The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
The Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature class and its derivation is provided within the
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 16, using North American Datum of 1983 (NAD83). To produce a polygon vector layer for use in ArcGIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcGIS (Version 9.2, © 2006 Environmental Systems Research Institute, Redlands, California). In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer of INDU and immediate environs. At this stage, the map layer has only map attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map class names, physiognomic definitions, link to NVC association and alliance codes), we produced a feature class table along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature class layers produced from this project, including vegetation sample plots, accuracy assessment sites, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
Resource contains an ArcGIS file geodatabase raster for the National Vegetation Information System (NVIS) Major Vegetation Groups - Australia-wide, present extent (FGDB_NVIS4_1_AUST_MVG_EXT).
Related datasets are also included: FGDB_NVIS4_1_KEY_LAYERS_EXT - ArcGIS File Geodatabase Feature Class of the Key Datasets that make up NVIS Version 4.1 - Australia wide; and FGDB_NVIS4_1_LUT_KEY_LAYERS - Lookup table for Dataset Key Layers.
This raster dataset provides the latest summary information (November 2012) on Australia's present (extant) native vegetation. It is in Albers Equal Area projection with a 100 m x 100 m (1 Ha) cell size. A comparable Estimated Pre-1750 (pre-european, pre-clearing) raster dataset is available: - NVIS4_1_AUST_MVG_PRE_ALB. State and Territory vegetation mapping agencies supplied a new version of the National Vegetation Information System (NVIS) in 2009-2011. Some agencies did not supply new data for this version but approved re-use of Version 3.1 data. Summaries were derived from the best available data in the NVIS extant theme as at June 2012. This product is derived from a compilation of data collected at different scales on different dates by different organisations. Please refer to the separate key map showing scales of the input datasets. Gaps in the NVIS database were filled by non-NVIS data, notably parts of South Australia and small areas of New South Wales such as the Curlewis area. The data represent on-ground dates of up to 2006 in Queensland, 2001 to 2005 in South Australia (depending on the region) and 2004/5 in other jurisdictions, except NSW. NVIS data was partially updated in NSW with 2001-09 data, with extensive areas of 1997 data remaining from the earlier version of NVIS. Major Vegetation Groups were identified to summarise the type and distribution of Australia's native vegetation. The classification contains different mixes of plant species within the canopy, shrub or ground layers, but are structurally similar and are often dominated by a single genus. In a mapping sense, the groups reflect the dominant vegetation occurring in a map unit where there are a mix of several vegetation types. Subdominant vegetation groups which may also be present in the map unit are not shown. For example, the dominant vegetation in an area may be mapped as dominated by eucalypt open forest, although it contains pockets of rainforest, shrubland and grassland vegetation as subdominants. The (related) Major Vegetation Subgroups represent more detail about the understorey and floristics of the Major Vegetation Groups and are available as separate raster datasets: - NVIS4_1_AUST_MVS_EXT_ALB - NVIS4_1_AUST_MVS_PRE_ALB A number of other non-vegetation and non-native vegetation land cover types are also represented as Major Vegetation Groups. These are provided for cartographic purposes, but should not be used for analyses. For further background and other NVIS products, please see the links on http://www.environment.gov.au/erin/nvis/index.html.
The current NVIS data products are available from http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system.
For use in Bioregional Assessment land classification analyses
NVIS Version 4.1
The input vegetation data were provided from over 100 individual projects representing the majority of Australia's regional vegetation mapping over the last 50 years. State and Territory custodians translated the vegetation descriptions from these datasets into a common attribute framework, the National Vegetation Information System (ESCAVI, 2003). Scales of input mapping ranged from 1:25,000 to 1:5,000,000. These were combined into an Australia-wide set of vector data. Non-terrestrial areas were mostly removed by the State and Territory custodians before supplying the data to the Environmental Resources Information Network (ERIN), Department of Sustainability Environment Water Population and Communities (DSEWPaC).
Each NVIS vegetation description was written to the NVIS XML format file by the custodian, transferred to ERIN and loaded into the NVIS database at ERIN. A considerable number of quality checks were performed automatically by this system to ensure conformity to the NVIS attribute standards (ESCAVI, 2003) and consistency between levels of the NVIS Information Hierarchy within each description. Descriptions for non-vegetation and non-native vegetation mapping codes were transferred via CSV files.
The NVIS vector (polygon) data for Australia comprised a series of jig-saw pieces, eachup to approx 500,000 polygons - the maximum tractable size for routine geoprocesssing. The spatial data was processed to conform to the NVIS spatial format (ESCAVI, 2003; other papers). Spatial processing and attribute additions were done mostly in ESRI File Geodatabases. Topology and minor geometric corrections were also performed at this stage. These datasets were then loaded into ESRI Spatial Database Engine as per the ERIN standard. NVIS attributes were then populated using Oracle database tables provided by custodians, mostly using PL/SQL Developer or in ArcGIS using the field calculator (where simple).
Each spatial dataset was joined to and checked against a lookup table for the relevant State/Territory to ensure that all mapping codes in the dominant vegetation type of each polygon (NVISDSC1) had a valid lookup description, including an allocated MVG. Minor vegetation components of each map unit (NVISDSC2-6) were not checked, but could be considered mostly complete.
Each NVIS vegetation description was allocated to a Major Vegetation Group (MVG) by manual interpretation at ERIN. The Australian Natural Resources Atlas (http://www.anra.gov.au/topics/vegetation/pubs/native_vegetation/vegfsheet.html) provides detailed descriptions of most Major Vegetation Groups. Three new MVGs were created for version 4.1 to better represent open woodland formations and forests (in the NT) with no further data available. NVIS vegetation descriptions were reallocated into these classes, if appropriate:
Unclassified Forest
Other Open Woodlands
Mallee Open Woodlands and Sparse Mallee Shublands
(Thus there are a total of 33 MVGs existing as at June 2012). Data values defined as cleared or non-native by data custodians were attributed specific MVG values such as 25 - Cleared or non native, 27 - naturally bare, 28 - seas & estuaries, and 99 - Unknown.
As part of the process to fill gaps in NVIS, the descriptive data from non-NVIS sources was also referenced in the NVIS database, but with blank vegetation descriptions. In general. the gap-fill data comprised (a) fine scale (1:250K or better) State/Territory vegetation maps for which NVIS descriptions were unavailable and (b) coarse-scale (1:1M) maps from Commonwealth and other sources. MVGs were then allocated to each description from the available desciptions in accompanying publications and other sources.
Parts of New South Wales, South Australia, QLD and the ACT have extensive areas of vector "NoData", thus appearing as an inland sea. The No Data areas were dealt with differently by state. In the ACT and SA, the vector data was 'gap-filled' and attributed using satellite imagery as a guide prior to rasterising. Most of these areas comprised a mixture of MVG 24 (inland water) and 25 (cleared), and in some case 99 (Unknown). The NSW & QLD 'No Data' areas were filled using a raster mask to fill the 'holes'. These areas were attributed with MVG 24, 26 (water & unclassified veg), MVG 25 (cleared); or MVG 99 Unknown/no data, where these areas were a mixture of unknown proportions.
Each spatial dataset with joined lookup table (including MVG_NUMBER linked to NVISDSC1) was exported to a File Geodatabase as a feature class. These were reprojected into Albers Equal Area projection (Central_Meridian: 132.000000, Standard_Parallel_1: -18.000000, Standard_Parallel_2: -36.000000, Linear Unit: Meter (1.000000), Datum GDA94, other parameters 0).
Each feature class was then rasterised to a 100m raster with extents to a multiple of 1000 m, to ensure alignment. In some instances, areas of 'NoData' had to be modelled in raster. For example, in NSW where non-native areas (cleared, water bodies etc) have not been mapped. The rasters were then merged into a 'state wide' raster. State rasters were then merged into this 'Australia wide' raster dataset.
November 2012 Corrections
Closer inspection of the original 4.1 MVG Extant raster dataset highlighted some issues with the raster creation process which meant that raster pixels in some areas did not align as intended. These were corrected, and the new properly aligned rasters released in November 2012.
Department of the Environment (2012) Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m analysis product). Bioregional Assessment Source Dataset. Viewed 10 July 2017, http://data.bioregionalassessments.gov.au/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374.
This database was prepared using a combination of materials that include aerial photographs, topographic maps (1:24,000 and 1:250,000), field notes, and a sample catalog. Our goal was to translate sample collection site locations at Yellowstone National Park and surrounding areas into a GIS database. This was achieved by transferring site locations from aerial photographs and topographic maps into layers in ArcMap. Each field site is located based on field notes describing where a sample was collected. Locations were marked on the photograph or topographic map by a pinhole or dot, respectively, with the corresponding station or site numbers. Station and site numbers were then referenced in the notes to determine the appropriate prefix for the station. Each point on the aerial photograph or topographic map was relocated on the screen in ArcMap, on a digital topographic map, or an aerial photograph. Several samples are present in the field notes and in the catalog but do not correspond to an aerial photograph or could not be found on the topographic maps. These samples are marked with “No” under the LocationFound field and do not have a corresponding point in the SampleSites feature class. Each point represents a field station or collection site with information that was entered into an attributes table (explained in detail in the entity and attribute metadata sections). Tabular information on hand samples, thin sections, and mineral separates were entered by hand. The Samples table includes everything transferred from the paper records and relates to the other tables using the SampleID and to the SampleSites feature class using the SampleSite field.
Jurisdictional Unit, 2022-05-21. For use with WFDSS, IFTDSS, IRWIN, and InFORM.This is a feature service which provides Identify and Copy Feature capabilities. If fast-drawing at coarse zoom levels is a requirement, consider using the tile (map) service layer located at https://nifc.maps.arcgis.com/home/item.html?id=3b2c5daad00742cd9f9b676c09d03d13.OverviewThe Jurisdictional Agencies dataset is developed as a national land management geospatial layer, focused on representing wildland fire jurisdictional responsibility, for interagency wildland fire applications, including WFDSS (Wildland Fire Decision Support System), IFTDSS (Interagency Fuels Treatment Decision Support System), IRWIN (Interagency Reporting of Wildland Fire Information), and InFORM (Interagency Fire Occurrence Reporting Modules). It is intended to provide federal wildland fire jurisdictional boundaries on a national scale. The agency and unit names are an indication of the primary manager name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIdentifier=null,JurisdictionalUnitAgency=null, JurisdictionalUnitKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).These data are used to automatically populate fields on the WFDSS Incident Information page.This data layer implements the NWCG Jurisdictional Unit Polygon Geospatial Data Layer Standard.Relevant NWCG Definitions and StandardsUnit2. A generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Unit, Protecting; LandownerUnit IdentifierThis data standard specifies the standard format and rules for Unit Identifier, a code used within the wildland fire community to uniquely identify a particular government organizational unit.Landowner Kind & CategoryThis data standard provides a two-tier classification (kind and category) of landownership. Attribute Fields JurisdictionalAgencyKind Describes the type of unit Jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, and Other. A value may not be populated for all polygons.JurisdictionalAgencyCategoryDescribes the type of unit Jurisdiction using the NWCG Landowner Category data standard. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State. A value may not be populated for all polygons.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Standard Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available from the Unit ID standard, linked above.LandownerKindThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. There are three valid values: Federal, Private, or Other.LandownerCategoryThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State, Private.DataSourceThe database from which the polygon originated. Be as specific as possible, identify the geodatabase name and feature class in which the polygon originated.SecondaryDataSourceIf the Data Source is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if Data Source is "PAD-US 2.1", then for a USDA Forest Service polygon, the Secondary Data Source would be "USDA FS Automated Lands Program (ALP)". For a BLM polygon in the same dataset, Secondary Source would be "Surface Management Agency (SMA)."SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.MapMethod:Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality. MapMethod will be Mixed Method by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; OtherDateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using 24 hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature. GeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JoinMethodAdditional information on how the polygon was matched information in the NWCG Unit ID database.LocalNameLocalName for the polygon provided from PADUS or other source.LegendJurisdictionalAgencyJurisdictional Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.LegendLandownerAgencyLandowner Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.DataSourceYearYear that the source data for the polygon were acquired.Data InputThis dataset is based on an aggregation of 4 spatial data sources: Protected Areas Database US (PAD-US 2.1), data from Bureau of Indian Affairs regional offices, the BLM Alaska Fire Service/State of Alaska, and Census Block-Group Geometry. NWCG Unit ID and Agency Kind/Category data are tabular and sourced from UnitIDActive.txt, in the WFMI Unit ID application (https://wfmi.nifc.gov/unit_id/Publish.html). Areas of with unknown Landowner Kind/Category and Jurisdictional Agency Kind/Category are assigned LandownerKind and LandownerCategory values of "Private" by use of the non-water polygons from the Census Block-Group geometry.PAD-US 2.1:This dataset is based in large part on the USGS Protected Areas Database of the United States - PAD-US 2.`. PAD-US is a compilation of authoritative protected areas data between agencies and organizations that ultimately results in a comprehensive and accurate inventory of protected areas for the United States to meet a variety of needs (e.g. conservation, recreation, public health, transportation, energy siting, ecological, or watershed assessments and planning). Extensive documentation on PAD-US processes and data sources is available.How these data were aggregated:Boundaries, and their descriptors, available in spatial databases (i.e. shapefiles or geodatabase feature classes) from land management agencies are the desired and primary data sources in PAD-US. If these authoritative sources are unavailable, or the agency recommends another source, data may be incorporated by other aggregators such as non-governmental organizations. Data sources are tracked for each record in the PAD-US geodatabase (see below).BIA and Tribal Data:BIA and Tribal land management data are not available in PAD-US. As such, data were aggregated from BIA regional offices. These data date from 2012 and were substantially updated in 2022. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This layer contains the fire perimeters from the previous calendar year, and those dating back to 1878, for California. Perimeters are sourced from the Fire and Resource Assessment Program (FRAP) and are updated shortly after the end of each calendar year. Information below is from the FRAP web site. There is also a tile cache version of this layer.About the Perimeters in this LayerInitially CAL FIRE and the USDA Forest Service jointly developed a fire perimeter GIS layer for public and private lands throughout California. The data covered the period 1950 to 2001 and included USFS wildland fires 10 acres and greater, and CAL FIRE fires 300 acres and greater. BLM and NPS joined the effort in 2002, collecting fires 10 acres and greater. Also in 2002, CAL FIRE’s criteria expanded to include timber fires 10 acres and greater in size, brush fires 50 acres and greater in size, grass fires 300 acres and greater in size, wildland fires destroying three or more structures, and wildland fires causing $300,000 or more in damage. As of 2014, the monetary requirement was dropped and the damage requirement is 3 or more habitable structures or commercial structures.In 1989, CAL FIRE units were requested to fill in gaps in their fire perimeter data as part of the California Fire Plan. FRAP provided each unit with a preliminary map of 1950-89 fire perimeters. Unit personnel also verified the pre-1989 perimeter maps to determine if any fires were missing or should be re-mapped. Each CAL FIRE Unit then generated a list of 300+ acre fires that started since 1989 using the CAL FIRE Emergency Activity Reporting System (EARS). The CAL FIRE personnel used this list to gather post-1989 perimeter maps for digitizing. The final product is a statewide GIS layer spanning the period 1950-1999.CAL FIRE has completed inventory for the majority of its historical perimeters back to 1950. BLM fire perimeters are complete from 2002 to the present. The USFS has submitted records as far back as 1878. The NPS records date to 1921.About the ProgramFRAP compiles fire perimeters and has established an on-going fire perimeter data capture process. CAL FIRE, the United States Forest Service Region 5, the Bureau of Land Management, and the National Park Service jointly develop the fire perimeter GIS layer for public and private lands throughout California at the end of the calendar year. Upon release, the data is current as of the last calendar year.The fire perimeter database represents the most complete digital record of fire perimeters in California. However it is still incomplete in many respects. Fire perimeter database users must exercise caution to avoid inaccurate or erroneous conclusions. For more information on potential errors and their source please review the methodology section of these pages.The fire perimeters database is an Esri ArcGIS file geodatabase with three data layers (feature classes):A layer depicting wildfire perimeters from contributing agencies current as of the previous fire year;A layer depicting prescribed fires supplied from contributing agencies current as of the previous fire year;A layer representing non-prescribed fire fuel reduction projects that were initially included in the database. Fuels reduction projects that are non prescribed fire are no longer included.All three are available in this layer. Additionally, you can find related web maps, view layers set up for individual years or decades, and tile layers here.Recommended Uses There are many uses for fire perimeter data. For example, it is used on incidents to locate recently burned areas that may affect fire behavior (see map left).Other uses include:Improving fire prevention, suppression, and initial attack success.Reduce and track hazards and risks in urban interface areas.Provide information for fire ecology studies for example studying fire effects on vegetation over time. Download the Fire Perimeter GIS data hereDownload a statewide map of Fire Perimeters hereSource: Fire and Resource Assessment Program (FRAP)
The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is a point feature class of environmental monitoring stations maintained in the California Department of Water Resources’ (hereafter the Department) Water Data Library Database (WDL) for discrete “grab” water quality sampling stations. The WDL database contains DWR-collected, current and historical, chemical and physical parameters found in drinking water, groundwater, and surface waters throughout the state. This dataset is comprised of a Stations point feature class and a related “Period of Record by Station and Parameter” table. The Stations point feature class contains basic information about each station including station name, station type, latitude, longitude, and the dates of the first and last sample collection events on record. The related Period of Record Table contains the list of parameters (i.e. chemical analyte or physical parameter) collected at each station along with the start date and end date (period of record) for each parameter and the number of data points collected. The Lab and Field results data associated with this discrete grab water quality stations dataset can be accessed from the California Natural Resources Agencies Open Data Platform at https://data.cnra.ca.gov/dataset/water-quality-data or from DWR’s Water Data Library web application at https://wdl.water.ca.gov/waterdatalibrary/index.cfm.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is a point feature class of environmental monitoring stations maintained in the California Department of Water Resources’ (hereafter the Department) Water Data Library Database (WDL) for discrete “grab” water quality sampling stations. The WDL database contains DWR-collected, current and historical, chemical and physical parameters found in drinking water, groundwater, and surface waters throughout the state. This dataset is comprised of a Stations point feature class and a related “Period of Record by Station and Parameter” table. The Stations point feature class contains basic information about each station including station name, station type, latitude, longitude, and the dates of the first and last sample collection events on record. The related Period of Record Table contains the list of parameters (i.e. chemical analyte or physical parameter) collected at each station along with the start date and end date (period of record) for each parameter and the number of data points collected. The Lab and Field results data associated with this discrete grab water quality stations dataset can be accessed from the California Natural Resources Agencies Open Data Platform at https://data.cnra.ca.gov/dataset/water-quality-data or from DWR’s Water Data Library web application at https://wdl.water.ca.gov/waterdatalibrary/index.cfm.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract This dataset was derived from provided by Geoscience Australia and the Queensland Department of Natural Resources and Mining. You can find a link to the source dataset in the Lineage Field in this metadata statement. The History Field in this metadata statement describes how this dataset was derived. This dataset contains a set of feature classes containing GIS point data and attributes derived from tabular GAB_hydrochem_QCedforCSGwaters11mapNO_CONFIDENTIAL.xlsx GUID: …Show full descriptionAbstract This dataset was derived from provided by Geoscience Australia and the Queensland Department of Natural Resources and Mining. You can find a link to the source dataset in the Lineage Field in this metadata statement. The History Field in this metadata statement describes how this dataset was derived. This dataset contains a set of feature classes containing GIS point data and attributes derived from tabular GAB_hydrochem_QCedforCSGwaters11mapNO_CONFIDENTIAL.xlsx GUID: (8e5cade2-c95a-45ec-9e6e-39b136d2b6d6). The feature classes are split up according to each bore assigned aquifer extent using ArcGIS GIS processes to produce point, contour and raster data surfaces. Prior to being converted into GIS Feature Class, the source data had been through a quality assurance and validation process to ensure the reliability of chemistry sample values as well as to check the assigned aquifer formation for each bore. Purpose This dataset was created to display groundwater chemistry information spatially for each individual aquifer in the Surat Basin subregion. Information may be displayed as point data, or interpolated to display as contour and raster surfaces. Dataset History This dataset was created by converting tabular bore data to GIS feature class point data. The conversion was done using ArcCatalog. For each Aquifer in the source dataset - GUID: 8e5cade2-c95a-45ec-9e6e-39b136d2b6d6 (sheets were split up by aquifer formation name) a new point Feature Class was created. Using ArcGIS GIS processesand tools, these point feature classes were derived: pH, Alkalinity and Total Dissolved Solids (TDS) for each aquifer extent. These point feature classes were processed using ArcGIS tools to create pH, Alkalinity and TDS (Hydrochemistry) grids. Contour feature class were derived from the grids. The grids and contours were clipped to its own aquifer extent. Dataset Citation Bioregional Assessment Programme (XXXX) MBC Aquifer Hydrochemistry v01. Bioregional Assessment Derived Dataset. Viewed 11 April 2016, http://data.bioregionalassessments.gov.au/dataset/dc1435a3-ada3-46fc-af17-d2c0d49a929b. Dataset Ancestors Derived From Surface Geology of Australia, 1:1 000 000 scale, 2012 edition Derived From GABATLAS - Adori-Springbok Aquifer - Thickness and Extent Derived From Gippsland Project Boundary Derived From Bioregional Assessment areas v04 Derived From GABATLAS - Evergreen-Poolowanna Aquitard and Equivalents - Thickness and Extent Derived From Natural Resource Management (NRM) Regions 2010 Derived From GABATLAS - Birkhead-Walloon Aquitard - Thickness and Extent Derived From GABATLAS - Precipice Aquifer & Equivalents - Thickness and Extent Derived From GABATLAS - Rolling Downs Aquitard - Thickness and Extent Derived From Geoscience Australia, National Collaborative Framework Hydrochemical Characterisation Project - Surat Basin Hydrochemistry Spreadsheets Derived From Bioregional Assessment areas v03 Derived From QLD Geological Digital Data - QLD Geology, Structural Framework, November 2012 Derived From GABATLAS - Cadna-owie-Hooray Aquifer and Equivalents - Thickness and Extent Derived From Bioregional Assessment areas v01 Derived From GEODATA TOPO 250K Series 3, File Geodatabase format (.gdb) Derived From GEODATA TOPO 250K Series 3 Derived From NSW Catchment Management Authority Boundaries 20130917 Derived From Victoria - Seamless Geology 2014 Derived From GABATLAS - Hutton Aquifer and Equivalents - Thickness and Extent Derived From Geological Provinces - Full Extent Derived From Bioregional Assessment areas v02
Indiana County Log Line Inventory created as an ESRI polyline shapefile consisting of a Feature polyline geometry. The data set was compiled by Road Inventory of the Indiana GIS Department of Transportation (INDOT) . Dataset is classified as sde Feature Class. The Feature Class is projected Coordinate System: NAD 1983, UTM, Zone 16 N. The Projections is Transverse Mercator.Each County Log Line Inventory is placed as to Position.(County Log is a utilized measurement from a County Line intersecting with a Highway Network, for example Interstate, State and US. Measurement is from West to East and South to North). Position also utilizes Jurisdiction, County, Road System, Route Name and Alternative RouteCounty Log line inventory is as of 2006-2015. There is a total of (133,278) records
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We developed 75 map classes (including map-class phases) to map the SLBE and environs. Of these 75 map classes, 67 represent natural/semi-natural vegetation types within the NVCS, four represent cultural vegetation types (agriculture and developed) within the NVCS, and four represent non-vegetation features (open water, barren land). To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables, and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
NYS Building Footprints - metadata info:The New York State building footprints service contains building footprints with address information. The footprints have address point information folded in from the Streets and Address Matching (SAM - https://gis.ny.gov/streets/) address point file. The building footprints have a field called “Address Range”, this field shows (where available) either a single address or an address range, depending on the address points that fall within the footprint. Ex: 3860 Atlantic Avenue or Ex: 32 - 34 Wheatfield Circle Building footprints in New York State are from four different sources: Microsoft, Open Data, New York State Energy Research and Development Authority (NYSERDA), and Geospatial Services. The majority of the footprints are from NYSERDA, except in NYC where the primary source was Open Data. Microsoft footprints were added where the other 2 sources were missing polygons. Field Descriptions: NYSGeo Source : tells the end user if the source is NYSERDA, Microsoft, NYC Open Data, and could expand from here in the futureAddress Point Count: the number of address points that fall within that building footprintAddress Range : If an address point falls within a footprint it lists the range of those address points. Ex: if a building is on a corner of South Pearl and Beaver Street, 40 points fall on the building, and 35 are South Pearl Street it would give the range of addresses for South Pearl. We also removed sub addresses from this range, primarily apartment related. For example, in above example, it would not list 30 South Pearl, Apartment 5A, it would list 30 South Pearl.Most Common Street : the street name of the largest number of address points. In the above example, it would list “South Pearl” as the most common street since the majority of address points list it as the street. Other Streets: the list of other streets that fall within the building footprint, if any. In the above example, “Beaver Street” would be listed since address points for Beaver Street fall on the footprint but are not in the majority.County Name : County name populated from CIESINs. If not populated from CIESINs, identified by the GSMunicipality Name : Municipality name populated from CIESINs. If not populated from CIESINs, identified by the GSSource: Source where the data came from. If NYSGeo Source = NYSERDA, the data would typically list orthoimagery, LIDAR, county data, etc.Source ID: if NYSGeo Source = NYSERDA, Source ID would typically list an orthoimage or LIDAR tileSource Date: Date the footprint was created. If the source image was from 2016 orthoimagery, 2016 would be the Source Date. Description of each footprint source:NYSERDA Building footprints that were created as part of the New York State Flood Impact Decision Support Systems https://fidss.ciesin.columbia.edu/home Footprints vary in age from county to county.Microsoft Building Footprints released 6/28/2018 - vintage unknown/varies. More info on this dataset can be found at https://blogs.bing.com/maps/2018-06/microsoft-releases-125-million-building-footprints-in-the-us-as-open-data.NYC Open Data - Building Footprints of New York City as a polygon feature class. Last updated 7/30/2018, downloaded on 8/6/2018. Feature Class of footprint outlines of buildings in New York City. Please see the following link for additional documentation- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_BuildingFootprints.mdSpatial Reference of Source Data: UTM Zone 18, meters, NAD 83. Spatial Reference of Web Service: Spatial Reference of Web Service: WGS 1984 Web Mercator Auxiliary Sphere.
This data represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular survey data. The rectangular survey data are a reference system for land tenure based upon meridian, township/range, section, section subdivision and government lots. The non-rectangular survey data represent surveys that were largely performed to protect and/or convey title on specific parcels of land such as mineral surveys and tracts. The data are largely complete in reference to the rectangular survey data at the level of first division. However, the data varies in terms of granularity of its spatial representation as well as its content below the first division. Therefore, depending upon the data source and steward, accurate subdivision of the rectangular data may not be available below the first division and the non-rectangular minerals surveys may not be present. At times, the complexity of surveys rendered the collection of data cost prohibitive such as in areas characterized by numerous, overlapping mineral surveys. In these situations, the data were often not abstracted or were only partially abstracted and incorporated into the data set. These PLSS data were compiled from a broad spectrum or sources including federal, county, and private survey records such as field notes and plats as well as map sources such as USGS 7 ½ minute quadrangles. The metadata in each data set describes the production methods for the data content. This data is optimized for data publication and sharing rather than for specific "production" or operation and maintenance. A complete PLSS data set includes the following: PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys) PLSS Special surveys (non-rectangular components of the PLSS) Meandered Water, Corners, Metadata at a Glance (which identified last revised date and data steward) and Conflicted Areas (known areas of gaps or overlaps or inconsistencies). The Entity-Attribute section of this metadata describes these components in greater detail. The second division of the PLSS is quarter, quarter-quarter, sixteenth or government lot division of the PLSS. The second and third divisions are combined into this feature class as an intentional de-normalization of the PLSS hierarchical data. The polygons in this feature class represent the smallest division to the sixteenth that has been defined for the first division. For example In some cases sections have only been divided to the quarter. Divisions below the sixteenth are in the Special Survey or Parcel Feature Class. The second division of the PLSS is quarter, quarter-quarter, sixteenth or government lot division of the PLSS. The second and third divisions are combined into this feature class as an intentional de-normalization of the PLSS hierarchical data. The polygons in this feature class represent the smallest division to the sixteenth that has been defined for the first division. For example In some cases sections have only been divided to the quarter. Divisions below the sixteenth are in the Special Survey or Parcel Feature Class. PLSSLines is not a standard feature class found in the CadNSDI feature data set. PLSSLines is a representation of surveyed lines found on and in official survey records and are defined by a bearing and a distance connecting two points.
Download In State Plane Projection Here ** In addition to the Tax Parcel polygons feature class, the hyperlink download above also contains a parcel point data layer ** Parcel boundaries are developed from deeds, plats of subdivision and other legal documents going back to the mid 1800's, following generally accepted practices used in Public Land Survey System states, and following guidelines established by the Illinois Department of Revenue and the International Association of Assessment Officials. Lake County's parcel coverage is based on resolving the accumulated evidence of all of the legal documents surrounding a particular parcel or subdivision, and not the result of a countywide resurvey. These parcel boundaries are intended to be a visual inventory of property for tax and other administrative purposes; they are not intended to be used in place of an on-site survey or for the precise determination of property corners or PLSS features based on GIS coordinates. In Illinois, only a registered professional land surveyor is authorized to determine boundary locations. Included are the tax parcel boundaries, represented as polygons and centroids, for all changes resulting from legal records submitted to the Recorder of Deeds up to December 31st of the preceding year, as well as any court orders, municipal annexations and other transactions which impact the tax parcel boundaries. NOTE: The ONLY attribute included is the Property Index Number, or PARCEL_NUM. Additional assessment attribute data can be downloaded here This parcel layer is used for tax assessment purposes and for a variety of other local government functions. It changes often, both spatially and in its attribution, based on divisions or consolidations, the sale of property and other transactions. Example: PIN 08-17-304-014 can be interpreted as follows: Township 08, Section 17, Block 304, Parcel 014. Note that the first digit of block, "3" in this example, signifies that the parcel lies in quarter section 3. The quarter sections are labeled from 1 through 4, representing the northwest, northeast, southwest and southeast quarter sections, respectively. Update Frequency: This dataset is updated on a weekly basis.
The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastre Theme ( https://communities.geoplatform.gov/ngda-cadastre/ ). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all open space public and nonprofit lands and waters. Most are public lands owned in fee (the owner of the property has full and irrevocable ownership of the land); however, permanent and long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g. 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of U.S. public land and other protected areas, compiling “best available” data provided by managing agencies and organizations. The PAD-US geodatabase maps and describes areas using thirty-six attributes and five separate feature classes representing the U.S. protected areas network: Fee (ownership parcels), Designation, Easement, Marine, Proclamation and Other Planning Boundaries. An additional Combined feature class includes the full PAD-US inventory to support data management, queries, web mapping services, and analyses. The Feature Class (FeatClass) field in the Combined layer allows users to extract data types as needed. A Federal Data Reference file geodatabase lookup table (PADUS3_0Combined_Federal_Data_References) facilitates the extraction of authoritative federal data provided or recommended by managing agencies from the Combined PAD-US inventory. This PAD-US Version 3.0 dataset includes a variety of updates from the previous Version 2.1 dataset (USGS, 2020, https://doi.org/10.5066/P92QM3NT ), achieving goals to: 1) Annually update and improve spatial data representing the federal estate for PAD-US applications; 2) Update state and local lands data as state data-steward and PAD-US Team resources allow; and 3) Automate data translation efforts to increase PAD-US update efficiency. The following list summarizes the integration of "best available" spatial data to ensure public lands and other protected areas from all jurisdictions are represented in the PAD-US (other data were transferred from PAD-US 2.1). Federal updates - The USGS remains committed to updating federal fee owned lands data and major designation changes in annual PAD-US updates, where authoritative data provided directly by managing agencies are available or alternative data sources are recommended. The following is a list of updates or revisions associated with the federal estate: 1) Major update of the Federal estate (fee ownership parcels, easement interest, and management designations where available), including authoritative data from 8 agencies: Bureau of Land Management (BLM), U.S. Census Bureau (Census Bureau), Department of Defense (DOD), U.S. Fish and Wildlife Service (FWS), National Park Service (NPS), Natural Resources Conservation Service (NRCS), U.S. Forest Service (USFS), and National Oceanic and Atmospheric Administration (NOAA). The federal theme in PAD-US is developed in close collaboration with the Federal Geographic Data Committee (FGDC) Federal Lands Working Group (FLWG, https://communities.geoplatform.gov/ngda-govunits/federal-lands-workgroup/ ). 2) Improved the representation (boundaries and attributes) of the National Park Service, U.S. Forest Service, Bureau of Land Management, and U.S. Fish and Wildlife Service lands, in collaboration with agency data-stewards, in response to feedback from the PAD-US Team and stakeholders. 3) Added a Federal Data Reference file geodatabase lookup table (PADUS3_0Combined_Federal_Data_References) to the PAD-US 3.0 geodatabase to facilitate the extraction (by Data Provider, Dataset Name, and/or Aggregator Source) of authoritative data provided directly (or recommended) by federal managing agencies from the full PAD-US inventory. A summary of the number of records (Frequency) and calculated GIS Acres (vs Documented Acres) associated with features provided by each Aggregator Source is included; however, the number of records may vary from source data as the "State Name" standard is applied to national files. The Feature Class (FeatClass) field in the table and geodatabase describe the data type to highlight overlapping features in the full inventory (e.g. Designation features often overlap Fee features) and to assist users in building queries for applications as needed. 4) Scripted the translation of the Department of Defense, Census Bureau, and Natural Resource Conservation Service source data into the PAD-US format to increase update efficiency. 5) Revised conservation measures (GAP Status Code, IUCN Category) to more accurately represent protected and conserved areas. For example, Fish and Wildlife Service (FWS) Waterfowl Production Area Wetland Easements changed from GAP Status Code 2 to 4 as spatial data currently represents the complete parcel (about 10.54 million acres primarily in North Dakota and South Dakota). Only aliquot parts of these parcels are documented under wetland easement (1.64 million acres). These acreages are provided by the U.S. Fish and Wildlife Service and are referenced in the PAD-US geodatabase Easement feature class 'Comments' field. State updates - The USGS is committed to building capacity in the state data-steward network and the PAD-US Team to increase the frequency of state land updates, as resources allow. The USGS supported efforts to significantly increase state inventory completeness with the integration of local parks data in the PAD-US 2.1, and developed a state-to-PAD-US data translation script during PAD-US 3.0 development to pilot in future updates. Additional efforts are in progress to support the technical and organizational strategies needed to increase the frequency of state updates. The PAD-US 3.0 included major updates to the following three states: 1) California - added or updated state, regional, local, and nonprofit lands data from the California Protected Areas Database (CPAD), managed by GreenInfo Network, and integrated conservation and recreation measure changes following review coordinated by the data-steward with state managing agencies. Developed a data translation Python script (see Process Step 2 Source Data Documentation) in collaboration with the data-steward to increase the accuracy and efficiency of future PAD-US updates from CPAD. 2) Virginia - added or updated state, local, and nonprofit protected areas data (and removed legacy data) from the Virginia Conservation Lands Database, provided by the Virginia Department of Conservation and Recreation's Natural Heritage Program, and integrated conservation and recreation measure changes following review by the data-steward. 3) West Virginia - added or updated state, local, and nonprofit protected areas data provided by the West Virginia University, GIS Technical Center. For more information regarding the PAD-US dataset please visit, https://www.usgs.gov/gapanalysis/PAD-US/. For more information about data aggregation please review the PAD-US Data Manual available at https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-manual . A version history of PAD-US updates is summarized below (See https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-history for more information): 1) First posted - April 2009 (Version 1.0 - available from the PAD-US: Team pad-us@usgs.gov). 2) Revised - May 2010 (Version 1.1 - available from the PAD-US: Team pad-us@usgs.gov). 3) Revised - April 2011 (Version 1.2 - available from the PAD-US: Team pad-us@usgs.gov). 4) Revised - November 2012 (Version 1.3) https://doi.org/10.5066/F79Z92XD 5) Revised - May 2016 (Version 1.4) https://doi.org/10.5066/F7G73BSZ 6) Revised - September 2018 (Version 2.0) https://doi.org/10.5066/P955KPLE 7) Revised - September 2020 (Version 2.1) https://doi.org/10.5066/P92QM3NT 8) Revised - January 2022 (Version 3.0) https://doi.org/10.5066/P9Q9LQ4B Comparing protected area trends between PAD-US versions is not recommended without consultation with USGS as many changes reflect improvements to agency and organization GIS systems, or conservation and recreation measure classification, rather than actual changes in protected area acquisition on the ground.
This intersection points feature class represents current intersections in the City of Los Angeles. Few intersection points, named pseudo nodes, are used to split the street centerline at a point that is not a true intersection at the ground level. The Mapping and Land Records Division of the Bureau of Engineering, Department of Public Works provides the most current geographic information of the public right of way. The right of way information is available on NavigateLA, a website hosted by the Bureau of Engineering, Department of Public Works.Intersection layer was created in geographical information systems (GIS) software to display intersection points. Intersection points are placed where street line features join or cross each other and where freeway off- and on-ramp line features join street line features. The intersection points layer is a feature class in the LACityCenterlineData.gdb Geodatabase dataset. The layer consists of spatial data as a point feature class and attribute data for the features. The intersection points relates to the intersection attribute table, which contains data describing the limits of the street segment, by the CL_NODE_ID field. The layer shows the location of the intersection points on map products and web mapping applications, and the Department of Transportation, LADOT, uses the intersection points in their GIS system. The intersection attributes are used in the Intersection search function on BOE's web mapping application NavigateLA. The intersection spatial data and related attribute data are maintained in the Intersection layer using Street Centerline Editing application. The City of Los Angeles Municipal code states, all public right-of-ways (roads, alleys, etc) are streets, thus all of them have intersections. List of Fields:Y: This field captures the georeferenced location along the vertical plane of the point in the data layer that is projected in Stateplane Coordinate System NAD83. For example, Y = in the record of a point, while the X = .CL_NODE_ID: This field value is entered as new point features are added to the edit layer, during Street Centerline application editing process. The values are assigned automatically and consecutively by the ArcGIS software first to the street centerline spatial data layer, then the intersections point spatial data layer, and then the intersections point attribute data during the creation of new intersection points. Each intersection identification number is a unique value. The value relates to the street centerline layer attributes, to the INT_ID_FROM and INT_ID_TO fields. One or more street centerline features intersect the intersection point feature. For example, if a street centerline segment ends at a cul-de-sac, then the point feature intersects only one street centerline segment.X: This field captures the georeferenced location along the horizontal plane of the point in the data layer that is projected in Stateplane Coordinate System NAD83. For example, X = in the record of a point, while the Y = .ASSETID: User-defined feature autonumber.USER_ID: The name of the user carrying out the edits.SHAPE: Feature geometry.LST_MODF_DT: Last modification date of the polygon feature.LAT: This field captures the Latitude in deciaml degrees units of the point in the data layer that is projected in Geographic Coordinate System GCS_North_American_1983.OBJECTID: Internal feature number.CRTN_DT: Creation date of the polygon feature.TYPE: This field captures a value for intersection point features that are psuedo nodes or outside of the City. A pseudo node, or point, does not signify a true intersection of two or more different street centerline features. The point is there to split the line feature into two segments. A pseudo node may be needed if for example, the Bureau of Street Services (BSS) has assigned different SECT_ID values for those segments. Values: • S - Feature is a pseudo node and not a true intersection. • null - Feature is an intersection point. • O - Intersection point is outside of the City of LA boundary.LON: This field captures the Longitude in deciaml degrees units of the point in the data layer that is projected in Geographic Coordinate System GCS_North_American_1983.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.