexation approved by the Boundary Review Board.
Cities ranking and mega citiesTokyo is the world’s largest city with an agglomeration of 37 million inhabitants, followed by New Delhi with 29 million, Shanghai with 26 million, and Mexico City and São Paulo, each with around 22 million inhabitants. Today, Cairo, Mumbai, Beijing and Dhaka all have close to 20 million inhabitants. By 2020, Tokyo’s population is projected to begin to decline, while Delhi is projected to continue growing and to become the most populous city in the world around 2028.By 2030, the world is projected to have 43 megacities with more than 10 million inhabitants, most of them in developing regions. However, some of the fastest-growing urban agglomerations are cities with fewer than 1 million inhabitants, many of them located in Asia and Africa. While one in eight people live in 33 megacities worldwide, close to half of the world’s urban dwellers reside in much smaller settlements with fewer than 500,000 inhabitants.About the dataThe 2018 Revision of the World Urbanization Prospects is published by the Population Division of the United Nations Department of Economic and Social Affairs (UN DESA). It has been issued regularly since 1988 with revised estimates and projections of the urban and rural populations for all countries of the world, and of their major urban agglomerations. The data set and related materials are available at: https://esa.un.org/unpd/wup/
Milan, Bologna, Genoa, Florence, and Turin recorded a population increase between 2022 and 2023. In fact, all the other largest municipalities registered a decrease, most prominently in the south and on the islands. However, Naples is the third-largest Italian municipality, after Rome and Milan.
The fastest growing city in Africa is Bujumbura, in Burundi. In 2020, this city had an estimated population of about one million. By 2035, the population of Bujumbura could increase by 123 percent and reach roughly 2.3 million people. Zinder, in Niger, had about half million inhabitants in 2020 and, with a growth rate of 118 percent, is Africa's second fastest growing city. In 2035, Zinder could have over one million residents.
As of 2021, the largest city in whole Africa is Lagos, in Nigeria. Other highly populated cities in Africa are Kinshasa, in Congo, Cairo, and Alexandria, both located in Egypt.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Between 2001 and 2006, Canada’s population grew by 5.4%. Only two provinces, Alberta and Ontario and three territories registered growth rates above the national average. The three Maritime provinces (Prince Edward Island, Nova Scotia and New Brunswick) had the smallest population growth, while Newfoundland and Labrador and Saskatchewan experienced population declines. In 2006, about 21.5 million people, almost two-thirds of Canada’s population lived in 33 census metropolitan areas (CMAs). Between 2001 and 2006, the population of these CMAs climbed 6.9%, faster that the national average. Barrie registered the fastest population growth of any CMA (19.2%), followed by Calgary (13.4%), Oshawa (11.6%) and Edmonton (10.4%).
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
County Boundary for Pitt County North Carolina - This dataset only contains one polygon representing the Pitt County boundary. This dataset is maintained in collaboration between Pitt County Tax Administration and Pitt County Management Information Systems. For specific questions regarding the data you may contact the Pitt County MIS department at 252-902-3800 OR contact Pitt County Tax Administration at 252-902-3400.Pitt County is a county located in the U.S. state of North Carolina. As of the 2010 census, the population was 168,148, making it the seventeenth-most populous county in North Carolina. The county seat is Greenville. Pitt County comprises the Greenville, NC Metropolitan Statistical Area. As one of the fastest growing centers in the state, the county has seen a population boom since 1990.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This feature layer was created for use with the Tennessee State Data Center County Population Estimates and Components of Change Dashboard and its design is specific to that application. The map is updated each March when an additional year is added to the estimate series. The layer contains overlapping geographic features (one county polygon for each year in the estimate vintage). In other words for a Knox County, there would be a polygon feature and associated attributes for 2020, 2021, 2022 and so on. Therefore, for general use the map must be filtered to show only a single year from the estimate series. Each county's population, numeric change and percent change are provided for every year in the population estimate times series. Additional columns providing ranks of the fastest-growing counties by size and rank order by population size.The layers includes a number of Tennessee specific, geographic classification systems that are found in Classifications are from the 2023 Tennessee County Geographic Classifier Reference File
Development Districts2020 Urban and Rural Counties; Tennessee Department of Economic and Community Development2023 Metropolitan and Micropolitan Statistical Areas
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global smart city landscaping market is expected to grow from USD XX million in 2025 to USD XX million by 2033, at a CAGR of XX% during the forecast period. The market is driven by the increasing demand for smart city solutions to improve the efficiency, sustainability, and livability of urban areas. Growing urbanization and the need for efficient management of urban resources are also contributing to the market growth. The market is segmented by application into municipal, enterprise, personal, and others. The municipal segment is expected to hold the largest market share due to the increasing adoption of smart city solutions by local governments. The global smart city landscaping market is expected to be dominated by North America and Europe in the coming years. These regions have been at the forefront of smart city development and have invested heavily in smart city initiatives. However, Asia-Pacific is expected to be the fastest-growing region in the smart city landscaping market due to the rapid urbanization and economic growth in the region. The key players in the global smart city landscaping market include Chengdu Xiaobu Chuangxiang, Oriental Smart City (Beijing), Jiangsu Yutu Information Technology, Xiamen Chenglian Technology, Xi'an Lvyun Zhitong Ecological Engineering, Shenzhen Topevery Technology, Hangzhou Crossover Science and Technology, and Hunan Zhixuan Information Technology. These companies are offering a wide range of smart city solutions, including software, hardware, and services.
This statistics shows the top 20 fastest growing large-metropolitan areas in the United States between July 1st, 2022 and July 1st, 2023. The total population in the Wilmington, North Carolina, metropolitan area increased by 0.05 percent from 2022 to 2023.